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Abstract 

We describe for the first time the theory of electromagnetic wave scattering 
in a turbulent plasma taking into account the nonlinear plasma responses due 
to the presence of turbulence. It is shown that the presence of turbulence in 
the form of Langmuir waves introduces an extra expression in the dielectric 
function. This extra term is the non-linear susceptibility of the plasma due 
to the turbulent wave fields. It is shown that this extra term in the dielectric 
function produces a different expression for the dynamic form factor S(k,w) 
which is related to the cross section for the scattering of an electromagnetic 
wave by electrons. 
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Introduction 

Scattering of electromagnetic waves by plasma has become a very successful plasma 
diagnostic technique. The calculation of the differential cross section for the scattering 
of an electromagnetic wave by a totally ionized plasma has previously been carried out 
for a number of plasma conditions [I] including different electron and ion temperatures, 
uniform stationary magnetic field and a relative drift velocity between electrons and 
ions. Not much attention however, has been taken of plasma turbulence[2l. In the 
presence of turbulence the wave characteristics such as frequency and wavenumber can 
change dramatically due to additional terms in the plasma dispersion relation produced 
by the turbulencel3,4l. Therefore in the presence of strong turbulence the differential 
scattering cross section should be altered. 

In the first section of the paper we calculate the change in the dispersion relation for 
ion-acoustic waves in the presence of high frequency Langmuir waves (see also [3,41). In 
the second section the differential scattering cross section is then derived in the presence 
of strong turbulence. 
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Derivation of the Dispersion Relation for Ion-Acoustic waves in the pres­
ence of Langmuir Turbulence. 

In deriving the dispersion relation for ion-acoustic waves in the presence of a tur­
bulent Langmuir wave field we must include the nonlinear coupling or beating between 
the high frequency disturbance. The high frequency wave field can produce a low fre­
quency force or ponderomotive force which modifies the dispersive characteristics of the 
low frequency wave. We can regard this effect as a "radiation" pressure term, more 
commonly known as the ponderomotive force, produced by the turbulent wave fields. 
This new pressure term must be added to the normal plasma pressure thus altering the 
equation of state for the plasma. 

To describe this effect we start from the Vlasov and Poisson equations 

(1) 

(2) 

where u (=i,e) represents ions or electrons and £,.(~,:y,t) is the single particle distri­
bution function for the species u. It is normalized so that the local number density is 
given by 

(3) 

and nOO' is the mean density of the plasma particles (noe = n0 i = n0 ) To describe 
the nonlinear interaction between the high frequency wave fields and the low frequency 
waves we write 

(4) 

where we have split the particle distribution function into an equilibrium part and 
an oscillating part / 1(T due to the fields in the plasma, where the oscillating part has the 
same harmonic space and time dependence as the fields, e.g. 

aud 

f1e = L f lei + fieB 
I 
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f1el ex expi(kJ.~ - wit) 

etc. 

The Vlasov equation is now written as 

8f1u + V. 8f1u + ~(E + V X B). 8fcxr = -~(E + V X B). 8f1u (5) 
8t - 8~ mu - - - 8Q mu - - - 8Q 

the left hand side (linear part) describes the linear modes and the right hand side, 
which is nonlinear in the wave quantities, produces a coupling between these linear 
modes. 

We now derive the equation describing the low frequency ion acoustic wave in the 
presence of a turbulent high frequency Langmuir wave field. 

Since we are considering a low frequency disturbance the ions as well as the electrons 
will respond to the low frequency fields set up. Starting from equation(5) for both 
electrons and ions we obtain the following expressions for fie and fii 

fie = .!..:_ (£ + Q X Ji). 8foe + .!..:_ (£ + Q X Ji). 8f1e 
me (ws - lfs.Q) 8Q me (ws - Ks,Q) 8Q 

(6) 

fti = _!..:_ (£ + Q X Ji). 8foi _ !..:_ (£ + Q X Ji). 8fii 
mi (ws - lfs.Q) 8Q mi (wa - lfs.Q) 8Q 

(7) 

where (w.,, ks) represent the frequency and wavenumber of the low frequency mode in 
the presence of high frequency Langmuir waves (w.,,ks) are no longer related by a simple 
dispersion relation. Substituting these expressions into the ion frequency component of 
Poisson 's equation, namely 

(8) 

we obtain the following equation describing the low frequency field 

(9) 
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Since we are dealing with an unmagnetized plasma and considering only longitu­
dional waves we neglect the QX B terms. Xe,i(w,,ks) are the electron (ion) susceptibility 
defined by 

( ) w';e,i J 1£ 8foe,i d3 
Xe,i w,1£ = k2 (w _ 1£.Q)" BQ Q (10) 

