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A Thermal Impulse Method to Measure the Strength of Conducting Materials at 
High Temperatures and Strain Rates. 

Abstract 
A method of measuring the strength of conducting materials and Young’s modulus of 

elasticity at high temperatures and strain rates is described. A pulse of electrical current is 
passed through a thin wire at high temperatures to excite a thermal strain oscillation and 
corresponding stress. At some combination of temperature and stress the wire will fail. The 
stress is measured by calculation from the current pulse. Measurements have been made on 
tungsten at temperatures up to ~3000 K, tantalum up to ~2000 K and molybdenum up to 
~2000 K, at strain rates of ~103 s-1. The frequency of the oscillations gives Young’s modulus 
of elasticity. 

While the method is good for measuring ultimate tensile strengths of materials at high 
temperatures it is limited in the minimum temperature that can be measured. An example is 
given for tungsten where the strength is not measurable below a temperature of ~700°C.  

1. Introduction 
This work was initiated by the study of a solid target [1] for a neutrino factory [2]. A 4 

MW proton beam pulse, of a few ns length, at 2-10 GeV energy, would impact on a solid 
target bar, 1-2 cm diameter and 20 cm long, dissipating ~700 kW in the target. The heat 
generated in the target would radiate at ~1200°C to water cooled surroundings. The high 
temperature limits the materials to those with both high strength and melting points such as 
tungsten and molybdenum. With the small surface area of the target and the limited 
temperature achievable in the target it is necessary to have ~500 targets circulating through 
the beam so that a new bar is presented to the beam pulse every 20 ms.  

It was originally considered that the target could suffer from thermal shock from a single 
beam pulse causing mechanical failure. It was decided to measure the lifetime under pulsed 
conditions at similar temperature, stress and strain rates that would be encountered in the 
neutrino factory target. The equipment could also be used to measure the ultimate strength as 
a function of temperature of a few candidate target materials. 

Most measurements of the strength of materials under shock at high strain rates are made 
with Hopkinson bars [3]. This method of impact can produce true mechanical shock, where 
the stress wave exceeds the speed of sound in the material. However, the method is limited to 
temperatures below ~1000°C. It should be noted that thermal effects can not normally 
generate true shock.  

It was decided to induce thermal shock in specimens by passing a high current pulse 
through a thin wire. A spare power supply for the ISIS kicker magnets, giving 1 µs pulses up 
to ~6 kA at repetition rates up to 50 Hz, was used for these tests.  
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2.  Considerations of the wire dimensions  
A current pulse is passed down a thin wire causing thermal stress waves in both radial 

and longitudinal directions1. The stress is caused by the sudden change in temperature of the 
wire and the resultant thermal expansion. However, the inertia of the wire prevents the wire 
expanding at the rate of the temperature rise, resulting in stress waves [4-7]. These stress 
waves travel at the speed of sound, v, in the material (The velocity of sound in tantalum is 
~3.3x103 m s-1.) The time taken for the wave to travel the appropriate dimension, d (length or 
diameter) is given by, 

v
d

s = τ             (1)     

When the current pulse length, τp, is greater than τs, there is no shock, 

sp ττ >     No Shock Condition         (2) 

Conversely, shock waves are produced when, 

sp ττ <      Shock Condition          (3) 

In order to simulate an approximately uniform energy density and temperature in the test 
wire it is important to dimension the wire accordingly. Because the high frequency current 
pulse initially starts on the surface of the wire and diffuses radially into the wire in a 
characteristic time Iτ  it is necessary to have a wire diameter that is small enough to achieve 
this well within the length of the current pulse. The characteristic time is given by (see 
Appendix 1), 

κ
τ

2a
I =             (4) 

where a is the radius of the wire and 

    where1
 0

0

µ
σµ

κ =  is the permittivity of free space and σ   is the electrical resistivity. 

In the experiments the pulse power supply available for use had an approximately square 
pulse of 1 µs length ( μs 1=sτ ) and amplitude of up to ~6 kA and a repetition rate of up to 
~50 Hz. Figure 1 illustrates the various conditions that must be achieved. The calculations are 
for tantalum at 300°C. It can be seen that to obtain good penetration of the current into the 
wire the radius needs to be less than 1 mm. However this makes sp ττ >  and there is no 

radial shock. However, the wire is ~10 cm long and this gives rise to strong longitudinal 
shocks. The lack of full current penetration from the start of the pulse is not a problem since 
the penetration in the latter part of the pulse is excellent and this is the time of peak 
temperature and least strength. 

