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Abstract

The CCSD(T) method, a coupled cluster approach including all single and dou-
ble excitations together with an a posteriori perturbative correction for con-
nected triple excitations, is believed to provide an optimum balance between
accuracy and efficiency in electron correlation studies. In this report, we an-
alyze the computational complexity of ccsp(T) algorithms. After considering
a prototypical fourth order triple excitation energy diagram in the many-body
perturbation theory (MBPT) expansion for a closed-shell system, we consider the
tensor contraction which arises in the evaluation of the corresponding energy
component and also the use of spin-adaption and the efficiencies which follow
in the computational algorithm from its effective exploitation. The ccsD(T)
approximation is presented in a compact form and the algebraic complexity of
algorithms for this approximation considered in detail. Reduced-complexity al-
gorithms for ccsD(T) calculations are considered. In particular, we consider
low-order scaling techniques for extended molecular systems, Laplace transform
techniques, and Cholesky decomposition techniques.
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1 Introduction

The description of electron correlation effects is an essential ingredient of accu-
rate descriptions of molecular energetics, structure and properties [1], [2]. The
ccsp(T) method[3], [4], an augmented coupled cluster approach including all
single and double excitations together with a perturbative correction for con-
nected triple excitations, is believed to provide an optimum balance between
accuracy and efficiency in electron correlation studies. In a previous report[5],
we have made a critical analysis of the ccsD(T) model. The ccsD(T) the-
ory employs an a posteriori correction formula to the cCcsD method to account
for some higher order effects which is only loosely based on perturbation the-
ory.! There is some cancellation of error in the ccsp(T) model since it has
been established, for example, in calculations of molecular binding energies that
the ¢csDT theory, which fully incorporates the triple excitation energy compo-
nent, achieves slightly worst agreement with experiment than does the ccsp(T)
model. The ccsD(T) model breaks down when significant quasidegeneracy is
present as, for example, in describing bond breaking processes. (The renor-
malized and (completely renormalized) augmented CCSD(T) theory extends the
range of geometries that can be considered, but destroys the extensitivity of
the method.) Multireference methods are found to give more accurate results
in studies of bond-breaking than the best single reference methods including
ccsD(T) and should eventually become the method of choice.

The ccsD(T) model leads to one of the most computationally intensive parts
of many quantum chemistry program packages, including GAUSSIAN[8], CAD-
PAC[9], GAMESS[10], MOLPRO[11], ACES[12] and DALTON[13]. For molecular sys-
tems which are well described by a Hartree-Fock reference function, the ccsp(T)

!Stanton[6] and, more recently, Head-Gordon and his co-workers[7] have developed per-
turbation series with respect to a ccsD reference. Head-Gordon et al [7] propose a method
designated ccsp(2) which is distinct from cosp(T).



method predicts bond energies, ionization potentials, and electron affinities to
an accuracy of £0.5 kcal/mol, bond lengths accurate to +£0.0005 A, and vibra-
tional frequencies to +5 cm~1. Such a level of accuracy is sufficient for many
studies of chemical species and processes.

The computational demands of the ccsD method, coupled cluster theory re-
stricted to single and double excitations, scale as O (n6), where n is a measure of
the size of the system which is usually related to the number of basis functions.
Adding triple excitations into the iterative coupled cluster scheme, giving the
ccsDT method, leads to an algorithm which scales as O (n®). Using the con-
verged amplitudes from a ¢CsSD calculation to calculate a perturbative correction
for the triple excitation energy component leads to an algorithm which scales
as O (n"). This ccsD(T) method is regarded as a compromise between speed of
computation and accuracy of results. However, an O (n7) scaling implies that
simply doubling the size of a problem leads to an increase in the computational
demands by a factor of 128. Dunning and Peterson[14] write

“... using a basis set with double the number of functions in the set
or doubling the number of atoms in the molecule with the same basis
set increases the cost of the calculation by two orders of magnitude.”

They continue

“This steep dependence of the ccsp(T) method on the number of
basis functions greatly restricts the range of applicability of this
otherwise promising theoretical approach.”

In their conclusions, Dunning and Peterson[14] write

“To achieve high accuracy ... large basis sets must be used. Since the
computational cost of the ccsD(T) method increases as N7, where
N is the number of basis functions used in the calculations, ccsD(T)
calculations become prohibitively expensive for large molecules.”

Because of the computational demands of molecular electronic structure cal-
culations based on ccsD(T) theory, the method provides an interesting topic for
the study of algorithms for use in quantum chemistry. In this report, we an-
alyze the computational complexity of ccsD(T) algorithms. We consider only
algorithms for serial computing machines here. Algorithms for parallel com-
puters will be addressed in a subsequent report[15]. In section 2, we consider
the fourth order triple excitation energy in the many-body perturbation theory
(MBPT) expansion for a closed-shell system. We consider the tensor contrac-
tion which arises in the evaluation of a typical fourth-order, triple excitation
term. We also consider spin-adaption and the efficiencies which follow in the
computational algorithm from its effective exploitation. The ¢cSD(T) approxi-
mation is presented in a compact form in section 3 and the algebraic complexity
of algorithms for this approximation is considered in 4. In section 5, we turn
our attention to algorithms for ccsD(T) calculations of reduced complexity. In
particular, we consider low-order scaling techniques for extended molecular sys-
tems, Laplace transform techniques, and Cholesky decomposition algorithms.
Our discussion and conclusions are presented in section 6.



Figure 1: Fourth order triple excitation diagram labelled A7 in the nomencla-
ture of Wilson and Silver[16].

2 Fourth order triple excitation energy

Of the 39 fourth order linked energy diagrams which arise in the many-body
perturbation expansion for a closed shell system described with respect to a
single Hartree-Fock reference function constructed from canonical orbitals, 16
involve intermediate states which are triply excited with respect to the reference
function. The algorithms for evaluating the energy components corresponding
to these 16 triple excitation diagrammatic terms are the most demanding of
those which arise from fourth order. They scale as N7, where N is the number
of basis functions employed.

