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Beauty in Physics: the Legacy of Paul Dirac* 
 

N. A. McCubbin** 
 

In 2002 physicists around the world celebrated the centenary of the birth of Paul 
Dirac, OM, FRS, Nobel Laureate, who was one of the greatest physicists of the 
20th century. He made towering contributions to the formulation of quantum 
mechanics and he was one of the principal creators of quantum field theory. In 
1928 he combined relativity and quantum mechanics in the Dirac equation, 
which provides a natural description for the spin of the electron and which led to 
the prediction, by Dirac himself, of the existence of anti-matter. In this article I 
try to explain, in the simplest terms, these major contributions to physics and to 
give some flavour of the man himself.  

 

1. Introduction 

Throughout his life Paul Dirac loved walking. It was his habit, as a young post-graduate in 
Cambridge, to take long walks in the Cambridge countryside at the weekend. On one of these 
walks in the autumn of 1925, probably Sunday 20th September [1], he was thinking about a 
paper by a young German physicist, Werner Heisenberg, which suggested a new approach to 
quantum theory. The mathematics in the paper had a peculiar feature that Heisenberg found 
disturbing. Dirac thought suddenly of a similar feature in classical mechanics, but he couldn’t 
quite remember the details, and, frustratingly, libraries in Cambridge were closed on 
Sundays. It is reasonable to suppose that Dirac was at the library’s doors as they opened on 
Monday morning; he checked his hunch and found, to his delight, that the pieces fitted: the 
feature that the paper’s author had found so disturbing in fact mapped perfectly on to the 
Poisson Brackets of classical mechanics. The young post-graduate had discovered the bridge 
between classical mechanics and a general theory of quantum mechanics. 
 This story of Dirac’s discovery is well known, delightful, and all the better for being true, 
since we have it from Dirac himself [2]. (I will say more about it later.) It occurred at the 
beginning of a ‘golden period’ in physics to which Dirac himself would contribute so much. 
Just eight years later, in 1933, he was a Nobel Prize winner, Fellow of the Royal Society, and 
Lucasian Professor of Mathematics at Cambridge. He lived until 1984 and did outstanding 
work after 1933. But his place in the pantheon of physics rests on the work of those eight 
years. 
  In the following sections I describe and discuss Dirac’s major contributions to the 
development of quantum theory, and thus to modern physics. My primary aim is to make the 
main ideas of Dirac’s principal contributions as accessible as possible, so that, for example, 
the interested physics undergraduate should be able to follow the mathematics very easily, 
and, I hope, learn something of these great years in the history of physics. There is, therefore, 
no attempt whatsoever to give a complete or in-depth survey of Dirac’s work, which would, 
in any case, far outstrip my competence.  
 Section 2 is devoted to the birth of quantum mechanics in 1925. I describe Heisenberg’s 
odd-looking multiplication rule for quantum quantities and Dirac’s discovery that this rule 
had an analogy in the Poisson Brackets of classical mechanics. Dirac’s discovery leads 
directly to one of the defining principles of modern quantum theory.  
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 Section 3 is a brief summary of the remarkable blossoming of quantum theory that took 
place in 1926 and 1927, which sets the scene for sections 4 and 5 that describe what are, by 
common consent, Dirac’s greatest contributions: the relativistic equation for the electron 
 (which everyone, except Dirac, has always referred to as the Dirac Equation), and the 
prediction, from the equation, of anti-matter.  
 Section 6 is a very light-touch discussion of Dirac’s contribution to quantum field theory, 
which underpins so much of the modern theory of particle physics. As is well known, Dirac 
himself was deeply sceptical of the development of quantum field theory in the second half of 
the last century, even though he was the originator of several of the key ideas.  
 I have attempted to give enough mathematical detail to give at least some flavour of Dirac’s 
work and style, but I have cut mathematical corners aplenty in the interests of simplicity and 
accessibility to as wide an audience as possible. 
 
2. 1925: Quantum Mechanics 

The year 1925 saw the climax of several years of struggle to turn the early quantum ideas of 
Planck (1901, black-body radiation), Einstein (1905, photo-electric effect; 1916, emission 
and absorption of radiation), and Bohr (1913, spectrum of hydrogen) into a fully-fledged 
theory.  
 Bohr’s 1913 picture of atomic structure has great heuristic value, even today: the hydrogen 
atom comprises a positively charged proton round which orbits the much lighter negatively 
charged electron. Only certain discrete orbits (and hence energies) are allowed, and radiation 
is emitted or absorbed by transitions between these discrete orbits.  
 By 1925 much effort and ingenuity had been expended in elaborating Bohr’s picture and 
calculations, and it was well established that: 
 

(a) classical physics could not explain atomic structure, for the simple reason that 
classical physics predicted that electrons orbiting a nucleus was not a stable 
configuration: any accelerating (by virtue of the orbital motion) electron would 
rapidly radiate off its energy and collapse into the nucleus; 

(b) there was something ‘discrete’ (or ‘quantized’) about the atomic world: only certain 
values of energy, angular momenta,….. were allowed. In particular there must be 
energy levels which atomic electrons can occupy without radiating, in order to 
explain the stability of atomic structure; 

(c) atomic spectroscopy (the frequencies, intensities and  polarisations of light from 
atoms), which provided much of the information about the atomic world, could not 
be calculated in detail, except in the simplest cases (e.g. the hydrogen atom); 

(d) the frequency, ν21, of a spectral line was assumed to correspond to a transition 
between discrete energy levels E2 and E1, such that :  1221 EEh −=ν , where h is 
Planck’s constant. This formula was found to work very well in those simple cases 
for which the energy levels (E) could be calculated. It also implied that the observed 
frequencies should often be simple combinations of each other. For example, in a 
three-level system with E3 > E2 >E1, and in which transitions took place between all 
three levels, there is the simple prediction that 213231 ννν += . 

 
2.1. Heisenberg’s paper 

By the summer of 1925 Heisenberg, although still only 24 years old, had been fully engaged 
in the battle to tease a proper quantum theory out of spectroscopy for some time. He had 
worked at Göttingen and Copenhagen with some of the other leading young physicists, 



published several papers on quantum theory, and discussed the problems with Bohr and 
Einstein.  
 He was mindful of one of the lessons of Einstein’s relativity theory: pay careful attention to 
what is measurable, and how you measure it. A classical approach to the atom would start, as 
Bohr had done, with the electron’s orbit. But electron orbits are not the directly measured 
quantities. On the other hand spectral lines are observable; wavelengths (and hence 
frequencies) can be measured.     
 It was, and is, a valuable and powerful technique to seek solutions to problems in classical 
physics in terms of a Fourier series. For example, a position X(t) might be expanded as: 

( ) exp( ); 2 ,α
α

αω ω πν
∞

=−∞
= =∑X t x i t  (1) 

where ω is the angular frequency (I consider, for simplicity, a system with just a single 
characteristic frequency). The xα are the coefficients of the expansion, and α takes positive 
and negative integer values so that all integer multiples of ω participate in the series.1  
 Consider now a two-level quantum system, see figure 1. There is only one measurable 
angular frequency: 1221 EE −=ωh , where π2/h≡h . It is convenient to define also 
ω11=ω22=0, and ω12 = −  ω21. If we insist on using measurable quantities only, then the 
Fourier series for X(t) has to be: 

11 12 21 22
11 12 21 22( ) ,ω ω ω ω= + + +i t i t i t i tX t x e x e x e x e (2) 

where the xij are expansion coefficients similar to the xα  in equation (1). 