Generally the condition for shock and good current penetration can be expressed by, 

Ips τττ >≥             (5) 

or, in the case of the 1 µs long current pulse, 

Is ττ >≥ −610  
 

                                                           
1 Rotational and violin modes are not excited. 
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Figure 1. The characteristic time for the radial diffusion of the current into the wire, Iτ , and 
the value of sτ as a function of the wire dimensions (radius a and length). 
 

A further important consideration is to produce the largest stress in the wire to cover as 
wide arrange of temperatures as possible. This means the smallest possible wire diameters to 
produce the maximum energy density from the limited current pulse amplitude. Wires of 0.3 
to 1 mm were measured, but most were 0.5 mm diameter. Wires of less than ~0.5 mm 
diameter were not as reliable as they were found to be too weak to overcome the frictional 
forces of the graphite jaws in the test equipment. Typically, the wires are 5 to 8 cm long. 

Since the longitudinal frequency is several tens of kHz, the periodic time, τ is much 
longer than the 1 µs current pulse. With a typical wire of ~5 cm length the frequency is ~25 
kHz and τ is 0.4 ms. In this time the temperature in the wire has time to become uniform with 
radius. The characteristic thermal time constant is given by [9], 

T
T

a
κ

τ
2

=             (6) 

where Tκ is the thermal diffusivity, given by, 

C
K

T ρ
κ =             (7) 

K is the thermal conductivity, ρ the density and C the specific heat. The diffusivity of 
tantalum is 2.6x10-5 at 2500 K and this gives a thermal characteristic time constant of 2.4 ms 
or 6 oscillations of the longitudinal vibration. The combination of good current uniformity 
and good thermal conductivity means that the wire has good radial temperature uniformity 
over the first few longitudinal vibrations of the wire. 
    

 

d, dimension of wire, m 

time, s 
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3.  Measurements 
The temperature of the wire at the start of the pulse is set by adjusting the repetition rate 

of the current pulse. The amplitude of the current pulse sets the temperature jump and hence 
the stress generated in the wire. The current initially starts low and the temperature is 
increased by adjusting the repetition rate. As the desired temperature is approached the 
current amplitude is increased (and the repetition rate reduced to keep the temperature at the 
desired level) until the wire fails. Alternatively the current amplitude is set and the repetition 
rate increased until the wire breaks.  

Figure 2 shows the test wire held firmly in a small chuck at one end and free to expand 
axially at the other through graphite jaws which lightly press on the wire to hold the wire on 
axis and conduct the pulse current. The current passes down the central conductor and back 
down the outer of the coaxial arrangement. Four apertures in the outer conductor allow the 
wire to be viewed. Figure 3b shows a photograph of the test equipment that is shown in 
section in Figure 2. Figure 3a shows a photograph of the test equipment in its vacuum 
chamber; the test wire can be seen through one of the windows.  

 
 

 
 
 
 
 

 
 

 
Figure 2. Schematic sectional diagram of the test equipment.  

 

 

Figure 3a. Photograph of the wire in the vacuum chamber. Fig.3b. Photograph of the wire test 
assembly. 
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In operation the wire is hottest approximately at its midpoint. The temperature is nearly 
constant over a distance of 1-2 cm. Measurements of the radial vibrations and temperature are 
taken at the hottest point on the wire. The radial and longitudinal variation of temperature is 
small at this point. Since the temperature along the length of the wire varies greatly, the axial 
vibrations are not properly defined; in addition there will be some contribution from the 
whole of the axial conductors supporting the wire.  

The oscillations of the wire can be measured by a laser Doppler vibrometer (LDV). The 
radial frequencies of the oscillations are used to give the value of Young’s modulus of 
elasticity (see Section 5). Figure 4 shows the measured Young’s modulus of elasticity [12] 
versus temperature.  

 
Figure 4. Young’s modulus of elasticity of a 0.5 mm diameter tungsten wire as a function of 
temperature at 4 different peak currents and repetition rates [12]. 

 
The yield strength is measured at the temperature and current that the wire starts to show 

signs of distortion and when the wire physically breaks. Usually the wires of tungsten, 
tantalum and molybdenum bend before breaking, but occasionally the wires will remain 
straight but neck down in radius and then break. These are observed by the telescope of a 
disappearing filament optical pyrometer used to measure the temperature of the wire and also 
by a screen display from the LDV. The top photograph of Figure 5 [11] shows a hot glowing 
tungsten wire about to break by bending. The bottom photograph shows a tungsten wire 
necking down in radius; the pulsed current was turned off at this point to ensure that the 
photograph could be taken before the wire broke. The bright spot is the laser beam from the 
LDV.  