2.1 Energy diagram Ar

For our present purposes it is sufficient to consider a single fourth order triple ex-
citation diagram. We consider the diagram labelled Az by Wilson and Silver[16],
who first published these terms in 1978. This diagram is shown in Figure 1.
Using the convention that the indices 4, j, k, ... label occupied spin orbitals
or hole lines and a, b, ¢, ... label unoccupied spin orbitals or particle lines, the
corresponding energy component can be written using standard rules as follows

(i§] O |ab) {ak| O |ed) (cb| O |ek) {ed| O |ij)
Z Z DabDbcdDde (1)
z]k abcde ijk

where I (12
6= 1=12) (2)

T12

and 715 being the interelectronic distance, I the identity and (12) the permuta-
tion that exchanges the co-ordinates of electrons 1 and 2, so that

(pg| O |rs)

(pa| — |rs) — (pa| — |sr)
T12 T12
[pr | gs] — [ps | qr] (3)



where the indices p, ¢, r, s denote spin orbitals which are either occupied or
unoccupied.
Dgf =¢€;+€&; —€q —Epy 4)

is a double excitation denominator, in which ¢, is the orbital energy for the pt*
orbital, and
Df]-b,f:si+5j+ek—ea—eb—ec, (5)

is the triple excitation denominator. The direct evaluation of the expression (1)
involves a summation over 8 indices and thus an algorithm that scales as N8
or, more precisely, N3N3, where N, is the number of occupied spin orbitals and
N, is the number of unoccupied spin orbitals.

2.2 Tensor contraction

In general, the evaluation of many-body perturbation theory and coupled cluster
expansions can be expressed in terms of tensor contractions of the form

X = Z Z Z Z Z Z Z Z AijabBakcdCever Dedij (6)
i J k a b c d e

where each summation runs over either an occupied or an unoccupied spin
orbital. A;jep, Bakcd, Ceper and Deq;; are “two-electron integral-like”. We
have used in (6) the form of the numerator in the expression for the energy
corresponding to diagram Ap. The final result X can be computed in many
different ways because of commutativity, associativity and distributivity. We
shall consider some of the possibilities here.

Writing (6) in the form

X = Z ZZZZZZZAijab X Baked X Cever X Deaij (7
i J k a b c d e

in which the floating-point multiplications are explicitly shown, we see that the
total number of floating point operations required is

AN3NS ~ N8 ®)
Evaluation of X using the expression (7) leads to the following code:-

X:=0;
for i, j, k, a, b, c, d, e
X:=X+A(i’j’a’b)*B(a’k’C’d)*C(Cyb’e’k)*D(eyd’i,j);

This straightforward and most direct of algorithms requires no memory for
intermediates.

Noting that A;jes and Bggeq in (6) have one index (a) in common and that
likewise Ccper and Degqi; have the index e in common, we can evaluate X as
follows:-

X:ZZZZZZ Z(AijabBakcd)z(chekDedij) 9)
i k b ¢ d

a e



The summation over a requires 2N, floating point operators and a similar num-
ber are required for the summation over e. Let us write

Fijrpea = Z (AijabBaked) (10)

a

and
Gijkbed = Z (CeberDedij) (11)

e

X = ZZZZZ ZFijkbchz’jkbcd (12)
i j k b c d

We can then see that the evaluation of X requires

so that

2N3N2 . (2N, + 2N,) = 8N2N* ~ N7 (13)

floating point operations. The scaling of the summation scheme (9) is an order of
magnitude less than that of scheme (6). However, scheme (9) may require that
the temporary arrays Fijrscd and Gijrpeq be stored. A direct implementation of
scheme (9) can be achieved by the following code:-

X:=0;
for i, j, k, b, c, d
F(i,j,k,b,c,d):=0
for i, j, k, b, c, d
for a
F(i,j,k,b,c,d):=F(i,j,k,b,c,d)+A(i,j,a,b)*B(a,k,c,d);
for i, j, k, b, c, d
G(i,j,k,b,c,d):=0;
for i, j, k, b, c, d
for e
G(i,j,k,b,c,d):=G(i,j,k,b,c,d)+C(c,b,e,k)*D(e,d,i,j);
for i, j, k, b, c, d
X:=X+F(i,j,k,b,c,d)*G(i,j,k,b,c,d);

The above code requires storage of the intermediates Fjjrape and Gijrape- A
reduced memory implementation of the same scheme is provided by the following
code:-

X:=0;
for i, j, k, b, c, d
F:=0
for a
F:=F+A(i,j,a,b)*B(a,k,c,d);
G:=0;
for e
G:=G+C(c,b,e,k)*D(e,d,1,]);
X:=X+F*G;

Inspecting expression (6) again, we see that A;;qp and D.q4;; have two indices
in common, namely ¢ and j. Likewise, Bygcq and Ceper also have two indices



in common, namely k and ¢. The following expression for X can therefore be
written

X = Z Z Z Z Z Z (Aijab Dedij) Z Z (BakedCeber) (14)
a b d e i 7 k c

The summation over i and j involves 2N2 floating point operations, whilst the
summation over k¥ and c¢ involves 2N, N,, floating point operations. Putting

Fapea = D Y (Aijab Deais) (15)
i

and

Gabed = Z Z (Bakcdccbek) (16)
k¢

we can write

X = Z Z Z Z FabedGabed (17)
a b d e

We can then see that the evaluation of X requires
2N (2N? + 2N, N,,) = 4N,N;; (N, + N,,)) ~ N° (18)

floating point operations, an order of magnitude less than scheme (9) and two
orders of magnitude less that the first scheme considered, scheme (6). Scheme
(14) may require that the temporary arrays Fypeq and Ggpeq be stored. A direct
implementation of (14) can be achieved by the following code:-