 
Another quantity Y(t) would be written: 

11 12 21 22
11 12 21 22( ) .ω ω ω ω= + + +i t i t i t i tY t y e y e y e y e    (3) 

And what about X(t)Y(t)? Presumably this is perfectly straight-forward: 
11 12 21 22 11 12 21 22

11 12 21 22 11 12 21 22( ) ( ) [ ] [ ] .i t i t i t i t i t i t i t i tX t Y t x e x e x e x e y e y e y e y eω ω ω ω ω ω ω ω= + + + × + + +   (4) 

 Mathematically this multiplication is of course perfectly natural. However, when multiplied 
out, the expression for X(t)Y(t) contains terms like 21 21 21exp( 2 )x y i tω× × . Such a term is not 

                                                 
1 A position, X, must of course be a real quantity, so there is a convention (e.g. ‘take the real part’) or constraint 

(e.g. αα −= xx ) required when writing a real quantity in terms of complex exponentials )exp( tiαω . However, 

it is algebraically extremely convenient to work with the complex exponential even in classical physics, and 
mandatory to do so in quantum theory.  For a discussion of the significance of ‘i’ in quantum mechanics, see [3].  
 

Figure 1.  Two-level system 
 



allowed if we continue to insist that only observed frequencies appear in the Fourier series, 
since 2ω21 does not correspond to any transition in our simple 2-level system.  
 Taking a cue from his theoretical studies of ‘dispersion’ (scattering of light by atoms) with 
Kramers, Heisenberg suggested in his ground-breaking 1925 paper [4] a new rule for 
multiplication in the quantum world. Instead of (4), Heisenberg’s rule gives: 
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 Stated a little clumsily, the rule is to multiply each ‘ij’ term in the X series by all the ‘jk’ 
terms in the Y series, e.g. the 21x  term gets multiplied by the 11y  and  12y  terms, but not by 

the 21y  or 22y  term.  
 
 At first glance equation (5) may also seem to be littered with frequencies which don’t 
correspond to actual transitions, but, remembering that ω11=ω22=0, and ω21=-ω12, the only 
non-trivial exponential terms are in fact )exp( 21tiω± , i.e. measurable frequencies only. 
 Generalising to a multi-level system, and considering: 
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then Heisenberg’s rule for Z(t) = X(t)Y(t) is that 
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 We note that nmmjjnjmnj EEEE ωωω =−+−=+ h/)(  for all j, and that Heisenberg’s rule 

therefore guarantees that the same frequencies, and only the same frequencies, appear in the 
product as appear in the multiplicands. 
 In his 1925 paper, Heisenberg emphasised this feature of his multiplication rule: ‘..in fact 
this type of combination is an almost necessary consequence of the frequency combination 
rules’ [4]. 
 But there is another striking feature. Heisenberg again [4]: 
‘A significant difficulty arises, however, if we consider two quantities X(t), Y(t), and ask after 
their product X(t)Y(t). …. Whereas in classical theory X(t)Y(t) is always equal to Y(t) X(t), this 
is not necessarily the case in quantum theory’.2 
 And indeed this ‘significant difficulty’ is immediately apparent in our simple two-level 
example. For example, according to the Heisenberg multiplication rule, the product X(t)Y(t) 

contains the term 11 12 11 12exp( ( ) )ω ω+x y i t  (equation (5)), but there is no term in 1211 yx in the 

Heisenberg expression for Y(t)X(t). Modern readers will no doubt recognise that Heisenberg’s 
multiplication rule, equation (6), is exactly that of matrix multiplication, but, at the time of 
writing his 1925 paper, Heisenberg, in common with almost all physicists of the period, had 
never heard of a matrix! 
 Having stated his multiplication rule, and noted the ‘significant difficulty’, Heisenberg 
proceeded in his 1925 paper to apply it to simple cases. Significantly and quite deliberately, 
Heisenberg took pains to consider cases involving products like X2 in which the ‘ XY YX≠ ’ 
difficulty did not appear, or at least was not manifest. The results looked encouraging. 

                                                 
2 As the second sentence is one of the most pregnant in all science, perhaps one should note it in the original 
German: ‘Während klassisch X(t)Y(t) stets gleich Y(t)X(t) wird, brauch dies in der Quantentheorie im 
allgemeinen nicht der Fall zu sein.’ 
 



Crucially, he found that the principle of energy conservation survived his weird 
multiplication rule. He thought he was on to something, and he was right.  
 
2.2. Dirac’s contribution 

In September 1925 Paul Dirac had been a post-graduate research student in Cambridge for 
about two years. Born in Bristol in 1902, he had been a precocious schoolboy, entering 
Bristol University at the age of 16, and gaining first-class honours in electrical engineering in 
1921. Since his mathematical interest and gifts were already clear at school, it is at first sight 
surprising that he did not study mathematics at university. His father, who was by all 
accounts a severe and rather forbidding character from the French-speaking part of 
Switzerland, may have insisted that Paul should study a subject with good employment 
prospects, as he had insisted with Paul’s elder brother. Perhaps Paul himself was attracted by 
the fact that the engineering department was in the same building as his secondary school, so 
the transition from school to university would be in a largely familiar environment; he was, 
after all, only sixteen. Whatever the reason, Paul excelled in the course, particularly its 
theoretical aspects, and he never regretted his engineering studies.       
 He then tried to get a job a job as an engineer: and failed. However disappointing this may 
have been personally, it is one of the best things that could have happened for the 
development of physics.  He won a scholarship (by examination) to continue his studies at 
Cambridge, but the scholarship was not enough to support him there. So he stayed in Bristol 
where the University mathematics department invited him to take the undergraduate 
mathematics course, free of charge. He completed the three-year course in two years, and in 
1923, encouraged and recommended by the Bristol mathematicians, he obtained a grant from 
the Department of Scientific and Industrial Research, which, when combined with his earlier 
scholarship, was enough to study at Cambridge. Cambridge would be his professional home 
for the next forty-six years.   
 Dirac’s supervisor as a research student at Cambridge was Ralph Fowler, who had trained 
as a mathematician, but who had turned to theoretical physics, and developed a strong interest 
in the doings of experimentalists. (Perhaps not coincidentally, he was also Rutherford’s son-
in-law.) He had mastered the quantum theory such as it was, and Dirac attended his lectures 
on quantum physics. Fowler probably had a better understanding of the latest developments 
from the continental physicists than anyone else in Britain. Certainly he had spent the early 
months of 1925 working at the Niels Bohr Institute in Copenhagen; Bohr had visited and 
spoken in Cambridge in May 1925; two months later Heisenberg also lectured in Cambridge; 
certainly Fowler asked Heisenberg for early sight of his latest work, and in August 1925 
Fowler asked his young research student, Paul Dirac, to take a look at the proof-sheets (prior 
to publication) of Heisenberg’s paper.  
 At first reading Dirac was not overly impressed.3  On second reading he focussed on 
precisely the ‘significant difficulty’ that Heisenberg had noted, but not pursued.  If the 
difference between XY and YX is not zero, what is it equal to?    
 Dirac considered typical terms in the Heisenberg expression for XY-YX:  
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3  As already noted, Heisenberg’s paper was written in German, which up to the middle of the last century had at 
least equal status to English in academic physics.  Dirac had already studied with the aid of a dictionary the 
recently published 4th edition of Sommerfeld’s Atombau und Spektrallinien. 