The radial vibrations of the wire observed by the vibrometer are useful in indicating the 
onset of failure of the wire. As the wire approaches its yield point the wire becomes plastic 
and the resonant radial vibrations start to disappear. Figure 6 shows the measured strength of 
tungsten versus temperature [13] at high strain rates. 

http://www.sciencedirect.com/science/article/pii/S002231151001055X#gr8
http://www.sciencedirect.com/science/article/pii/S002231151001055X#gr8
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Figure 5. The top photograph shows a hot wire bending before breaking. The bottom 
photograph is of a wire that has necked down before breaking – wire at room temperature 
[11].  

 
Figure 6. The yield strength versus peak temperature for tantalum wires of 0.5 and 0.8 mm 
diameter, for tungsten wires of 0.5 mm diameter and for molybdenum wires of 0.5 mm 
diameter [13]. The upper edge of the bands indicates the stress at which the wire started to 
bend and the lower edge indicates the stress where the wire was not deformed. The 
characteristic strain rate values are also shown. 
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A video of a 0.5 mm diameter iridium wire during testing to breaking point at 2200 K 
can be accessed by clicking on this link . The wire can be seen to develop wiggles 
initially and then slip planes. The break in the wire can be seen at the slip plane to the 
extreme far right of the picture. Iridium has a face centred cubic (fcc) crystal structure 
whereas tungsten, tantalum and molybdenum have body centred cubic (bcc) crystal structure 
and do not display slip planes.  

The life time of a target under repeated beam current pulses is very important. Tungsten 
was found to have a good lifetime up to the yield point, see Figure 7 [11]. However, 
molybdenum, which shows a good high yield stress under conditions of a few pulses, was 
disappointing in its lifetime, failing typically after ~10000 pulses, even when well under the 
measured yield stress.  

 
Figure 7. The ultimate yield strength and lifetime of tungsten wires of 0.5 mm diameter 
versus peak temperature [11]. The upper edge of the band indicates the stress at which the 
wire deformed or broke after a few pulses and the lower edge indicates where the wire was 
not deformed. The stress corresponding to the beam power hitting a 2cm diameter target is 
shown on the right hand side axis. The strain rate is indicated at various points along the 
curve. The lifetime, in millions of pulses, is shown against the open crosses. Also shown are 
measured values of yield strength taken at very low strain rates – see [11] for details.  
4. The Current Pulse 

See [11] for the reference 

      See [11] for the reference 

See [11] for the reference 

http://www.isis.stfc.ac.uk/video-audio-multimedia-code/video-for-paper16029.mp4
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The current passing through the thin wire is measured by a current transformer. Figure 8 
shows the pulse displayed on an oscilloscope. The pulsed power supply consists of a delay 
line charged to a given voltage and a thyrotron switch. The delay line is not matched to the 
load, giving rise to a succession of pulses of decreasing amplitude. However, most of the 
power is in the first pulse and the succeeding pulses can be mainly ignored. 

 

 
 

Figure 8. Measured current pulse. Time base 200 ns per cm, y axis 1 kA per cm. 
 

 The current pulse has a rise time of ~100 ns, an approximately flat top of ~800 ns and a 
fall time of ~100 ns. The wire is heated from its initial temperature to a final temperature at 
the end of the pulse. The heat loss by thermal radiation and conduction is negligible over a 
few hundred µs. (The radiation cooling of a tungsten wire, of 0.5 mm diameter, by 1 K from 
2650 K, takes ~0.1 ms.) 

The wire tries to expand during the pulse due to the temperature rise. However, the 
inertia of the mass of the wire restricts its motion and sets up stress and strain waves in both 
axial and radial directions. In addition the current in the wire produces a magnetic field which 
tries to crush the wire radially; this force is released at the end of the pulse.  

The current pulse diffuses into the wire from the surface at time t = 0. To obtain uniform 
heating of the wire during the pulse it is necessary to have a small diameter wire. The 
diffusion equation for the current density as a function of time and radius is given by a 
solution of Maxwell’s wave equation. Assume that an electric field, E, is applied at time t = 0 
across the ends of a conductor of circular section, radius, a and length, l. Using Maxwell’s 
equations one arrives at the diffusion equation for the axial current density, j, as a function of 
time, t, and radius, r, (see Appendix 1 for the derivation) 









∂
∂

+
∂
∂

=
∂
∂

r
j

rr
j

t
j zz 11

2

2

0σµ
         (8) 

where 0µ  is the permittivity of free space and σ the electrical conductivity. If the electric 
field or current density, 

Ej σ=             (9) 
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is a step then the solution does not fit the measured rise of the current very well. However, if 
an exponential rise is assumed of the form, 

( )t
zz ejj γ−−= 10                     (10) 

where the time constant is 1/γ, then the solution to (8) is, 

( )
( ) ( )

( )
( )












−
+−= ∑
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=
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0
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1
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t
t

zz aJ
rJe

a
e

aJ

rJ
jj

n

aa
a

κγaκ
γ

κγ

κγ κa
γ              (11) 

where jz0 is the current density at r = a, an are the roots of the Bessel function of the first 
kind, J0(aa) = 0, J1(aa) is a Bessel function of the first  kind and first order, and κ = 1/µ0σ. 
This can produce an (almost) exact fit to the measured rise time by varying γ; a value of 1/γ = 
~50 ns is a good choice. 