X:=0;
for a, b, e, d
F(a,b,e,d):=0
for a, b, e, d
for i, j
F(a,b,e,d):=F(a,b,e,d)+A(i,j,a,b)*D(e,d,i,j);
for a, b, e, d
G(a,b,e,d) :=0;
for a, b, e, d
for k, c
G(a,b,e,d) :=G(a,b,e,d)+B(a,k,c,d)*C(c,b,e,k);
for i, j, k, b, c, d
X:=X+F(a,b,e,d)*G(a,b,e,d);

The above code requires storage of the intermediates Fypeq and Ggpeq. A reduced
memory implementation of the same scheme is provided by the following code:-

X:=0;
for a, b, e, d
F:=0
for i, j
F:=F+A(i,j,a,b)*B(a,k,c,d);
G:=0;
for k, c
G:=G+C(c,b,e,k)*D(e,d,i,]);
X:=X+F*G;



In the above analysis, we have not exhausted the number of possible multi-
plication scheme for the determination of X. There are a total of 6 possibilities
corresponding to different contraction schemes which are summarized in Table
1. In this Table, the rows and columns are labelled by the tensor quantities
Ajjab, Baked, Ceber and Deq;;. In the upper triangle, the number of common
indices in a given pair of tensors is recorded whilst in the lower triangle the
common indices themselves are recorded.

Even the outline of schemes summarized in Table 1 does not exhaust all pos-
sibilities since, for example, a summation over, say, an unoccupied spin orbital
index can be further subdivided and the following substitution may be made

ZEi%Z%— Zu: (19)

for some suitably chosen m. To our knowledge such schemes have not been
explored.

Table 1: Summary of the possible tensor contractions available for the evaluation

of X in equation(6). The rows and columns of this table are labelled by A;jqs,

Bakeds Ceper and Deg;;. In the upper triangle of the table the number of shared

indices is given. In the lower half of the table the shared indices are given.
Aijab Baked Cecbek  Dedij

Aoy — 1 1 2
Bakcd a — 2 1
chek b k, C — 1
Degi; 1, d e -

In the above discussion, we have discussed the evaluation of the quantity X
defined in (6). The evaluation of the fourth order energy component E, (A7)
can be complicated by the presence of the denominators. In particular, whilst
schemes (6) and (9) can be applied to the case where denominators are present;
thus we have for the O (N?®) algorithm

A"a Ba c C'ce De ij
X=22222222 pwpipE )
2 J a c e

ik

and for the O (N7) algorithm

1 A"a Bac CceDe ij
FEETTEY g |5 (M) (S )
i j k b ¢ da ik La ij e tj
(21)
for scheme (14), the for the O (N®) algorithm, the structure of the denomina-
tors destroys the algorithm. However, it will be shown in section 5.2 that an
algorithm which scales as O (N 6) can be recovered when the Laplace transform
technique is used to eliminate the denominators.
Now let us turn to the O (N7) algorithm for the fourth order triply excitation
energy diagrams originally introduced by Wilson and Saunders[17]. By defining
the intermediates

abe (i§] O |db) (dk| O |ac)
ijl;c = Z | | Dl-"-i | | (22)
d )



and

gbe=3" (§1 O |ba) (ik| O |1c)

ijk D('llb ’ (23)
J

l

these authors showed that each of the 16 diagrammatic terms which arise in
fourth order may be written in the form

abe {P(i j k)P(abC)Vf}blf}

K Z Z ik Dabe ’ (24)

ijk abc ijk

whereg?/¢ and v{i° denote either an f}° or a g/¢ intermediate, K is a constant
and P(ijk) and P(abc) are permutation operators. Spec1ﬁca11y, the following

expression arises for the diagram labelled Ar

abc a%b
Jigk Jijk
ZZ abc ’ (25)
z]k abce Uk

The computation of this term scales as N2Nj ~ N7.

2.3 Spin-adaption

The tensor contractions described in the previous section involve summations
over spin orbital indices. In this section, we consider the spin free formulation
for closed-shell systems.

The nine different possible spin cases which arise in the evaluation of the
intermediates f{}} are summarized in Table 2. There are also nine different
possible spin cases which arise in the evaluation of the intermediates ggjb,f and
they are summarized in Table 3.

We use upper case indices to label (spatial) orbitals. So the indices I, J,
K, ... label occupied orbitals whilst the indices A, B, C, ... label unoccupied
orbitals. Defining the secondary intermediate quantities

ID|JB][DA|KC
n - y0DUEIDAKG -
D 1J
ID|JB][DC|KA
_— Z[ 5D -
[IB|JD][DAIKC
D
[IB|JD][DAIKC
T, = Z | ABD| ] (29)
D
the various spin-free intermediates are then given by
Ffﬁ(c(l) = T =T -T5+1Ty, (30)
FAE® = m-m, (31)
FiE® = —m-T, (32)
F;Aﬁ(cm) = T, —T, (33)



Table 2: Spin cases for the intermediate

(1710|DB) (DK|O|AC) F{EE

(aa| Plaa)  (aa|Plac) Z Z Z

(aa| Plaa)  (af|Plag) (O © g

(calPlac)  (af|Plga) (G @ &

(@Bl Plap)  (aa|Plaa) EZ g 33
(@Bl PlaB)  (aB| Plap) (Z g g)
(B Plaf)  (aB|Plpa) (3 ﬁ .