I shall now assume that Ω=−1,nnω  where Ω is the (classical) angular frequency of the 

system,4 so that Ω= 595,100ω . We now add and subtract the term 

])(exp[ 95,9795,9895,9795,98 tiyx ωω + .  Such a term does not conform to the Heisenberg product 

rule since the frequency combination 95,9795,98 ωω +  is not  guaranteed in general to be one of 

the observed transitional frequencies. But in this case Ω=−1,nnω , so Ω=+ 595,9795,98 ωω , and 

we can write equation (7) as: 
5
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(Of course coefficients like x98,95 and y97,95 are simple numbers which obey 

95,9895,9795,9795,98 xyyx =  .) 

Generalising equation (8), we write:  
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We now consider large n and small βα  and , and assume that the x and y coefficients can 

be treated as smoothly varying functions of a continuous variable )( hnJ ≡ , so that: 
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In setting hnJ = we are of course echoing Bohr’s quantization condition for angular 
momentum, as discussed further below.  
 
The two terms of equation (9) can now be written: 
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and equation (9) becomes: 
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The ‘nm’ term of X.Y-Y.X is obtained by summing over α and β with the constraint that 
mn =−− βα , i.e. :mn −=+ βα  
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 Now a term like )exp(, tix nn Ω− αα , summed over α, is redolent of the classical expression 

for X(t) in equation (1). Assuming, with Bohr, that there must be a correspondence, in some 
suitable limit of large quantum numbers, between the quantum and classical descriptions (the 

                                                 
4 This assumption is actually true for the (important) case of the simple harmonic oscillator, and becomes true 
for ‘large quantum numbers (n)’ for a general quantum system by virtue of Bohr’s Correspondence Principle. 
Dirac considered a general system (of several degrees of freedom) and used the Correspondence Principle to 
justify , 1ω − = Ωn n . 



Correspondence Principle), we now identify such sums in equation (10) with the classical 
descriptions, obtaining: 

,
X Y Y X X Y Y X

i i
J J J J

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   − − = −   ∂ ∂θ ∂ ∂θ ∂θ ∂ ∂θ ∂   
h h          (11) 

where X and Y are the classical descriptions like equation (1). 
 And it must have been at about this point that Dirac took his Sunday walk.  
 Where had he seen something like equation (11) before? Years later Dirac recalled: ‘..I 
remembered something which I had read up previously in advanced books of dynamics about 
these strange quantities, Poisson brackets, and from what I could remember, there seemed to 
be a close similarity…..’ [2]. Back at home he searched his notes and books for anything 
about Poisson brackets, but found nothing.  
 It is fanciful but not implausible to imagine that he tried out one or two things on paper: the 
rate of change of any function, ),( Ju θ , which is not an explicit function of time t, is given 
by: 

.
du u d u dJ

dt dt J dt

∂ θ ∂= +
∂θ ∂

  (12) 

That’s just mathematics.  
If the angle, θ, and angular momentum, J, are canonically conjugate variables in the sense of 
classical mechanics, then Hamilton’s equations5 of classical mechanics apply:  

 and ,
d H dJ H

dt J dt

θ ∂ ∂= = −
∂ ∂θ

  (13) 

where the Hamiltonian, H(θ,J),  is the total energy of the system. 
Substituting from equation (13) into equation (12) gives: 

.
du u H H u

dt dJ J

∂ ∂ ∂ ∂= −
∂θ ∂θ ∂

  (14) 

The right-hand side of equation (14) is an example of a Poisson Bracket. For any two 
functions ),( Ju θ and ),( Jv θ  the Poisson Bracket is defined as: 

( , ) ,PB

u v v u
u v

dJ J

∂ ∂ ∂ ∂≡ −
∂θ ∂θ ∂

 (15) 

and so equation (11) is just PBYXi ),(h . 
 To recapitulate: in the Correspondence Principle limit, in which classical and quantum 
descriptions should coincide, the difference between the Heisenberg products of two quantum 
quantities X,Y becomes equal to PBYXi ),(h . 
 I have no idea if Dirac went through the reasoning of equations (12) to (14) that Sunday 
night, but it seems to me he might have done. He was very familiar with the Hamiltonian 
formalism of classical mechanics and had already published a paper that made use of it [5]. 
He had to wait impatiently for the libraries to open next morning, but ‘..I still think that my 
confidence grew during the course of the night’ [2].  Next morning he looked up Poisson 
Brackets in Whittaker’s Analytical Dynamics and ‘…found that they were just what I 
needed’ [2]. 
 This was just the kind of connection that Dirac was looking for: in place of a strange-
looking multiplication rule and the mathematically somewhat fuzzy Correspondence 
Principle, the Hamiltonian formalism was mathematically precise, elegant, and powerful. Of 

                                                 
5 Hamilton’s equations are an elegant and powerful formulation of classical mechanics. Part of their power 
resides in the fact that they apply for any pair (q, p) of canonically conjugate variables: 

qHdtdppHdtdq ∂−∂=∂∂= // and // . For the simple case of a 1-d harmonic oscillator, 
2 2( , ) / 2 / 2,H p q p m kq= +  where p is the usual momentum and q is the usual spatial coordinate. 



course he had only proved the connection in a particular limit, using, ironically, the 
Correspondence Principle. So he made a leap. In his paper ‘The Fundamental Equations of 
Quantum Mechanics’ [6] he wrote: ‘We make the fundamental assumption that the difference 
between the Heisenberg products of two quantum quantities is equal to π2/ih  times their 
Poisson bracket expression.’ (Dirac’s italics) So he assumed the equality not just in some 
limit of large quantum numbers, but always! With this assumption results simply pour out.  
 Since the difference between Heisenberg products turns up so often, it is convenient to 
define for quantum quantities: 

[ ],X Y XY YX≡ −      (16) 

which is referred to as the commutator of X and Y.  Choose X and xP  as the canonically 

conjugate variables, then Dirac’s fundamental assumption for quantum quantities u and v is: 
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We are free to choose  u X= and xv P= , which gives immediately: 
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which is the defining equation of quantum mechanics.  
 