Integrating (11) over the radius of the wire gives the current as a function of time. 
However, the current measured by the current transformer as a function of time gives no 
information on the current, or current density, as a function of radius. It is not feasible to 
measure the current density as a function of radius. Hence the assumption that the current 
density rises exponentially, is a guess, which gives a very good agreement between the 
measured and calculated current-time profile. Attempts to measure the voltage across the 
wire were not very effective.  

The energy received by the wire during the pulse determines the peak temperature rise. 
The power density may be integrated over a period of time from 0 to 1 μs (the approximate 
pulse length) at different radii in the wire. If necessary, the effect of successive pulses due to 
imperfect matching of the power supply to the load may be evaluated.  

In practice, the variation of current with radius in the wire can be ignored. The total power 
going into the wire can be calculated by integrating the current measured on the current 
transformer and this is used to give the temperature rise per pulse in the wire.  

At the end of the pulse the centre of a tantalum wire has received 87% of the maximum 
energy density that is delivered to the wire at the outer radius of the wire, r = a. Hence, the 
maximum variation in energy density with radius is only 13%. So the wire receives almost 
uniform energy density and hence temperature rise and radial thermal stress across the radius. 
Clearly a smaller diameter wire would perform even better, but wires thinner than ~ 0.5 mm 
diameter were found to be too weak to overcome the frictional forces of the graphite jaws in 
the test equipment. 

 
5. Radial and Longitudinal Frequencies 

For a bar of length much greater than its radius, the longitudinal frequencies 
(fundamental, n = 0 and harmonics n = 1,2,3 …) are given by [4],  

( )
d
E

l
n

l
cnf z 2

12
2

12 +
=

+
=                     (12) 

where c is the velocity of sound in the material, 

d
Ec =                      (13) 

E is Young’s modulus of elasticity and d is the density of the bar. For a more detailed 
explanation of the motion of the wire, or bar, see [5,6]. 
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The solution to the radial stress is complicated by the boundary conditions and there is 
no analytic solution. For a long thin bar, a << l, the frequency of oscillation is given by [7], 

( ) ( )
( )( )νν

ν
π
νξ

211
1

2 −+
−

=
d
E

a
f n

n                   (14) 

where ξn(ν) are the roots of the Bessel equation ( ) ( )
( ) ( ) 0
1

21
10 =

−
−

− ξ
ν
νξξ JJ  and ν is Poisson’s 

ratio. 
In reality the radial motions couple into the axial and vice versa. These are present in 

both axes due to Poisson’s ratio.  
It can be shown that the driving force pulse must be shorter than or not much longer than 

the period of the oscillation of the longitudinal and radial frequencies. Typically with a 
tungsten wire of 0.5 mm diameter and ~8 cm length, the radial frequency is ~7 MHz and the 
longitudinal frequency is ~12 kHz. The thermal pulse generated by the current pulse is ~1 µs 
long whereas the period of the radial oscillation is ~0.1 µs. Hence the radial oscillation is 
barely excited by the relatively long current pulse; this is a quasi-static condition. However, 
the longitudinal oscillation, period ~100 µs, is strongly excited, and strong axial dynamic 
stresses are produced. 
 
6. The Magnetic Forces 

The magnetic pinch force rises up to its plateau level in ~100 ns and remains constant 
until the end of the current pulse when it decays over ~100 ns. This produces two kicks at the 
beginning and end of the pulse to produce the radial oscillations. Because the temperature 
rises during the pulse altering the value of Young’s modulus of elasticity, it gives rise to two 
frequencies corresponding to the start and end of the current pulse. These are observed with 
the vibrometer to be up to ~40 kHz apart, depending on the pulse current and temperature i.e. 
the initial and final temperatures. Figure 9 shows the Fourier analysis of the radial velocity 
signal of a tungsten wire, taken by the vibrometer and displayed on an oscilloscope, during a 
current pulse. It shows a single pulse (the red line) at a frequency of 6.95 MHz.  