(Ba| PlaB)  {aal P|ac) g g Z

(Ba|PlaB)  (aB| PlaB) fz 3 g

(GalPlas) (@sIPla) (5 1)

ABC
FIJK

ABC

Table 3: Spin cases for the intermediate G175

(JL|O|BA) (IK|O|LC) GHe

(aal Plaa) (aa|Plaa) (@ @ ©
(aalPlac) (aflPlap) (& & 0
(0ol Plac) (ol Plag) (G @ ¢
(aB| PlaB)  (BB|P|BB) Eg o ﬁ;
@l Plag) (aslPlag) (2 8
(@B| Plap)  (aB| P|pa) Ei o Z;
(Bal Plap)  {aal P|aa) (5 5 Z)
(Ba PlaB)  (aB| P|aB) g Z g
(Bal Plaf) (8ol Plaf) %g 8 ﬁ;



Fi® = m, (34)
FAPC® = (35)
FAECT = _my4T, (36)
Fiyx © = —Ty (37)
FAEO = m (38)

Similar spin-free intermediates may be obtained for the gz‘-ljbkc intermediates. The
energy corresponding to diagram A7 may then be written

ABC(1) 2ACB(1 ABC(3) -ACB(3
Ey(Ar) = _ZZ{FIJK )FIJK()+F @F Fryx ®
IJK ABC
+FABC(4)FAC’B(9) n FABC(5)FACB(5)

+F1JJ?(C(6)FI CB(T) FABC(7)FACB(6)
ABC(8) mACB(8 ABC 9) mACB(4
+ Frix ( )FIJK ® + Fi; ( )FIJK ( )} (39)
The intermediates Fflﬁf(” ) obey the following permutational symmetry prop-
erties
ABC CBA ABC CBA
Frik W = Firx ) = —Fjik ) = —Frjk (H)’ A7 (40)

C(w)

Similar relations exist for the G?JBK intermediates.

3 The CCSD(T) approximation

The ccsD(T) approximation was first defined for the quadratic configuration
interaction model[3] and later for the ccsD approach[4]. The energy correction
obtained from the ccsp+T(ccsp) approximation? is augmented by a fifth order
term coupling single and triply excitations.

The a posteriori energy correction for the “triple excitation” component of
the correlation energy can be written in the compact form

A = oo SN Dkl (41)
z]k abce
in which we have continued to employ the convention that the indices ¢, j, k,...
label occupied orbitals, a,b,c, ... label unoccupied orbitals, and p,q,r, ... label
orbitals which can be elther occupled or unoccupied. The factor Da]”kC is given
by

DI =e;i+€j+ep—€q—Eb — Ecs (42)

whilst t‘i’;’,f takes the form

tohe = P (ijk)P(abc){%[Z(tfj(bcmkk) Z(t”b mc|0|jk>)”.
8 "’ (13)

2The ccsp+T(cesD) approximation was introduced by Urban et al[18] in 1985. In this
approximation, the second order MBPT amplitudes in the fourth order triple excitation energy
expressions are replaced by the converged ccsb amplitudes. More recently the cCcSD+T(CCSD)
method has been dubbed[19] ccsp[T].

10



and tfjbkc is the sum

e = ok + B0k (44)
where the “disconnected triple excitation amplitude” is defined by
. 1 A
Ff = P 07K P (abe) gt (el O158). (45)
ij

P (pgr) is the cyclic permutation operator defined by
P (pqr) f (par) = f (par) + f (grp) + f (rpa) - (46)

4 Algebraic complexity of algorithms for the CCSD(T)
approximation

The a posteriori energy correction for the “triple excitation” component of the
correlation energy ccsD(T) given by expression (41) involves

N3N? (47)
terms. However, the evaluation of the amplitudes t%”,;’ and f‘i‘;’,f involves addi-
tional summations and so we examine the algebraic complexity of these compo-
nents.

The cyclic permutations (46) arising in (43) can be written explicitly as
P(ijk) f (igk) = [f(ijk) + f (ki) + f (kij)
P (abc) f (abe) = f(abe) + f (bea) + f (cab) (48)

Taking account of these permutations, the cluster amplitudes defined in equation
(43) can be written

= Dibc [Z (ta5 el Oleky) = 3~ (tah (mel O |jk) )

e m

+Z (tbe (ca| O |ek) ) (tbc (ma| O |jk) )
& )

>

+Z( abIOIek) zm: tc2 (mb| O |jk)

+ 2 (55 el O fei)) - £‘ (152, (mel O ki)

+ Z (£ (cal O lei)) — i (#5, (mal O |ki))

+ Z (#55 (@bl O lei)) - i (52, (mb| O |Ki))

+ Z (5 (bel O les) - i (12, (mel O1i)

+§ (#s ¢cal O lesy) - ;T:j (#, mal O 1if))

#3715 0 01e) 3 (e bl O ) )] )
(50)
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We have used the fact that the denominator is invariant under permutation of
the occupied and unoccupied spin orbital indices. The first term in each line
of the above expression leads to computation which scales as IN,, and there are
9 such terms. Similarly, the second term in each line leads to a computation
which scales as N, and again there are 9 such terms. The computation of the
amplitude t?j”,g therefore scales as

9 (N, + N,) (51)

The amplitude tfjb,f involves an additional term, the “disconnected triple exci-
tation amplitudes”, which we now consider.

The “disconnected triple excitation amplitudes”defined in equation (45) can
be written in the following form after explicitly permuting the single particle

state indices

- 1 ~
i = — |t (bc| O|jk)
Jjk Dz]bk [
+t? (cal O |jk) + £ (ab] O |jk)
+t% (be| O |ki) + t4 (ca| O |ki)
+t5 (ab| O |ki) + ty, (be| O |ij)
+t% (ca| O i) +t5 (ab] O |ij) (52)

There are 9 terms (but no summations).
By combining the operation counts given above, it can be seen that the
evaluation of the amplitudes ¢¢/¢ and ¢/ scales as

[9(Ny + N,) + 9] (53)

The total operation count for the a posteriori energy correction given by ex-
pression (41) is therefore

N3N2[9(N,+N,)+9 ~N" (54)

terms.

5 Reduced-complexity algorithms for CCSD(T)
calculations

The O (n”) scaling of the ccsD(T) method implies that simply doubling the size
of a problem leads to an increase in the computational demands by a factor of
128. It is not surprising, therefore, that attempts have been made to alleviate
the computational demands of ccsD(T) calculations.

In this section, we consider three methods for reducing the complexity of
algorithms for performing ccsp(T) calculations. We first consider low-order
scaling techniques for extended, i.e. large, molecular systems, then we turn our
attention to methods based on the Laplace transform approach, before finally
considering the use of Cholesky decompositions of the two-electron integral ma-
trix.