From equations (14) and (15), the Hamiltonian formalism of classical mechanics gives: 

( , ) .PB

du
u H

dt
=    (19) 

We obtain the quantum version from equation (17): 
[ , ]

     or     [ , ],
du u H du

i u H
dt i dt

= =h
h

    (20) 

which is the fundamental equation of motion in quantum mechanics. Setting u=H we obtain: 

0,
dH

i
dt

=h     (21) 

since, by definition, the commutator of anything with itself is zero. So the Hamiltonian 
doesn’t change with time in quantum mechanics: in other words energy is conserved, just as 
in classical mechanics. Hence energy conservation, which Heisenberg obtained only after 
laborious calculation, falls out with complete generality from Dirac’s approach.  
 All this, and much more, Dirac showed to his supervisor Fowler, who realised the 
importance of what his graduate student had done. Dirac’s paper [6] was ‘communicated’ to 
the Royal Society by Fowler (who was an FRS) and published in the 1st December 1925 
issue of the Proceedings of the Royal Society, just ten weeks after Heisenberg’s own paper 
had been published in Z. Phys.6 Dirac sent Heisenberg a manuscript-copy of his paper in 
November, and Heisenberg wrote back almost by return: ‘I have read your extraordinarily 
beautiful paper on quantum mechanics with the greatest interest, and there can be no doubt at 
all that all your results are correct as far as one believes at all in the newly proposed theory.’ 
[8] The unknown Cambridge graduate student, just 23 years old, had announced himself as a 
physicist of the first rank. His paper is a plausible candidate for the greatest theoretical-
physics paper ever written by a graduate student. 
 

                                                 
6 A paper ‘communicated’ to the Royal Society by an FRS could be published at the discretion of the 
appropriate officer of the Royal Society without the need for an external referee’s opinion, provided the paper 
was not more than 24 pages long [7].  Dirac’s paper was only 12 pages. 



3. The blossoming of quantum theory: 1926-1927 

Heisenberg’s 1925 paper opened the floodgates. Dirac was not the only person to see the key 
idea it contained. In Göttingen Max Born saw the multiplication rule, thought ‘matrix’, and, 
with his recent graduate student Pascual Jordan, derived the key equations [ ] hiPX X =,  and 

[ ]Hudtdui ,/. =h . Born and Jordan based their approach explicitly on a matrix 
representation: the equations they obtained were matrix equations [9]. There was 
considerable overlap with the results obtained by Dirac, but Dirac’s approach was, 
characteristically, more general. He was thinking of a general ‘algebra’ which quantum 
quantities, ‘q-numbers’ as he called them, must obey.  
 The new quantum mechanics was developed rapidly in a series of papers by Dirac and by 
Born and co-workers, notably in the ‘Dreimännerarbeit’ paper of Born, Jordan and 
Heisenberg, [10].  Pauli [11] (and, almost simultaneously, Dirac [12]) tackled the hydrogen 
atom using the matrix approach, obtaining full agreement with the results of the ‘old’ 
quantum theory of Bohr and Sommerfeld, a key result in establishing confidence in the new 
methods. Dirac went to Copenhagen to work with Niels Bohr, who presided paternalistically 
over the revolution he had long hoped for. Max Born went on a lecture tour of the USA, and 
spread the new faith to large audiences of American physicists. In early 1926 any self-
respecting theoretical physicist would have been thinking that he or she would just have to 
buckle down and learn about matrices.        
 And then in early 1926 there was a remarkable development: an Austrian physicist, Erwin 
Schrödinger, somewhat older than the youthful trio of Dirac, Heisenberg and Jordan, 
published an alternative theory couched in the familiar terms of a differential equation [13].  
He solved the equation, the Schrödinger equation, for the hydrogen atom obtaining the well-
established result for the energy spectrum. Schrödinger, and probably quite a few other 
theorists, hoped he had killed off matrices and ‘quantum jumps’ and the like, and restored the 
traditional mathematics of differential equations to its rightful pre-eminence in theoretical 
physics.       
 Years later, in a lecture at Edinburgh in 1981 [14], Dirac recalled, ‘When I first heard about 
the Schrödinger theory I did not like it. The reason was that I was perfectly happy with the 
Heisenberg theory’. Heisenberg’s reaction was, not surprisingly, similar. Then Schrödinger 
himself demonstrated that the two approaches were in fact equivalent [15]: it was easy to take 
the solutions of the Schrödinger equation, the ‘wave function’, and construct quantities which 
were precisely the elements which filled the rows and columns of Heisenberg’s matrices. 
Mathematically the issue was settled, but the struggle for the precise meaning of the new 
quantum theory, of the wave function and the quantum jumps, was only just beginning. 
Schrödinger went to Copenhagen in the fall of 1926 to discuss the situation with Niels Bohr; 
the discussions were so intense that Schrödinger retreated to his sick-bed. 
 For many of the protagonists, and above all for Bohr and Einstein, this issue of the 
meaning, or the interpretation, of quantum theory was a major theme for the rest of their 
professional lives. Not for Dirac. He had a very clear and pragmatic, even an ‘engineering’, 
view of how to use the new quantum theory. As far as he was concerned he said all that 
needed to be said about ‘interpretation’ in a paper he published at the end of 1926 entitled 
‘The Physical Interpretation of the Quantum Dynamics’ [16].  He said later that this paper 
was his proudest achievement, which is a remarkable statement given the competition from 
his other achievements! In it Dirac developed, with characteristic generality and elegance, his 
‘transformation theory’ which showed how to transform quantum quantities from one 
‘representation’, for example based on the position, to another, for example based on energy. 
 Almost as a by-product he showed that the Schrödinger equation was just one particular 
representation of quantum theory, albeit a particularly useful one, and that the wave function 



was nothing but the transformation function needed to transform the Hamiltonian into its 
‘energy’ representation. He also showed that the square (strictly the modulus squared) of the 
transformation functions gave the physically meaningful probabilities, as Born had postulated 
in mid-1926 for Schrödinger’s wave function. He showed further that the basic equation of 
quantum theory should be ‘first-order’ in the energy. Dirac’s faith in his transformation 
theory would lead to a huge advance a year later, as will be discussed in the next section. It 
was also in this paper that Dirac introduced his famous ‘delta function’. 7 

 In October 1927 Dirac was the youngest delegate to the 5th Solvay conference. Figure 2 is 
the famous photograph of that meeting, in which Dirac stands right in the centre of the 
middle row8. The conference was dominated by quantum theory and is noteworthy for the 
first serious discussions on interpretation between Bohr and Einstein. Bohr asked Dirac what 
he was working on currently, and Dirac said that he was thinking about how to bring 
Einstein’s special relativity into quantum theory. Bohr replied that that was all sorted out 
already by Klein. Dirac tried to explain to Bohr why that was not the case, but the start of a 
lecture interrupted them [17]. Three months later Dirac had solved the problem to his own 
satisfaction, making one of the landmark discoveries in 20th century physics.        
 