Figure 10 shows a similar oscilloscope picture taken at different temperature and pulse 
current where the double pulse can just be seen. The resolution of the oscilloscope and the 
natural width of the pulses is assumed to give predominantly single pulses frequently with 
flattened tops or a peak appearing at the side of the main peak. 

The stress is given by, 

22

2
0

8 a
I

m π
µ

σ =                      (15) 

where μ0 is the permeability of free space. The stress on the surface of a 0.5 mm wire with 
6500 A pulse current is 11 MPa. 
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Figure 9. The signals displayed on an oscilloscope of the current pulse (yellow line), the 
radial velocity (blue line) of a tungsten wire and the Fourier analysis of the radial velocity 
vibration (red line).  

 

 
 

Figure 10. The oscilloscope display as Figure 9, but at a different temperature and pulse 
current. The double pulse nature of the radial frequency (red line) can be seen. 
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7. Calculating the Stress in the Wire 
The wire suffers an axial thermal stress and a radial magnetic stress due the current pulse 

in the wire. The solution to the longitudinal stress for a freely suspended bar of length l, 
Young’s modulus of elasticity E, mean coefficient of thermal expansion α and temperature 
rise ΔT, is [4,8], 

( ) ( )
( )

( ) ( ) ( ) ( )∑
∞

=














 −

+
+






 +

+
+

−
∆=

0

12cos12cos
12

12,
n

n

ctz
l

nctz
l

n
n

TEtz ππ
π

aσ             (16) 

where n = 0,1,2,3,… and z is the axial distance from the centre of the bar. This represents two 
waves travelling in opposite directions and gives a square wave. The amplitude of the stress 
is, 

( ) ( ) ( ) TTETT ∆= aσ 0                     (17)  
Note that the axial stress amplitude is not a function of the length; this stress applies to 

all axial positions. The peak amplitude stress occurs at the point of greatest temperature rise 
in a pulse, corresponding to the hottest region of the wire. This is also the weakest part of the 
wire, since the strength decreases with temperature, and hence the wire always fails at the 
hottest region. Both α and E are functions of T; since both functions decrease with 
temperature, the peak pulse temperature should be used when calculating the peak stress. 

At 2000 K Young’s modulus of elasticity in tungsten is ~325 GPa, the coefficient of 
thermal expansion is ~6x10-6 K-1, the stress for a temperature rise of 160 K with 6500 A pulse 
current is ~330 MPa. This stress is thirty times larger than the magnetic stress generated by 
the current pulse. Since both the temperature rise and the magnetic stress are proportional to 
the square of the current, the thermal stress will always be much larger than the magnetic. 

As a result, the stress in the wire is, to a good approximation, simply the axial thermal 
term given by (17). Measurement of the temperature jump, ΔT, from a pulse of current and a 
knowledge of the thermal expansion, α, gives the stress. 

The temperature jump may also be expressed in terms of the current I, the resistivity of 
the wire ρ, the radius of the wire a, the density of the material of the wire d, the specific heat 
S and the duration of the pulse τ. 

Sda
IT 42

2

π
ρτ

=∆                     (18) 

which then gives the stress as, 

Sda
EI

42

2

0 π
τρaσ =                      (19) 

Almost all the parameters in (19) vary with temperature. 
Equation (18) may be expressed for a small change in temperature in a short time dt in 

terms of the parameters which change with temperature as, 

)()()(
)(

42

2

TdTSTa
dtTIdT

π
ρ

=                    (20) 

All the parameters which change with temperature can be expressed in terms of polynomials 
of temperature [10]. Integration of (20) gives, 

∫ ∫=2

1 02

24

)(
)()()(T

T
dtI

T
dTTdTSTa τ

πρ
                  (21) 
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where T2 is the peak temperature at the end of the current pulse and T1 is the temperature at 
the beginning of the pulse.  

When the delay line of the power supply is well matched to the load there is a single 

square pulse and the right hand side of (21) is simply 2

2

π
τI . If the delay line and load are not 

matched there can be a series of pulses of diminishing amplitudes reflected between the load 
and delay line. In this case the current, which is recorded on an oscilloscope and saved to a 
computer, can be integrated over time to give the total charge passing through the wire. In the 
case of good matching, (21) can be expressed as, 

∫ =−2

1

0
)(

)()()(
2

24T

T

I
T

dTTdTSTa τ
πρ

                  (22) 

From equation (21) or (22) the value of T1 can be calculated for the measured value of the 
peak pulse temperature, T2, and hence the temperature rise in a single pulse is obtained, ΔT = 
T2-T1. (Or, if the temperature, T1, is measured just before the pulse, then T2 can be calculated. 
Alternatively, both T1 and T2 can be measured to give directly ΔT.) Then the stress may be 
calculated from (17) with the appropriate values of α and E at the peak pulse temperature, T2. 