12



5.1 Low-order scaling techniques for extended molecular
systems

It is recognized that the steep scaling of algorithms for describing electron cor-
relation in molecular systems is often an artifact of the orthogonal canonical
basis, i.e. the solutions of the matrix Hartree-Fock equations, used to construct
post-Hartree-Fock correlation theories. The steep scaling is not a consequence
of the underlying physics. For example, dynamic correlation is a short-range
effect decaying as r=9. Schiitz [20] has pointed out that

“The delocalized character of [Hartree-Fock] canonical orbitals de-
stroys the locality of correlation effects, leading to a quadratic scaling
of the number of electron pairs and a cubic scaling of the number
of orbital triples to be correlated, and an overall O (n*) and O (nf)
increase in the number of pair and triple amplitudes, respectively.”

The very steep scaling of the computational demands associated with conven-
tional electron correlation studies arises from the fact that calculations are per-
formed using a basis of canonical molecular orbitals which are, in general, delo-
calized over the entire molecular system. As Hampel and Werner[21] wrote

“This not only prevents the omission of small correlation effects of
distant electrons, but also leads to an unphysically steep increase
in the number of virtual orbitals needed for the correlation of each
particular electron pair.”

They continue[21]

“It is intuitively clear that a localized description of electron corre-
lation is needed to avoid these problems.”

Local correlation methods were first proposed in the mid-1960s by Sinanoglu[22]
and by Nesbet[23]. Since that time, many workers have suggested variants of
the local correlation approach[24]-[118]. However, it is only in recent years that
computational resources have emerged which allow applications to systems large
enough to demonstrate the potential of local correlation methods. Much of this
work is focused on the most widely used[119] correlation method, MP2, since this
is the method which is least demanding of computational resources. The local
MP2 algorithm described by Hetzer, Schiitz, Stoll and Werner[96] is particularly
efficient and these authors report that

“... the calculation of the MP2 energy is less expensive than the

calculations of the Hartree-Fock energy for large systems.”

Scuseria and Ayala[89] devised a linear scaling coupled cluster algorithm for
double excitations, cCD, which, although based on an atomic orbital basis set,
is equivalent, within the thresholds used, to the ‘full’ ¢ccD method. Schiitz,
Werner and their co-workers have described local correlation methods for more
complicated algorithms including coupled cluster ‘singles and doubles’ with and
without perturbative estimates of the triple excitation component of the correla-
tion energy. These methods, designated LccsD (Local Coupled Cluster Singles
and Doubles) and LccsD(T) (Local Coupled Cluster Singles and Doubles with

13



perturbative Triples) and described in References [21] and [110], and in Refer-
ences [91] and [20], respectively.

The Coulomb operator can be written as a sum of a long-range part, L (1),
and a short-range part, S (r), as follows

L0 1-40)

= L({r)+S(r). (55)

Here f (r) is termed the separation function and is commonly taken to be the
error function

f(r) = erf (wr) (56)

in which w is a tunable decay parameter. This approach goes back to the
work of Ewald in 1921[120] and has recently been re-examined by a number of
authors[121]-[131]

The long-range function then takes the form

_erf (wr)
h r

L(r)

which is slowly decaying but nonsingular, whilst the short-range function is

(57)

1—erf
S(r) = M (58)
r
and is rapidly decaying but singular.
Consider the exchange integral
K7 = (ai|bj)
1
= [ drdrag (r) 65 (1) -6 (02) 6 (52) (59)
12

Splitting the Coulomb operator into a long-range and a short-range part, this
integral becomes

(@i | ) = (@i L ()| ) + (ai |3 (1) ) (60)
where
@ L)) = [ dridraga () 6500 T @) 65 0) (61
and

(ai |S ()| bj) = / drydrady (01) 61 (r1) [“e%f(w)]

b (r2) ¢j (r2)  (62)

Both of these partial integrals can be evaluated more efficiently than the original
integral.

The short-range integral is obtained by a four-index transformation from the
short-range integrals over the basis set. Negligible contributions are eliminated
by screening the integral list. The Schwartz inequality

N =

(Pl ()| 7)| < [(pa | ()] p)| 7 [(r5[S () 7s)| (63)
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leads to a computational scaling as O (N 2). O (N) scaling is achieved by taking
account of the distances between p and r, p and s, etc. Hetzer et al [96] use the
condition

|(pq |S ()| rs)| S max (Spq, Sprs Sgr> Sgs) (64)

where
Spq = |(pP|S (r)|r7)]| (65)

which, unlike the Schwarz inequality is not strict but “works well in practice”
The integral K/ may be approximated as follows

(ai | bj) = Y QUUNEQY, (66)

m,m’

where is a multipole of the effective charge distribution
Pai = XaXi (67)

and U:;i, is the interaction coefficient depending only on the vector R;; con-
necting the charge centroids of the occupied orbitals ¢ and j. m and m' are
compound indices which determine the type of multipole.

The distance between two electrons can be written

rig = |R —r + I‘2| (68)

where the coordinates of electron 1 are

r; = (21,91,21) (69)
and those of electron 2 are

ro = (%2,Y2,22) - (70)
The vector

R = (R,, Ry, R.) (71)

connects the two centres. The long-range operator L (r12) can be expanded as
a polynomial as follows

(ri2) = Y Digy. (R) (2 — 21)" (g2 —51)" (22 — 21)"" (72)
oy -

in which the coefficients Dy,;,;, (R) are to be determined.
Rearranging the above expansion gives

L(r2) = Z U(mmmymz)(nmnyn,)wl Y1 L 2Ty y;ﬂyz;z’ (73)
with
R o Ma+my+m, My + Ny My + Ny
U(mmmym,)(nmnynz) - (_1) ( Ng ) ( ny
m;+n
X ( ZTLZ ? ) Dmm+nm,my+ny,mz+nz (R) (74)
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Substituting this expansion for L (r12) into the two-electron integral (61) yields
the multipole expansion

(ai|L (ria)| bj) = / dr, / drspa (£1) L (112) pog (r2)

§ : E : ai:Ra; URaibj
MaMyMz~ (Mamym.)(Nanyn.)