For a Maxwellian plasma 

1 [ ( w ) 
2

] ifow . w Xe(w,1£) = k2 )..2 1 - v2,k + k3).. 2 for k ~ VTe 
De VTe DeVTe 

w
2

- ifo w ( w )
2 

w 
Xi(w,!s..) = - ~· + k2 , 2 -k _exp - v2, for -k ~ Vi 

W A Di VT, 2kVTi 
(11) 

In the absence of nonlinear coupling terms in equation (9) the dielectric function 
Es( w., .k.,) is given by 

(12) 

which results in the usual dispersion relation for ion-acoustic waves namely 

w; = k;c~ for k)..De ~ 1 

However in the presence of strong high frequency fields this result no longer holds. 
We now include terms on the right hand side of equation(9) which will produce a low 
frequency response resulting in 

(13) 

substituting for f1e1 given by 

f ie £ 8foe 
lei = me (w1 - lfi:12.). 8Q 
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into equation (13) yields 

(14) 

Integrating 14 yields the equation for the potential <Pa = t 

(15) 

where co!Ed
2 = Nk is the wave action or plasma number density of the high frequency w, 

Langmuir wave field. The equation describing the high frequency turbulent wave field, 
which has a broad spectrum in k space, is the Liouville equation. 

(16) 

In a homogeneous plasma changes in the frequency w1 arise only from the ion acoustic 
wave since 

aw, w, 8 J 3 - = -- (fie -Jii)d Q 
8x 2n0 8x 

(17) 

(18) 

(19) 

(20) 

(21) 
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where <p8 represents the ion acoustic potential perturbation. This potential pertur­
bation causes a change in the action density Nk which is written as Nko + 8Nk where 
Nko is the equilibrium value and 8Nk is the charge due to the presence of the ion wave. 
Using this expression for Nk the kinetic equation for bNk is given by 

(22) 

(23) 

using the expression 

(24) 

in equation (23) results in 

2 k 8N1ca 
bN __ Wk ek8 </>IJ =s· 8!£. 

k- 2 . 2 k ~ m, w 8 w 8 - =s. 8!£. 
(25) 

Substituting equation (25) into equation (15) and changing the summation to an 
integral over k we obtain the following equation for <p8 • 

(26) 

which leads to 

(1 + Xe + Xi + XNl)<l>s = 0 (27) 

where 

2 2 k 8N1ca 
- wpe wpi k2 j =s· 8k dk 

XN L - 2 4 s ( _ k 8w) -
p W Wa =s"8!£. 

(28) 

which is the wave susceptibility for Ws '.:::'. kscs, or 
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(29) 

For small k values of turbulence the renormalisation of XNL is essential which alters 
the nonlinear response (3,4), but this effect will only be essential for very small angles of 
scattering and will be the subject of further investigation. We restrict ourselves here to 
the condition sin2B > me/m; when the renormalization is not important. 

For the case where <l>s varies as ei(qx-wt) the dispersion relation for the low frequency 
ion-modes can be obtained from equation (7) and is given by (4) 

2 q 8Nko 
W J "Bk w2 - c;q2 - i,8 w - _!!:!_q2 - - dk 
p w - q.tf (30) 

The effect of the Langmuir turbulence on the propagation of the ion acoustic wave 
is to provide an extra pressure term due to the ponderomotive force of the plasmons 
in the plasma fluid. This extra pressure term can be described in terms of an effective 
temperature Teff given by 

(31) 

and an effective pressure= n0 KTef /, K is the Boltzmann constant. This term is in 
general complex with the singularity being treated according to the Landau rule with 

__ 1----,:-_ = p 1 _ i 1r8 (w _ q. _aw_,) 
w - q_.tt w - q_.tt - 8k 

(32) 

Using this expression the dispersion relation equation (27) describing the propaga­
tion of ion acoustic waves in the presence of Langmuir turbulence becomes 

(33) 

"1£ represents the effect of growth or damping and is given by the imaginary part of 
equation (29) namely 
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(34) 

This expression represents growth ( +) or damping (-) of the low frequency ion mode 
in the presence of Langmuir turbulence. The analogy with the usual Landau damping 
(growth) of waves on particles is obvious. 

As an example assume Nko = tk~N0 8(k - k0 ), substituting this into (30) and inte­
grating we obtain the dispersion relation. 