Figure 11 shows the values of ΔT as a function of T2 for different pulse currents; A linear 
relation fits the calculated data to high accuracy (the quality of the fit is given by R2 = 1, from 
Excel) and the equations are shown for each of the currents plotted. These equations scale 
approximately as the square of the current, as would be expected from (18), where the 
variation of the parameters in (18) are ignored.  

 
Figure 11. The pulse temperature rise in a tungsten wire as a function of peak temperature for 
constant pulse current. The equations for the fitted lines have axes y corresponding to ΔT and 
x to T2. 
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The same data is shown in Figure 12, with ΔT plotted against pulse current I for constant 
values of peak temperature T2. In this case a polynomial is fitted to the curves ( y corresponds 
to ΔT and x to the pulse current, I, R2 = 1 in all cases).  

 
Figure 12. The pulse temperature rise, ΔT, as a function of pulse current, I, for constant peak 
temperatures, T2. Tungsten wire. 

Using equation (17) the ultimate tensile strength of the wire can be found. Figure 13 
shows the results for pulse currents of 8000 and 6000 A.   

 
Figure 13. Stress in the tungsten wire for pulse currents of 8000 A and 6000 A versus the 
peak temperature of the wire. A third order polynomial has been fitted to the points and is 
shown by the solid black lines. 

8000 A 

6000 A 
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8. Finite Element Analysis 
It was initially thought that there might be real shock (a stress wave exceeding the 

velocity of sound in the material) generated in the target by the thermal shock. Therefore, a 
finite element dynamic code, LS-DYNA, was used to calculate the stress in the wire from the 
current. It was not until some time later that the authors realised that this was not possible. 
The diffusion of the current was calculated from the analytical relation of the diffusion of the 
current into the wire (see Section 4 and Appendix 1). A non-dynamic code was used later, 
which confirmed that the results were identical to those using the dynamic code. Detailed 
calculations of the radial oscillations of the wire were made and compared with the 
measurements taken from the Vibrometer. Agreement was strikingly good [11]; see Figures 
14 and 15 for a comparison of the calculated and measured radial velocities and longitudinal 
velocities of a 0.5 mm diameter tungsten wire. The details of the diffusion of the current and 
the wire temperature versus radius, length and time are necessary for the calculations of these 
motions. 

 
Figure 14. Measured and calculated radial velocity of a 0.5 mm diameter tungsten wire at 
peak temperatures of 920, 1260 and 1450°C [11]. 
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Figure 15. Measured and calculated longitudinal velocity (dotted line) of the end of a 0.5 mm 
diameter tungsten wire [11]. Single pulse mode, current pulse 7.75 kA and the wire close to 
room temperature. 

 
The results from tests to measure the strength and Young’s modulus of elasticity on 

tungsten, tantalum and molybdenum have already been published [11-14] – and see Section 
3. Comparisons of the analytic and finite element results for the strength show no appreciable 
difference within the experimental error of the measurements. Since the analytic method is 
much quicker to perform, future measurements will be treated in this way. 
 
9. Measurements of Strength at Lower Temperatures 

The measurements are limited to minimum temperatures of ~1200°C by the maximum 
current from the power supply. Skoro [14] has fitted a curve to the strength data for tungsten 
using a formula for shock in materials by Zirilli and Armstrong [15]; Figure 16 shows the 
result (the green curve) which has been extended to a low temperature of 0°C. The formula 
may not be very accurate for such a large extrapolation and it really applies to true shock 
rather than thermal shock. In addition, tungsten suffers from a brittle to ductile transition 
between ~200°C - 400°C; so the strength versus temperature curve may suffer a 
discontinuity.  

For comparison with the high strain rate measurements, the ultimate tensile strength of 
tungsten at ~zero strain rates is also shown in Figure 16. There is considerable data on 
tungsten in both annealed (recrystallized) and stress relieved (cold worked) conditions. The 
lines are an “average” of the measurements given in [10]. 
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Figure 16. The ultimate tensile strength of tungsten versus temperature. Green line, the Zirilli 
Armstrong prediction [14,15], strain rate 103 s-1. Blue line, annealed tungsten, measurements 
at low strain rate. Red line, stress relieved tungsten, measurements at low strain rate. 
 

To extend the measurements to lower temperatures a power supply capable of delivering 
current pulses of ~30 kA is being built. Using equation (17) and equating the stress to the 
breaking stress calculated by Skoro [14], gives the peak temperature rise, ΔT, required to 
break the 0.5 mm diameter tungsten wire as a function of the peak temperature, T, at the end 
of the current pulse. Figure 17 shows the value of the temperature rise, ΔT. Also shown is the 
temperature required at the start of the pulse, the blue curve, and the red curve gives the final 
temperature, T (this is the same as the x axis value). Note that T is the T2 of equation (21) and 
the blue curve is T1.  