Ma My Mz NNy, Nz

ot (75)

in which
%;Irtrfyimz = /drp‘”' (r)(z - Rai,w)lz (y - Rai,y)ly (z = Rai,Z)lz (76)
is a “multipole moment”.

5.2 Laplace transform techniques

A one-dimensional Laplace transform is defined as follows[132]

f6) = £ PO} = [ dtexp(-s)F(0) (77)

F(t) is a function of the real variable ¢t and s is a complex variable. F'(t) is
called the original function and f(s) is called the image function. If F(t) =1
then f(s) = 1/s, so that

1 oo
- = / dt exp(—st). (78)
s 0

Replacing an energy denominator in a sum-over-states perturbation theory ex-

pression by its Laplace transform gives an exponential function

1 pa—

Dab / dt exp(=Dg)’'t). (79)
if... 0

The spin orbital energy differences then appear as an exponent which can be
split in different ways, e.g.

D = D + Dj: (80)
so that, e.g.

1
(D¢~ + Db-)

/ "t exp(— (D + Db t)

0

- / " dt exp(~ D t) exp(= D). (81)
0

The Laplace transform allows the decoupling of the nested summations in the
perturbation theory expressions.

In a paper entitled “Elimination of energy denominators in Moller-Plesset
perturbation theory by a Laplace transform approach”, Almlof [133] wrote the
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estimate of the correlation energy given by second order perturbation theory,
i.€.

(ij| O |ab ab| O |ij)
-3 ZZ (82)
ij ab
where -
ijb =€q+Ep—€&i—¢j (83)
in the form
1 * S OA (s nab
B = _Z/o dtizjg (i3] O |ab) (ab| O i) exp(~D2lt) (84)

which can then be written as

— 7 e
B /0 dte® (1) (85)
where
e?(t) = 422 ()10 [a()b(®) (a(D)b®)| Oli(1)j(2))  (86)
ij ab
and
i(t) = i(0)exp(3e;t) (87)
a(t) = a(0)exp(—3eqt) (88)

The Laplace transform effectively eliminates the energy denominators provided
the integral (85) can be evaluated accurately and efficiently. Héaser and Almlof
[134] showed that the function e(®)(¢) is

“quite well behaved and monotonically decreasing”
so that numerical integration

“is not a major computational obstacle.”
These authors[134] show that

“with a suitable choice of quadrature points ... fewer than 10 points
are required for 6-7 digits of accuracy, which is usually sufficient to
obtain correlation energies within a micro-hartree.”

Haser and Almlof also note that

“the contributions for different quadrature points can be evaluated
in parallel, and the scheme is therefore well suited for many modern,
high-performance computer architectures.”

Consider the application of the Laplace transform technique to the energy
expression corresponding to diagram Ar

Z Z (ij] O |ab) (ak| O |ed) {cb| O |ek) (ed| O |ij) (89)

ab Nbed PHde
z,]k abcde D D’JkD
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where the ‘triple excitation’ denominator is given by

Dit=ey+ec+ea—ei—¢cj—ep. (90)
Putting .
@ab _ (ij] O |ab)
this may be written
ob (ak d) {cb k
Z]k abcde Duk
Dt = (eq — &5 —€5) + (ev + € — £x) (93)
1 [ s .
Ei(Ar) = 4 /0 it S IO (ak| O led) (cb] O Jek)
ijk abcde

T exp (= [(ea — i — &) + (e +ec —ex)]t)  (94)

Héser and Almlof [134] introduced the auxiliary matrices

Xav,de ( ZT“W’ T exp (— (ea — i — ;) 1) (95)

and
Yae,as(t) = Y _ (ak| O |ed) (cb| O |ek) exp (— (eb + €0 — &%) 1) (96)
kc

and then write the energy component under consideration in the form
E, (A7) / dtTr {X(#)Y (¢)} (97)
0

The evaluation of this trace is an N* process - actually nZ, where n, is the
number of unoccupled orbitals. The number of elements of the matrices X and
Y is also of order n%. Each of the matrix elements of X requires n? operations.
Each of the matrlx elements of Y requires n,n, operations. Evaluatlon of
the energy component Ej (A7) using the Laplace transform technique therefore
scales as

(n2 + nony) ng, ~ NS (98)

The Laplace transform integral

1 /oo dt exp(—st). (99)

S

which holds for all s > 0, is performed numerically using a quadrature of the
form

% = Z wp exp(—stp) (100)
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with weights w, and points t,. This formula may be viewed as the approxima-
tion of s~* by a series of exponential functions exp(—st,) which is monotonically
decreasing and positive everywhere.

The use of the Laplace transform in ¢csD(T) calculations has also been con-
sidered by Constans et al [97] and, very recently, by Constans and Scuseria
[135]. Constans et al [97] considered the use of logarithmic transformations
in performing the numerical integration required to evaluate (94). Logarith-
mic transformations can prove useful in numerical integration of exponential
functions[136]. Equation (94) may be written

1 o
By (Ar) = 5 / @S wy exp (~Dyt) (101)
0
V4
where R A
wp = TP ak| O |ed) (cb] O |ek) TS, (102)
Dy =(ea—ci—¢j) + (ev +ec — k), (103)

and p denotes the compound index (ijkabcede). Defining the parameter Dy, as
the “triples gap”, i.e. the minimum denominator, we can define the logarithmic
transformation

1
t=-———Inz (104)
so that
2 = exp(—Dmint). (105)
From the definition (104)
1 1
= — —d. 106
dt D b (106)

and the integration limits become

t=0 — z=1

t=00 —= z=0 (107)
The integrand in (101) becomes a power series in x
11 ! Dp
B =~ | da{pjwpm(%n ) (108)

mapped onto the integration interval 0 to 1. Constans et al [97] point out
that after making the above logarithmic transformation (104) Gauss-Legendre
integration is a particularly useful choice.