                                                 
7 With a typographical error in the last equation on p. 625 of [16]! 
8 Actually there are two photographs extant.  The most obvious difference is that in figure 2 Pauli (back row, 
fourth from right) is looking to his right, and in the other photograph he is looking much more to the front. 

Figure 2.  The 5th Solvay Conference, October 1927.  Dirac is in the middle of the second row, with Einstein 
and Lorentz seated in front of him.  To Dirac’s left are Compton, de Broglie, Born, and Bohr. Schrödinger 
(with spectacles and bow tie) is standing in the back row behind Dirac’s left shoulder.  To Schrödinger’s left 
are Verschaffelt, Pauli, Heisenberg, Fowler, and Brillouin.  Of the twenty-nine participants, seventeen were 
past or future Nobel Prize winners.  Acknowledgement: The Living Archive, Manchester University.  
 



4. The Dirac Equation: 1928 

Schrödinger’s approach to quantum theory started from the expression for the total non-
relativistic energy of a particle of mass m in a potential V: 
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Replacing px  (we consider just one dimension) by the differential operator xi ∂∂− /h , and 
introducing a function (the ‘wave function’ ) for the operator to operate on gives: 
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which is the (time-independent) Schrödinger equation in one dimension. Generalising in an 
obvious way to three dimensions and setting V to the electrostatic Coulomb potential, 
Schrödinger then solved for the hydrogen atom, and obtained the same energy levels as the 
old Bohr theory, which agreed, roughly, with experiment.9  
 In developing his theory in the winter of 1925/26 Schrödinger had been more ambitious. He 
had started from the relativistic expression: 

.24222 Ecmcp o =+    (24) 

He then introduced the electromagnetic potential (in a relativistically covariant way, the 
details of which are not important here), replaced p by the appropriate differential operator, 
and solved the resultant differential equation. He abandoned this approach only because it 
gave an energy spectrum that disagreed with the experimental results: of course since he was 
using a relativistic approach he was seeking closer agreement with experiment than the 
simple non-relativistic Bohr theory.  
 Dirac considered that any attempt to develop relativistic quantum theory directly from 
equation (24) was doomed from the outset: not because it is an incorrect relativistic equation 
(it isn’t!), but because it transgressed his transformation theory of which he was so proud. 
That theory required that one must use an equation that is first order in E. Very well: 

.4222 Ecmcp o =+     

But this is unsatisfactory from the perspective of ‘relativity mathematics’ which requires that 
E and p should appear in an equation in the ‘same way’, reflecting the way in which relativity 
treats time and space on an equal footing mathematically. What Dirac really wanted was an 
equation like: 

,2 Ecmpc o =+   (25) 

which satisfies all Dirac’s mathematical requirements, but is, unfortunately, wrong! 
 
The essence of Dirac’s problem was simply that: 

24222 cmpccmcp oo +≠+ , 

and, in general: baba +≠+ 22  (for non-zero a and b), as everyone learns (or should learn) 
at school. 
 At which point mere mortals give up. Geniuses try harder.  

                                                 
9 The essence of the equivalence between the Schrödinger and Heisenberg theories lies in the fact that, for any 
f(x), ( )( / ) ( ) ( / ) . ( ) ( )x i x f x i x x f x i f x− ∂ ∂ − − ∂ ∂ =h h h , which is obviously analogous to x xxp p x i− = h . 

 
 



Let us introduce ‘numbers’ 2 1  and dd  (‘d’ for Dirac, say) and consider: 
2 2 2 2 2
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Now let us suppose that these d  ‘numbers’ obey: 
"1"2

1 =d , "0" and "1" 1221
2
2 =+= ddddd , then indeed: 

bdadbababdad 21
22222

21 "1""1" i.e.   "1""1")( +=++=+ . 
 Thus, similarly to Heisenberg in his breakthrough paper [4], Dirac needed a funny 
‘multiplication rule’ so that 1 2 2 1 1 2 2 1 , but rather "0"d d d d d d d d≠ + = .  And, just as in 

Heisenberg’s case, matrices will do the job. For example, we can choose: 
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So, in summary: 
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has the mathematical structure Dirac wanted (equation (25)), and satisfies: 
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as required by relativity, equation (24). 
 In fact that isn’t quite general enough because the momentum p is a vector quantity with 
three components 2222 that so ,, zyxzyx ppppppp ++= . Hence Dirac’s problem was actually 

to find four matrices, 1 2 3 4, , ,α α α α  such that: 
2 2 2 2 2 2 2 2 2 4 2

1 2 3 4 0 0( ) ("1" "1" "1" "1" ) "1"x y z x y zp c p c p c m c p c p c p c m c Eα + α + α + α = + + + = . 

So the matrices must satisfy 2 "1"iα =  and "0"i j j iα α + α α =  for ji ≠ .  

 It turns out that this can’t be done using ‘2x2’ (2 rows, 2 columns) matrices. In later years 
Dirac always said that he was slightly embarrassed that it took him some time to find the 
answer: you have to use ‘4x4’ matrices, for example:   

1 2 3 4

0 0 0 1 0 0 0 0 0 1 0 1 0 0 0

0 0 1 0 0 0 0 0 0 0 1 0 1 0 0
; ; ;
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which satisfy the conditions on the α ’s, as can be checked by straightforward matrix 
multiplication. Hence we can indeed write: 

2
1 2 3 4 0 "1"x y zp c p c p c m c Eα + α + α + α = ,  (28) 

where ‘1’ is the 4x4 unit matrix. 



To obtain the quantum mechanical equation, we replace xp  by xi ∂∂− /h , and similarly for 

yp and zp , and give the differential operators a wave function to operate on: 

2
1 2 3 4 0( ) "1"i c m c E

x y z

∂ψ ∂ψ ∂ψ− α + α + α + α ψ = ψ
∂ ∂ ∂

h   (29) 

which is the (time-independent) Dirac equation. 
 But what sort of equation is this? To be meaningful the wave function, ψ, must be not only 
a function of x, y, and z but must also cater somehow for the matrices, α . If we take: 
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then the α  matrices multiply the column vector (a) to give another column vector, and the 
Dirac equation is finally revealed as a set of four (coupled) partial differential equations. 
 So the mathematics is now meaningful; but what is the physics of these matrices and 
column vectors? To answer this we recall yet another development of that remarkable period 
in physics. In order to understand atomic spectra in ever greater detail, two Dutch  physicists, 
Goudsmit and Uhlenbeck, had proposed in 1925 that the electron had an ‘intrinsic’ two-
valued quantum number, which could be thought of as a kind of intrinsic ‘spin’ in that it 
combined with the orbital angular momentum quantum number in a way which was similar to 
the combination of classical angular momenta.  
 Pauli had shown that the mathematics of this ‘spin’ was conveniently handled using ‘2x2’ 
matrices. Dirac knew this, indeed had probably discovered these spin matrices for himself  
[18], and he showed that the solutions of his equation described this ‘spin’ in a completely 
natural way. Before the discovery of the Dirac equation the spin had to be grafted on to 
theory in a rather ad hoc fashion. It is important to emphasise, however, that Dirac did not set 
out to describe spin. As described above, he was driven by the requirements of his 
transformation theory and relativity. In his 1981 Edinburgh lecture Dirac recalled: ‘It was a 