(35) 

This expression represents the low frequency plasma response close to the ion­
acoustic frequency. The second term in the brackets represents a change to the low 
frequency plasma wave due to the ponderomotive potential of the high frequency plasma 
turbulence. This equation also describes the modulational instabilityl2J of large ampli­
tude Langmuir waves. We will consider here the case of a stationary turbulence when 
the growthrate of modulational instability is balances either by energy transfer or by 
linear damping. The result of this analysis shows that in the presence of high frequency 
Langmuir turbulence the low frequency dielectric response changes dramatically. In­
deed in some cases the nonlinear frequency corrections can be as large as the linear 
terms giving rise to oscillating two stream and modulational type instabilities [3 ,5] of the 
Langmuir wave. In the modulational type instabilities the low frequency driven mode 
usually associated with the ion acoustic fluctuation spectrum can have zero frequency. 
The wave having only spatial structure in the plasma. Radiation scattered from such 
fluctuations is similar to the scattering from a. stationary grating ie it will have zero 
frequency shift rather than being shifted by an amount equivalent to the ion-acoustic 
frequency (w = qc3 ). The signature of the radiation scattering from ion-density fluctu­
ations in the presence of turbulence will now contain information about the turbulence 
level since the frequency of these low frequency density fluctuations are now functions of 
the strength of the high frequency turbulence. For strong high frequency turbulence the 
"ponderomotive" frequency shift of the ion-acoustic spectrum can result in the scattered 
radiation signal to be peaked closer to the incident radiation frequency in some cases 
there could only be a single peak in the scattered signal indicating that the scattering 
element has zero frequency as in a stationary grating. If the structure is moving then 
this peak will be shifted by the amount corresponding to 9...y_ where 9.. is the wavenumber 
and y_ the velocity of the zero frequency density fluctuation. 
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Calculation of the Dynamic Form Factor in a Turbulent Plasma. 

We consider the re-radiation by an electron under the action of the electric field of 
a plane monochromatic plane wave of amplitude Eo wavenumber K.o and frequency w0 • 

Scattering by ions is less by the ratio m;/me and will not be considered. The electron 
will have an initial velocity and be subject to the fluctuating microfields arising from 
the other charged particles of the plasma as well as the radiation field. We assume that 
the effect of the initial velocity and microfields is sufficiently weak so as not to effect 
the re-radiated wave except for a first order contribution to the phase of the scattered 
wave. Assume electron to be non-relativistic, ef1o/mew0 c <t:: 1 and also that nw0 <t:: mec2 

which means we neglect momentum transfer to the electron ie., the Compton regime is 
not considered. 

For a plane electromagnetic wave of the form 

E.(t) = JlJ..oexpi(JS..o.l;_ - w0 t) + c.c. (36) 

where K.o = w0 / cft, the acceleration of the electron under the action of this field is 

(37) 

where ll..j = ll..;(t) is the position vector at time t. The acceleration depends upon 
time implicitly through ll..;(t) as well as explicitly through the phase factor w 0 t. Hence 
the fourier analysis of this acceleration will contain in addition to the frequency 0 0 

frequencies characteristic of the electron motion in the absence of the radiation field. 
The scattered signal will thus contain additional frequencies characteristic of the elec­
tron motion. This is the essential property of scattering as a diagnostic. The scattered 
electric field is calculated from the equation of motion using the Lienard-Wiechert po­
tentials. Which give the vector and scaler potentials of the scattered field at the position 
R of the detector. Using the results of Evans and Katzenstein16l we can write down the 
field of the scattered radiation due to electrons which is 

£c(t) = ro: sinB/2 iv. 8n(ll.., t)expi((K.o - K.,).ll_ - Wot)dll.. (38) 

Where lf2sc is the scattered electric field amplitude, R is the distance from the scat­
tering volume to the receiver, 11s is the scattering volume (R ~ V.,)8n is the fluctuating 
electron density, r O = e2 / f.0 mec2 is the classical electron radius and O is the angle be­
tween the incident wavevector &, and scattered wavevector K.,. The scattered signal 
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depends on the electron density fluctuations at a particular wavenumber K = ~ - Ks 
and involves essentially a spatial fourier analysis of the scattering medium. 

We now construct the autocorrelation function (ACF) of the scattered radiation field 
which is 

<p(r) =< ~c(r)E:c(t + r) > (39) 

where <> means the ensemble average. The Fourier transform of the ACF is just 
the power spectrum 

< ~c(wo,t)£:c(wot + r) >= j < jE.,c(w0 +w)l 2 > exp(-iwt)dw (41) 

Therefore taking the Fourier transform gives 

J r 2 E 2V. sin20 /2 j 
< IE.,c(wo + w)l 2 > dw = 0 0 

~
2 

< j8n(k,w)l2 > dw (42) 

and hence the differential scattering cross-section per unit volume, per unit solid 
angle, per unit incident power, per unit frequency interval is 

u(wo +w)dw = r~sin2B/2 < j8n(k,w)l 2 > dw (43) 

where < l8n(k,w)l 2 > is the power spectrum of the electron density fluctuations. 
From equation ( 43) we can write the resulting cross section as 

(44) 

where Ur is the Thompson cross section for the scattering of an electromagnetic wave 
by a free electron [61 and S(k, w) is known as the dynamic form factor which is the Fourier 
transform in time of the autocorrelation function of the spatial Fourier component of 
the electron density fluctuations. 