5.3 Cholesky decomposition techniques

In 1990, Wilson [140] diagonalized the two-electron integral matrices correspond-
ing to a sequence of small universal basis set. Writing a two-electron integral
matrix as

Viw = [pg | 78] (109)
with compound indices
p=(pa), v=_rs), (110)

19



Table 4: The difference norm A (m) defined in equation (112) for a sequence of
universal even-tempered basis sets. Powers of ten are given. The columns are
labelled by the number of functions in the basis set, n. m is the upper limit of
the summation in equation (111). M = (n(n + 1))/2 is given in the final row.

m 9 10 11 12 13 14 15 16 17 18 19 20
1(+02 +02 402 +02 +02 +02 +02 +02 +03 +03 +03 +03
2| +00 +01 +01 401 +01 401 +01 +02 402 +02 +02 402
3| -01 -0t +00 +00 +00 +00 +00 +01 +01 +01 +01 +01
4| -02 -02 -02 -01 -01 -01 -01 400 400 400 +00 +00
5| -4 -03 -03 -03 -02 -02 -02 -02 -01 -01 -01 -01
6| 05 -06 -04 -04 -03 -03 -03 -03 -02 -02 -02 -02
7| -07 -06 -06 -05 -05 -04 -04 -04 -03 -03 -03 -03
8| -08 -07 -07 -06 -06 -06 -05 -05 -05 -04 -04 -04
9| -10 -09 -08 -08 -0 -07r -06 -06 -06 -05 -05 -05

10 | -11 -11 -10  -09 -09 -08 -08 -0 -07 -06 -06 -06

11| -13 -12  -11 -11 -10 09 -09 -08 -08 -08 -07 -07

12| -15 -14 -13 -12 -11 -11 -0 -10 -09 -09 -08 -08

3| -17 -1 -14 -13 -13 -12 -11 -11 -10  -10 -10 -09

4} -19 -17 -16 -15 -14 -13 -13 -12 -12 -11 -11 -10

5| -20 -19 -18 -16 -16 -15 -14 -13 -13 -12 -12 -11

M 45 55 66 78 91 105 120 136 153 171 190 210

Taken from the work of Wilson[140]

let v denote the diagonal matrix of eigenvalues and U the matrix whose columns
are the corresponding eigenvectors. Let the eigenvalues be arranged so that their
magnitudes are in non-increasing order. Let the eigenvectors be arranged in the
corresponding order. An approximation to the two-electron integral matrix,
Vv, may be constructed as follows

V,zl, = ZUH,\U,\)\U;/ (111)
A=1

where in general the upper limit of the summation over A, i.e. m, will be
considerably less than its maximum value of % (n(n + 1)) (= M), where n is the
number of basis functions. The difference norm

Am) =2 |Viiy = Vi (112)
w,v

provides a measure of the accuracy with which the original two-electron integral
matrix is approximated by V,;;, defined in equation (111). So, for a basis set of
9 functions A (m) is less than 10710 for values of m greater than 9, that is, 20%
of M. For a basis set of 20 functions A (m) is less than 10710 for values of m
greater than 14, which is just 62% of M.

In 1977, Beebe and Linderberg[137] had suggested a method to simplify
the generation and transformation of the two-electron integral matrix using a
Cholesky decomposition. They recognized that the two-electron integral matrix
may be written

V;u/ = Z AMLMALUA (113)
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where L is a lower triangular matrix. The importance of this decomposition is
that, to a very good approximation the summation over A may be truncated

Viw = > A" LuaLyy (114)

where m < M. The Cholesky decomposition of the two-electron integral matrix
has been investigated by Rgeggen and his coworkers[138], by Wilson[139][140],
and, most recently, by Koch et al[141]. These authors begin their paper[141]
by noting that the use of Cholesky decompositions of the two-electron integral
matrix

“does not seem to have received much attention in the quantum
chemistry literature.”

but conclude with the following prognosis

“Integral-direct techniques for highly correlated ab initio models
have expanded the application range for coupled cluster methods.
These methods are still very demanding and are considered a seri-
ous bottleneck. We anticipate the Cholesky approach will remove
this limitation and the future developments of these methods will
focus on reducing the scaling, as well as an embarrassingly parallel
implementation of the Cholesky decomposition will make applica-
tions virtually open ended.”

Beebe and Linderberg[137] presented a very stable algorithm for the con-
struction of L. For (pg) = 1,2,...,1 [n(n+ 1)] where (pq) is the compound
index

(p)) =3lplp—1)]+4q, (P=q) (115)
we have .
(pg)—1 2
L(pq),(pq) = V(pq),(pq) - Z L(m),(m) (116)
(rs)=1
and
(pg)—1
Ly rs) = [Viewawn) = D Liew.r) Loa).rs) | /Lipa) (o) (117)
(rs)=1

The summations are omitted when the upper index is zero.
Beebe and Linderberg[137] proposed the following algorithm for the con-
struction of the lower triangular matrix.-

1. Calculate the diagonal elements of the two-electron integral matrix V, that
is Vipq),(pg) and arrange them in non-increasing order keeping a record of
the original order.

2. Take the largest diagonal element, V; 1, and set

Lig:=+/Via (118)
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3. Obtain the entire column of two-electron integrals
Ve, 0a) =1,2,..,5[n(n+1)] (119)

4. Put
L(PQ)J = Vv(pq),la (pQ) = 2737 Has] % [TL (n + 1)] (120)

5. Update the diagonal elements
Viva),(pa) = Viwa),(pa) — L(pg),1 L(pg) .15 (pg) = 2,3,..., % [n(n+1)] (121)
(It should be noted that V7 1 is now set to zero.)