Figure 3.  The plaque commemorating Dirac in Westminster Abbey.  The Dirac equation 
is written in a very compact notation, and in units in which 1.c= =h  



great surprise to me when the spin turned up in that way. I was just trying to get a satisfactory 
relativistic theory for a particle’[14].  Indeed; but as soon as he found himself playing around 
with matrices he must surely have started thinking that this would have something to do with 
spin in the end.   
 Dirac’s paper ‘The Quantum Theory of the Electron’ was completed just before Christmas 
1927, and published in January 1928 [19]. The paper contained the derivation of the equation 
itself, along the lines described above (although much more succinct!), proof of the Lorentz 
covariance of the equation, and the demonstration that the equation implies directly and 
naturally all the previously obtained relativistic and spin-dependent corrections to the 
hydrogen energy spectrum. This paper is rightly considered one of the very greatest in all 
physics. The Dirac equation (in compact notation) is inscribed on the plaque commemorating 
Dirac in Westminster Abbey, see figure 3. It is the only equation in the abbey. 
 Electron ‘spin’ has several intriguing properties. As already mentioned, it can take on only 
two values, which is what is meant by saying it has spin ‘½’, the two possible values being 
+1/2 h  and –1/2 h . Mathematically the spin has another surprising property: you have to 
rotate by two complete revolutions (4π) in order to get back where you started. This is in 
contrast to normal experience of everyday objects that only have to be rotated by one 
complete revolution (2π) to return to the original state.  In fact it is possible to construct 
macroscopic examples that have this 4π property: what is required is that an object is 
connected in a certain way to its surroundings. A demonstration can be seen at 
http://heplocal.rl.ac.uk/McCubbin/public/Rotate.mpg. 
 A good way to think about this is that each 2π revolution multiplies the electron 
mathematics by –1. This factor of  –1 has utterly profound significance: if one considers the 
mathematics of two electrons, the operation of interchanging them is the same as the 
operation of a 2π revolution on one of them.  A macroscopic example can be viewed at 
http://heplocal.rl.ac.uk/McCubbin/public/Interchange.mpg. So the two-electron mathematics 
is multiplied by –1 if you interchange the two electrons. This has the direct consequence that 
two electrons cannot occupy the same (quantum) state, which is the Pauli Exclusion 
Principle10.  So an energy level in an atom (strictly an energy level with orbital quantum 
number 0) can be occupied by at most two electrons: one with spin +1/2h  and one with 

1/ 2− h . If a state could hold an arbitrary number of electrons the lowest-energy state of any 
atom would consist of all the electrons in the lowest energy state, and there would be no 
chemistry, no elements, and no life, which is what I mean by ‘utterly profound significance’. 
This property of electrons (and of all spin −½ particles) was used by Dirac in his next great 
advance.       
 

                                                 
10 Let (1)αψ  denote the wave function for the first electron, (1), having quantum numbers denoted by ‘α’. We 

require that the total wave function for two electrons, (1,2)Ψ , is multiplied by –1 when the two electrons are 

interchanged, i.e. (2,1) (1,2).Ψ = −Ψ  This requirement is satisfied by (1,2) (1) (2) (1) (2).Ψ = −α β β αψ ψ ψ ψ  But if 

the two electrons have the same quantum numbers (i.e. α=β ), (1,2)Ψ  is identically zero. Thus two electrons 

cannot have the same quantum numbers, which is the Pauli Exclusion Principle. This is the argument, based on 
the ‘anti-symmetry’ of the wave function, as given by Dirac [20]. The energy distribution for a gas of particles 
requiring this anti-symmetry was obtained a little earlier by Fermi [21]. Such particles are said to obey Fermi-
Dirac statistics. In fact Jordan had developed the relevant theory before either Fermi or Dirac, and had sent a 
paper to Born, as editor of Zeitschrift für Physik, at the end of 1925. Born was about to leave for his lecture tour 
in the USA and packed Jordan’s paper in his suitcase…… where, to his great embarrassment, he found it several 
months later, by which time Fermi and Dirac had done their work [22]. 

http://heplocal.rl.ac.uk/McCubbin/public/Rotate.mpg
http://heplocal.rl.ac.uk/McCubbin/public/Interchange.mpg


5. Anti-matter: 1931 

In the introductory remarks of the paper on the Dirac equation [19], the author noted that 
previous work to incorporate relativity into quantum theory (the work which Bohr felt had 
sorted it out) had two problems: the equation used wasn’t first-order in the energy, and the 
solutions allowed both positive and negative energies. As Dirac emphasised, negative 
energies could not be ignored in quantum theory as they could be in classical physics, 
because transitions between energy levels were the very essence of quantum theory, and so 
one had to face up to transitions to a bottomless pit of negative-energy levels.  
 As discussed above, the Dirac equation is, triumphantly, first-order in the energy. But the 
problem of negative energies remains. The origin of the problem is simple. In taking the 
square root of the relativistic equation: 

2 2 2 4 2
0p c m c E+ =  

both positive and negative energies are allowed, just as the number 25 has two square roots: 
+5 and –5.  
 Despite his brilliant manipulations to obtain a first-order equation for E, Dirac did not avoid 
this second problem. His (matrix) equation relating E, p and m was indeed constructed to 
ensure that it was consistent with 2 2 2 4 2

0p c m c E+ = , and so it is not too surprising that the 

Dirac equation yields solutions with both positive and negative energies. In 1930 Dirac 
proposed a solution [23]: if each negative-energy state were filled by two electrons then the 
Pauli exclusion principle would forbid any transition to negative energy, since each negative-
energy state would already hold its maximum number of electrons. 
 This solves the problem, but at a price. Nature’s ground state, the vacuum, now becomes a 
‘sea’ of filled negative-energy states, with infinite (negative) electric charge. Dirac argued 
this would not pose a problem for the equations of electromagnetism provided charge in those 
equations was interpreted as change of charge with respect to this infinite sea.        
 But this picture of the vacuum raises another question: what was there to stop a deposit of 
energy raising one of the electrons in a negative-energy state into a positive-energy state? 
Certainly there’s an energy gap to be overcome: the positive-energy states start at 2