S(k,w) = 
2
~ j < 8n(k, t)8n*(k, t + r) > expi(w - w0 )rdr (45) 
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The dynamic form factor S (k, w) gives the frequency shifts resulting from the elec­
tron motion as well as the effect of correlations between the electrons due to the different 
plasma waves, S(k, w) can be » 1 resulting in scattering cross-sections much larger than 
that of free electrons. S(k, w) contains information about the eigen-frequencies of the 
different plasma modes, if one of these modes has their frequency significantly altered for 
example by the presence of turbulence this will be reflected in the value of S(k, w ). The 
problem now remains to calculate< l8n(k,w)l 2 >fora plasma in the presence of high 
frequency turbulence. For this calculation we will follow the method of "dressed test 
particles" pioneered by Rosenbluth and Rostoker [1l. In this method the electrostatic 
potential <j,., of the plasma with a test charged particle of charge Q, mass m and velocity 
V0 is obtained using the Vlasov equations for both electrons and ions and Poisson's 
equation. We will however not neglect the second order terms fe1 and f; 1 as has been 
done in all previous derivations of the dielectric coefficient t(w,k) but use the results of 
(27) to write the equation for the potential cp., of a test charge in the plasma which is 

t(w,k)</>(k,t) = Qk
2
expi(k.(~ -Y.ot)) 

fo 
(46) 

where t(w,k) is obtained from equation 27 and is given by 

t(w,k) = 1 + Xe + Xi + XNL (47) 

The Fourier transform of the electron density or "shielding cloud" 8n(k, t) is obtained 
by integrating the equation 

fe1 = ~</>(k, t) k:S: . .AJoe 
me k,(1L - Y.o) 

(48) 

over velocity space and substituting the expression for </>(k, t) from equation ( 46) 
resulting in 

n3(k, t) = Xe Qj expik.(L3 + Y.o3t) 
1 + Xe + Xi + XN L e 

(49) 

which is the electron density fluctuation of the j test particle. The total electron 
density fluctuation is obtained by summing ( 49) over all particles of the plasma where 
we assume all particles are test particlesl6l with the charge Q3 of the test particle, taking 
the value -e for electrons and +Ze for ions. In addition to the sum of expression (49) 
over all particles, the "self-fluctuation" of the test particle itself must be included if it 
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is an electron (61. '\Ve can now write the Fourier transform of the total electron density 
fluctuation of the plasma as 

n n/Z n 

8n(k, t) = L 8n3(k_, t) + L 8nt(k, t) + L exp{ ik_.(~3 + 12.o3)} 
j=l l=l j=l 

= t (1 - Xe ) exp{ ik_.(~j + 12.oi)} 
j=l 1 + Xe + Xi + XNL 

n/Z 

- Z L ( Xe ) exp{ ik_.(~t + 12.ott)} 
l=l 1 + Xe + Xi + XNL 

(50) 

Using equation (50) we obtain the autocorrelation function < l8n(k, t)l 2 > which 
upon substitution into equation ( 45) and valuating the sums over configuration and 
velocity space weighted by the zero-order distribution function /oe(Y..) and / 0 ;(Y..) for 
Y.. = jBk we obtain the dynamic form factor in the presence of high frequency turbulence 
given by 

S(k,w)= I I +x;+ XNL 12/e(w)+ 
1 + Xe + Xi + XNL k 

Z Xe f;(w) 
I 1

2 

1 + Xe + Xi + XNL k 
(51) 

This has to be compared to equation (43) of Evans and Katzenstein (61 which was 
calculated in the absence of turbulence. From equations ( 44) and ( 51) we can obtain 
an expression for the total scattering cross section of an electromagnetic wave by a 
turbulent plasma. . 

The effect of the turbulence can be considered as a radiation pressure term which 
contributes to the overall pressure in the plasma. The high frequency turbulence can 
change the dispersive properties of low frequency modes by introducing both a real fre­
quency shift as well as an imaginary frequency which can either be growth or damping 
of the low frequency mode. It can also change the characteristic frequencies of the high 
frequency modes. The relative shift in this case is much smaller and would be more 
difficult to detect. The effects of the turbulence on damping the low frequency responce 
can also have significant effects in stabilizing instabilities. Although a number of pa­
pers have appeared on scattering from microscopic turbulencef71 this is the first time 
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an attempt has been made to include the effects of turbulence on the scattering cross 
section. Most of the previous work has been concerned with the experimental observa­
tion of enhanced scattering from the large density fluctuations present in a turbulent 
plasma. Examples and more detailed investigations of specific cases will be presented 
in future work. 
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