For each value of (pg) = 2,3, ..., 3 [n (n + 1)] consider in turn the largest remain-
ing diagonal element V() (pq)

6 Put
Lipg),(pg) == \V Viva).(pa) (122)

7 Obtain the partial column
Vv(tu),(pq)a (tu) = % [.7 (.7 + 1)] 3oy % [TL (TL + 1)] (123)
8 For (tu) =1[j(j+1)],.... 1 [n(n+1)] put

(pg)—-1
Law o) = | Viewoo) = D Ltwy.r) L), oa) | /Lpayoy  (124)

(rs)=1
9 Update the diagonal elements according to
View () 3= View, () = L) pa) (125)

10 If the magnitude of each of the remaining updated diagonal elements falls
below some specified threshold 7 then stop.

11 Go to step 6 and consider the next value of (pg).

Let m be the value of (pq) for which the above algorithm terminates at step 10.
m is the effective numerical rank of the two-electron integral supermatrix. We
can write

Voo r) = D, Lipa).(tw) Lirs) (1) (126)
(tu)=1
where
m < 3 [n(n+1)] (127)

The Cholesky decomposition of the two-electron integral matrix is illustrated
in Table 5 for a universal even-tempered basis set of 5 functions. The updated
diagonal elements of the two-electron integral matrix which arise in cycle o are
given for cycles 1, 2, 3, 4, 6 and 8, together with the mapping to original order.
The effective exploitation of the computational linear dependence in the two-
electron integral matrix by the Cholesky decomposition algorithm significantly
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Table 5: Cholesky decomposition of the two-electron integral matrix for a single
centred universal even-tempered basis set with o = 0.5, § = 1.55, and n =
5. The diagonal elements which arise in each cycle, o, of the decomposition
algorithm are shown together with the mapping on to the original order j.

7 o=1 o=2 o=3
1 0.6250000000 1 0.6250000000 1 0.6250000000
3 0.6250000000 15 0.4964908907 15 0.4964908907
6 0.6250000000 14 0.3919019274 6 0.0719861258
10 0.6250000000 10 0.3823237621 S 0.0554932347
15 0.6250000000 9 0.2733414367 9 0.0519245421
2 0.5417688155 13 0.2350669930 8 0.0401095669
5 0.5417688155 6 0.2231117019 3 0.0374687543
9 0.5417688155 8 0.1482147821 10 0.0374687543
14 0.5417688155 5 0.1286782277 4 0.0280128681
4 0.3574879250 12 0.1120809346 7 0.0213916752
8 0.3574879250 3 0.0673221520 13 0.0146982933
13 0.3574879250 7 0.0643924030 2 0.0121056596
7 0.1858895142 4 0.0548861303 12 0.0117866575
12 0.1858895142 11 0.0447596618 14 0.0081195570
11 0.0797510240 2 0.0187868508 11 0.0062794315
j o=4 c==6 0=238
1 0.6250000000 1 0.6250000000 1 0.6250000000
15 0.4964908907 15 0.4964908907 15 0.4964908907
6 0.0719861258 6 0.0719861258 6 0.0719861258
3 0.0030254388 3 0.0030254388 3 0.0030254388
10 0.0030254388 10 0.0007763561 10 0.0007763561
2 0.0019348661 14 0.0000125938 14 0.0000125938
13 0.0017038819 2 0.0000100229 2 0.0000043770
14 0.0014766318 9 0.0000032103 9 0.0000000489
4 0.0014303850 5 0.0000030106 5 0.0000000458
9 0.0013350702 13 0.0000017220 8 0.0000000137
5 0.0009273679 4 0.0000010085 4 0.0000000088
12 0.0008826133 & 0.0000007164 13 0.0000000051
11 0.0003170389 11 0.0000002322 11 0.0000000026
8 0.0001535604 12 0.0000000245 7 0.0000000003

Taken from the work of Wilson[140]
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reduces both the number of integral which have to be evaluated and the number

of “integral-like” quantities which have to be stored.

The potential of the Cholesky decomposition of the two-electron integral
matrix can be seen by considering the four-index transformation associated with

the change of orbital basis
Pi = Z XpCpi-
p=1

The four-index transformation may be written

n n n n

[ij | kl] = Z Z Z Z cpiCqjCriCsl [pq | 7]

p=1g=1r=1s=1

where

[ij | KU = [pipj | erept]
and

[pq | TS] = [XPXQ | XrXs] .

This is usually written as a series of one-index transformations
n
[ig|rs] = Zcm- [pg | 73]
p=1
n
[ij|rs] = D coilia|rs]
q=1
n
[ij | ks] = ZCT’“ [if | rs]
r=1
n
lij | kl) = > calij| ks]
s=1
giving an algorithm which scales as n°. Equation(126) may be written

pa|rsl= D Lipg),w Lirs).(tw)-

(tu)=1

Introducing (136) into (129) gives

n n n n

i TED = D0 Y 3 3 cpicajcnrcsLipg),tu) Lirs),tw

(tu)=1p=1g¢=1r=1s=1

> (Z > cpicqu(pq),(tu)> (Z > concstLirs) )

(tu)=1 \p=1g=1 r=1 s=1

Putting

L) (tw) = D D, piCaiLipg).(tw

p=1g¢g=1
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(135)
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and
n n

Ly, (tu) = Z Z CriCsiL(rs),(tu) (139)

r=1 s=1

allows (137) to be written in the form

i | K=Y Liagycew) Dia. e (140)
(tu)=1

6 Discussion and Conclusions

We have considered the computational complexity of ccsD(T) algorithms in
molecular electron correlation studies. The ccsD(T) model leads to one of
the most computationally intensive parts of many quantum chemistry program
packages formally scaling as O (N7), where N typically denotes the size of the
basis set, but leads to some of the most accurate computed molecular properties.
This O (N7) scaling implies that simply doubling the size of a problem leads to
an increase in the computational demands by a factor of 128. This steep scaling
of algorithms for ccsp(T) theory has fuelled a search for reduced-complexity
algorithms. In this report, we have considered both O (N7) algorithms for
ccsp(T) calculations and three approaches to reduced-complexity algorithms:
low-order scaling techniques for extended (i.e. large) molecules, Laplace trans-
form techniques, and techniques based on Cholesky decomposition.
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