Figure 17 is quite revealing; since it is impracticable to have the wire much below ~0°C 
at the start of the pulse, then the peak temperature cannot be below ~650°C and ΔT cannot 
exceed 650°C. In other words, it is not possible to measure the strength of tungsten below 
650°C with this method. A current of 24.6 kA is required for this temperature rise in 
tungsten. 
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Figure 17. The green curve shows the strength of tungsten versus temperature, °C, taken from 
Skoro [14] and extended to 0°C. The dotted red curve shows the ΔT required in a single pulse 
to break the wire. The solid red curve is the final temperature (T2) during the pulse and the 
blue curve is the temperature of the wire at the beginning of the pulse (T1). 
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Appendix 1. The Current Density in the Wire under Transient Conditions 
Assume that a current pulse I is applied to the long conductor of radius a at time t = 0. In 

practice a current can not be instantaneously applied but a voltage or electric field can. Thus, 
assume that an electric field E is instantaneously applied across the conductor. The current 
density j flowing through the conductor is assumed to be circularly symmetric about the axis 
of the conductor. Using Maxwell’s equations and assuming that the electric and magnetic 
fields, H, are instantaneously propagated so that the displacement current is neglected2,  

jH =curl                   A1(1) 

t
BE
∂
∂

−=curl                   A1(2) 

where B is the magnetic induction. 
jE =σ                   A1(3) 

HB 0µ=                   A1(4) 
which gives 

jB 0curl µ=                   A1(5) 

and 

t
Bj
∂
∂

−=curlρ                  A1(6) 

Taking the time derivative of A1(5)  

t
j

t
B

∂

∂
=

∂
∂

0
)curl( µ                  A1(7) 

and substituting for B from A1(6) 

( )
t
j

j
∂

∂
−=curlcurl1

0σµ
                A1(8)    

This can be re-expressed by using the relation, 
( ) ( ) ( )jjj graddivdivgradcurlcurl −=                A1(9) 

so A1(8) becomes, 

( ) ( )[ ] ( )jjj
t
j

graddiv1graddiv- divgrad1

00 σµσµ
=−=

∂

∂
          A1(10) 

since the only component of j is axial, resulting in 

0div =
∂
∂

=
z
jj z          and hence        0)div(grad =j            A1(11) 

Expressing A1(10) in cylindrical co-ordinates, 









∂
∂

+
∂
∂

=
∂

∂

r
j

rr
j

t
j

zz 11
2

2

0σµ
              A1(12) 

                                                           
2 The error is negligible when the wavelengths are large compared to the dimensions of the system. See:- 
Static and Dynamic Electricity, W. R. Smythe, McGraw-Hill Book Co. Inc. New York, 1968. 
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This is the diffusion equation3 and can be solved for the case of a current density, jz0, (or 
electric field, E) applied instantaneously at time t = 0 and initially jz = 0 within the conductor. 
For t > 0,  

( )
( )






−= ∑

∞

=

−

1 1

0
0

221
n nn

nt
zz aJ

rJ
e

a
jj n

aa
aκa

            A1(13) 

where jz0 is the current density at r = a, an are the roots of the Bessel function of the first 
kind, J0(aa) = 0, J1(aa) is a Bessel function of the first  kind and first order, and κ =1/µ0σ. 
Figure A1-1 shows the variation of jz/jz0 with r/a for certain values of κt/a2.  

 

 

 

 

 

 

 

 

 

 
 
 
Figure A1-1. Variation of the relative current density with r/a at different values of κt/a2. 

 
Note that the application of a steady state sinusoidal current gives an alternative solution 

to Maxwell’s equations and gives rise to the concept of skin depth. 
Figure A1-2 shows the same curves, but the dimensionless κt/a2 has been replaced by the 

time, t, with value of κ chosen for the tantalum wire at 2000 K and the wire radius of 0.2 mm. 
It should be noted that the remainder of the graphs are expressed in this way and that if a or κ 
are changed it will change the time marked against the curve. In the case chosen, the current 
density at the centre of the wire has reached 90% of its maximum value after 300 ns. 
 

 

 

                                                           
3 Conduction of Heat in Solids, H. S. Carslaw and J. C. Jaeger, Oxford University Press, 1959. 
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Figure A1-2. Variation of the relative current density with radius at different times from the 
start of the current pulse. 
 