0cm+  and 

the negative states at 2
0cm− , but a photon of energy 2

02 cm  (or greater) has enough energy 

to overcome this gap. The answer is that, given enough energy, nothing can stop such a 
process, and an electron can be ‘lifted’ out of the negative-energy sea into a positive-energy 
state. What then are we to make of the negative-energy sea when it isn’t quite filled, but 
when there is an unfilled ‘hole’ in the negative-energy states? The negative-energy states 
have now one more unit of positive charge (since the electron charge is negative) than when 
completely filled. Dirac showed that such an unfilled sea did indeed behave like a positively 
charged particle in his equation, see figure 4.     
 But what positively charged particle? 
 In 1930 there was only one known fundamental particle with the opposite charge to the 
electron: the proton. Dirac therefore suggested that a ‘hole’ in the negative-energy sea was in 
fact a proton. The proton mass is, however, some 2000 times larger than the electron mass, 
and Dirac had no explanation for such a gross asymmetry. However, there was a certain 
appealing economy in this interpretation: the two known (at the time) elementary particles, 
the electron and the proton, were both described by the Dirac equation.   
 In the first edition (1930) of his classic textbook ‘The Principles of Quantum Mechanics’, 
Dirac wrote, ‘We assume that these unoccupied negative-energy states are the protons.’ In the 
second (and subsequent) editions he changed exactly one word.  
 For all its economy, nobody liked very much the proton interpretation. A clinching 
argument was provided by Oppenheimer [24] and Tamm [25], independently, who showed 



that the hydrogen atom, consisting of an electron and negative-energy ‘hole’ (the proton), 
would annihilate essentially immediately into photons, in striking contradiction to 
experimental observation! 

 In 1931 Dirac followed the inexorable logic of his mathematics: the natural prediction of 
his equation was that the positively charged particle arising from a ‘hole’ in the negative-
energy states should have the same mass as the electron. In a paper entitled ‘Quantized 
Singularities in the Electromagnetic Field’ [26], he proposed ‘a new kind of particle, 
unknown to experimental physics, having the same mass and opposite charge to an electron’.  
This particle, the anti-electron or positron, did not remain unknown to experimental physics 
for long: it was discovered by the American physicist Anderson in 1932.  In making his 
proposal Dirac was of course doubling the number of particles in nature, since this idea of 
anti-particle partner should presumably apply to protons, as Dirac stated explicitly, and as has 
subsequently been abundantly confirmed by experiment for all particles.   
 In 1933 Dirac was awarded, jointly with Schrödinger, the Nobel Prize in physics for ‘..the 
discovery of new and fruitful forms of atomic theory’. The Nobel committee had made no 
award in physics for 1932, delaying until 1933 when they awarded the 1932 prize to 
Heisenberg. Thus the three pioneers of the revolution in quantum theory were all in 
Stockholm together to receive their prizes. It was the first time the Nobel committee made 
awards for work that was fundamentally theoretical in nature, rather than for work in 
experimental physics or for theoretical work which bore very directly on experiment. 
Famously, Einstein won the prize in 1921 for ‘..services to Theoretical Physics, and 
especially the discovery of the law of the photo-electric effect’. Not for relativity!11 
 Whilst no one questioned that the winners deserved their prizes, there was some discontent 
that certain others, principally Born and Pauli, had not also been recognised. Heisenberg in 
particular was very unhappy that Born had been overlooked. Amends were made when Pauli 
won in 1945, for the Exclusion Principle, and Born in 1954, for his contributions to quantum 
mechanics [28].    
 The Nobel Prize was the most important, but not the first, official recognition Dirac 
received: he was elected to the Royal Society in 1930 (on the first occasion he was a 
candidate for election, which is extremely rare), and he had been appointed to the Lucasian 
                                                 
11 Indeed, the secretary of the Swedish Academy of Sciences wrote to Einstein to emphasise that the Nobel 
committee had awarded him the prize ‘..without taking into account the value which will be accorded your 
relativity and gravitation theories after these are confirmed in the future’ [27]. 

Figure 4.  Sea of filled negative-energy levels with one ‘hole’, which behaves like a 
positively-charged particle. 
 



Professorship in mathematics at Cambridge in 1932, in succession to Sir William Larmor. 
(The Lucasian Professorship was established in 1664. The second holder was Sir Isaac 
Newton. The current, seventeenth, professor is Stephen Hawking.)  
 
6. Dirac and the birth of Quantum Field Theory: 1927 

By 1925 it was clear that there was something particle-like about light, i.e. about the 
electromagnetic field. That the energy of light had a discrete aspect, ,ωh=E  had been the 
starting-point for quantum theory at the turn of the century in the work of Planck on black-
body radiation (1901) and of Einstein on the photo-electric effect (1905). However, the idea 
of a ‘particle of light’, with both energy and momentum, took some time to emerge. Einstein 
was fully convinced only in 1917 when he showed, from an analysis of the fluctuations of gas 
molecules emitting and absorbing radiation, that the light quanta must also be fully 
directional, i.e. carry momentum as well as energy. (As Pais has noted, it is striking that the 
father of relativity took twelve years before he was prepared to publish 

/  alongside p c Eω ω= =h h  [29]). Not everyone was as convinced as Einstein, but in 1923 
the American physicist Arthur Compton obtained conclusive experimental verification of the 
light quantum, or photon, as a carrier of both energy and momentum from a study of the 
scattering of light by electrons (the Compton effect). So it was of course hoped that the new 
quantum ideas of Heisenberg et al. would have something to say about light and the photon.   
 As a first step, Born and Jordan showed, at the end of their first paper [9], that Maxwell’s 
equations of electrodynamics could be written and manipulated in matrix form.  In the Born, 
Heisenberg, Jordan ‘Dreimännerarbeit’ [10], the last section, written by Jordan, was devoted 
to an application of the new quantum mechanics to a vibrating string. The authors considered 
it ‘particularly encouraging’ that the result obtained for the mean-square fluctuation in the 
energy contained both ‘wave’ and ‘particle’ terms, exactly as Einstein had obtained for 
radiation using an argument based on thermodynamic equilibrium and Planck’s formula for 
black-body radiation. The authors may have found this ‘particularly encouraging’, but in later 
years Jordan commented ruefully that he felt that nobody had read this section of the 
‘Dreimännerarbeit’, and those who did didn’t want to believe it [30].     
 Dirac turned his attention to radiation and the new quantum mechanics during his stay at 
the Niels Bohr Institute in Copenhagen in 1926. He had just worked out his ‘transformation 
theory’ [16], which, as noted above, he viewed as a general and powerful formulation of 
quantum theory, including how to extract physically meaningful probabilities from the 
theory. It was of course axiomatic that the sum of all those probabilities for the system under 
consideration should be one. But suppose one considered, instead of a single system, an 
ensemble of N particles. Any observation of the ensemble would find 1n  particles in state 1, 