 
 
 
 
 

 

 

 

 

 

 

 

Figure A1-3.  Relative power density versus radius at different times.  

The power density in the conductor is, 

σ

2
zjp =                 A1(14) 

and is shown in Figure A1-3, expressed in terms of the power density, p0, with jz = jz0. The 
power density at the centre of the conductor reaches nearly 80% of its full value in 300 ns. 
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The Solution for an Exponential Rise in Current Density 
Assume that the current density in the wire is initially zero and rises with time 

exponentially at r = a as, 
( )t

zz ejj β−−= 10                A1(15) 
then [4],  
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The current, averaged over the cross-sectional area of the wire is, in terms of the final current, 
I0, given by,4 
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          A1(17) 

Figure A1-4 shows the result for tantalum wire at 1000°C with 1/γ = 50 ns and a = 0.25 
mm. Comparison (not shown) of the calculated current with the measured current is 
excellent, the two lines overlapping almost perfectly. The small ripples on the measured 
current (see Figure A1-5), due to the pulse forming network, are not reproduced by the 
calculation. In addition, the pulses following the initial one, which are due to the load not 
being matched to the delay line, are not reproduced; relative little power is in these pulses.  
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Figure A1-4. The current density (red curve) and the current (blue curve) as a function of 
time from (A1-17) and integrated over the radius of the wire. The current is divided by the 
cross sectional area to normalise the current for comparison to the current density. Tantalum 
wire. 

                                                           
4 The Mathematics of Diffusion, J. Crank, Oxford University Press, 1967. 
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Figure A1-5 shows the measured current profile (green dots) overlaid on Figure A1-4 and 
roughly fitted to the blue curve - the calculated current profile. The agreement is good. 
  

 
Figure A1-5. The calculated current from Figure A1-4 (the blue line) overlaid by the 
measured current (green dots). 
 

The current density as a function of radius and time from A1(16), is shown in Figure A1-
6. The current density is over 90% at all radii by 300 ns. 

 
Figure A1-6. Current density as a function of radius, r/a, at different times, 1/γ = 50 ns and a 
= 0.25 mm. 
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The power density is j2ρ; ignoring the resistivity, Figure A1-7 shows j2 as a function of 
r/a. The power density is over 90% at all radii by 300 ns. 
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Figure A1-7. Power density (j2) as a function of r/a at different times; a = 0.25 mm. 
 

The energy received by the wire during the pulse determines the peak temperature rise. 
The power density is integrated over a period of time from 0 to 1 μs (the approximate pulse 
length) at different radii in the wire. The value of the power density at the outer radius of the 
wire, r = a, is used to normalise the results. Hence the values plotted are, 

( )
( )

( )∫

∫
= t

t

dttaj

dttrj
trq

0

2

0

2

,

,
,               (A1-18) 

against t for different values of r, as shown in Figure A1-8. 
At the end of the pulse ~1 µs the centre of the wire has received 90% of the maximum 

energy density that is delivered to the wire at the outer radius of the wire, r = a. Hence, the 
maximum variation in energy density with radius is only 10%. So the wire receives almost 
uniform energy density and hence temperature rise and radial thermal stress across the radius. 
Clearly a smaller diameter wire would perform even better, but wires thinner than ~ 0.5 mm 
diameter were found to be too weak to overcome the frictional forces of the graphite jaws in 
the test set up. 
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Appendix 2.  The Coefficient of Linear Thermal Expansion - a Note of Explanation 
Reference [10] gives the equation fitting the thermal expansion in terms of the fractional 

increase in length ΔL/L (or thermal strain, εth) as a function of temperature as,  

( ) ( ) 33327 10106188.8109108.3108356.5 −−−− −⋅+⋅==
∆ xTTT
L
L

thε            A2(1) 

Therefore the length varies as, 
( )[ ]TLTLLTL thε+=∆+= 1)()(                A2(2) 

where L is the length at the initial or reference temperature of 20°C and ΔT is the temperature 
rise (°C). It is interesting to note that the thermal strain is small and positive at 20°C where 
the majority of the measurements started from. One would have expected εth to be zero at the 
starting point since the temperature rise is zero. 

Reference [10] also calculates the instantaneous and mean coefficients of thermal 
expansion, with no clear definition of these coefficients. The instantaneous coefficient, αi, 
gives the value at any one temperature. The integral of this over the total range of the 
temperature rise gives the mean value, αm. The mean coefficient times the total temperature 
rise equals the increase in length, so, 

[ ]TTLTL m ∆+= )(1)( a                 A2(3) 
Hence the value of α given in Section 7 is the mean coefficient of thermal expansion, αm, or 
αΔT is equal to εth(T).  
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