2n  in state 2, etc., such that Nnn =++ .....21 . Of course ,..., 21 nn  must be integers. Could 
this be guaranteed in the new quantum mechanics formalism? Dirac showed how this 
question could indeed be answered in the affirmative, using an almost magical inter-weaving 
of all his quantum ideas: the analogy with the Hamiltonian formalism of classical mechanics, 
commutation relations, and his transformation theory. It is of course clear that, in order to 
guarantee that ,..., 21 nn  are always integers, one must ensure that any changes in these 
occupation numbers take place in units of 1. So Dirac introduced creation and annihilation 
operators, which increase or decrease an occupation number by 1.  
 Dirac then applied this formalism to an ensemble of photons (i.e light) perturbed by an 
atom that emits or absorbs photons. In order to treat this problem he introduced the idea of a 
‘ground state’ containing an infinite number of non-observable photons and which acts as a 
‘source’ of emitted photons or as a ‘sink’ for absorbed ones. (This idea clearly anticipates the 
‘sea’ of electrons filling the negative-energy states that he used a few years later in 



interpreting the Dirac equation.) He then obtained expressions for the probability that the 
atom would absorb or emit a photon. Dirac’s formalism showed that photon emission could 
either be induced by an electromagnetic field (‘stimulated emission’), or could take place 
when no field was initially present (‘spontaneous emission’). Ten years earlier Einstein had 
shown that both emission processes must indeed be present in order to maintain thermal 
equilibrium between the atoms and radiation. Dirac’s work showed how quantum theory 
explained Einstein’s results, and further how the intrinsic atomic transition probabilities could 
actually be calculated. (Einstein’s theory left these transition probabilities undetermined.) 
From the perspective of quantum theory, the existence of spontaneous emission can be traced 
directly to the commutation relation between the creation and annihilation operators, which is 
in turn a direct consequence of the fundamental relation [ ] hiPX X =, . Working through this 
provides a moment when even the ordinary practitioner can know some of the thrill which 
creators like Dirac must have experienced. (See, for example, [31].) 
 Dirac’s paper entitled ‘The quantum theory of the emission and absorption of radiation’ 
was ‘communicated’ to the Royal Society (by Bohr, a foreign member) at the end of 1926, 
and published in 1927 [32]. In effect, he had ‘quantised’ the electromagnetic field, and his 
paper marks the start of quantum field theory and, in particular, of quantum electrodynamics.  
 Quantum field theory was developed rapidly through the 1930’s with contributions  from a 
galaxy of theorists: Jordan, Pauli, Heisenberg, Fermi, Wigner, Klein, Weisskopf, and Dirac 
himself. However, serious and profound difficulties were encountered in the form of infinite 
results from the perturbative calculations. As is well known, the resolution of these infinities 
had to wait until after the second World War, and the pioneering work of Feynman, 
Schwinger, and Tomanaga, all of whom were inspired directly by some of the earlier work of 
Dirac. The whole story is told wonderfully by Schweber [33].  That resolution requires the 
procedure of ‘renormalisation’ in which, in effect, the infinities are absorbed into the physical 
values of mass and electric charge. Renormalisable quantum field theories now provide the 
theoretical framework for all of particle physics. 
 As is also well known, Dirac was profoundly unsympathetic to the whole renormalisation 
programme, viewing it as mathematical chicanery. Infinite results should be faced directly, 
and not removed by convenient definition. In his last published remarks in 1983 [34] he 
returned to this theme in a lecture entitled ‘The inadequacies of quantum field theory’. 
Written in Dirac’s precise and unemotional prose, it is, nevertheless, an impassioned and 
poignant lament about the way quantum field theory had evolved. He urged that the correct 
approach must be to find an appropriate Hamiltonian; that the remarkable agreement with 
experiment achieved by the renormalisation approach in quantum electrodynamics may, 
nevertheless, be illusory, just as Bohr’s original quantum theory of the hydrogen atom was 
fundamentally flawed despite its impressive agreement with experiment; that the discovery of 
the Dirac equation showed the benefits of adherence to sound mathematical principles; and 
that he planned to continue his programme as long as he could. His audience listened, no 
doubt respectfully, but almost certainly disagreed. In the twenty years since that lecture the 
triumphant march of renormalisable quantum field theory has continued.  But a quantum 
theory of gravity has resisted the renormalisable approach, and may well require something 
fundamentally different, like ‘string theory’.  So Dirac’s intuition may yet prove to be correct.       
 
7. Vignette 

When asked, in 1955, to state his philosophy of physics, Dirac wrote on the blackboard, 
‘Physical Laws should have mathematical beauty’. The precision and conciseness of the 
statement are typical of him. He took great pains in what he wrote and how he wrote it. 
Notation matters: Dirac introduced the symbol h  to save writing myriad factors of π2 , and, 
more importantly, his ‘bra’ and ‘ket’ notation for quantum states is now standard. His classic 



textbook, ‘The Principles of Quantum Mechanics’, is now in its 4th edition (1958), and has 
not been out of print since it was first published in 1930. Nor has the book been re-set, so the 
4th edition looks very much like the first, and indeed significant passages are word-for-word 
identical. For example, the discussion of photons and interference in a set-up like Young’s 
double-slit is almost unchanged between the first and fourth editions.  The first edition 
already contains the famous sentences: ‘Each photon then interferes only with itself.  
Interference between two different photons can never occur’.12 
 Of course Dirac did make certain changes. For the second edition in 1935 he changed the 
sentence ‘We assume that these unoccupied negative-energy states are the protons’ to ‘We 
assume that these unoccupied negative-energy states are the positrons’, and he added a 
chapter on quantum electrodynamics. In the third edition (1947) he introduced the ‘bra’ and 
‘ket’ notation. For the fourth (1958) he re-wrote the chapter on quantum electrodynamics.  
 It is indeed the case that his Cambridge lecture course on Quantum Mechanics consisted in 
part of Dirac reading out sections of his book. Dirac’s logic was no doubt that he had taken 
great pains to explain quantum mechanics as clearly as he could in his book, so why should 
he use a less good explanation? This logical approach certainly carried over into aspects of 
his social interactions and has been the source of many ‘Dirac stories’ of which a reasonable 
selection can be found in [36].  As part of the celebrations of the centenary of his birth the 
IoP prepared a set of six posters about Dirac’s work in the style of Manga comics 
[http://education.iop.org/Schools/supteach/dirac.html]. At the Bristol celebration in August 
2002 his daughter Margit was interviewed by the BBC and asked what her father would have 
thought of such a depiction of his work. She replied that he would have loved it, and added 
that when the weekly comic section of the newspaper was delivered to the Dirac household 
one was ill-advised to get in her father’s way in his dash to get it! It makes a charming 
counter-point to the usual picture of the rather taciturn theorist.   
 Dirac retired from the Lucasian chair at Cambridge in 1969, at the statutory age of 67. He 
held an emeritus professorship in Florida from 1972, and died there in 1984. A plaque was 
placed in Westminster Abbey in 1995, see figure 3.  It has the simplicity, elegance and 
conciseness that he always sought. 
 In the first Dirac Memorial Lectures in 1986, Steven Weinberg, Nobel Prize winner for his 
work on the quantum field theory of weak and electromagnetic interactions, gave a lecture 
entitled ‘Towards the Final Laws of Physics’ in which he described some of the latest ideas 
on ‘string theory’. He closed by saying, ‘I don’t know, of course, whether Dirac would think 
that the mathematics of string theory is sufficiently beautiful to make it likely that it will 
survive as part of the final laws of physics. He might agree with that, and he might not agree 
with that, but I don’t think he would disapprove of what we are trying to do’ [37]. 
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