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Abstract 

Neutron powder diffraction has, over the past two decades, developed into a 
powerful technique for the refinement of moderately complex crystal 
structures. The advent of a new generation of ultra-high resolution X-ray and 
neutron powder diffractometers, however, not only permits the refinement of 
more complex materials but also opens up new areas of research. Perhaps the 
most exciting development in powder diffraction techniques associated with 
high resolution is the ab initio determination of crystal structures. This has 
until recently been possible, in a routine way, only by single crystal 
studies. The compression of three dimensions of diffraction data to the one 
dimension of a powder diffraction pattern leads to an unavoidable loss of 
information. For many, but not all, crystal symmetries high resolution 
minimises this loss thus allowing the intensities of a sufficient number of 
resolved Bragg reflections from moderately complex materials to be extracted 
for use in structure solution by direct methods of phase determination and by 
Patterson methods. Recent structure determination using the high resolution 
powder diffractometer, HRPD, at ISIS will be presented. The inherent 
limitations resulting from crystal and instrumental resolution are discussed 
along with maximum entropy techniques that seek to optimise the information 
content of a powder diffraction pattern. 

Introduction 

Powder diffraction has developed into an important crystallographic tool over 
the past thirty years largely because of the success of the Rietveld profile 
method in structure refinement. The improvements in instrumentation in this 
period have led to the successful refinement of increasingly complex materials 
and, more recently, have opened up new areas of research, in particular ab 
initio structure determination, that have previously been the domain of single 
crystal studies. In this paper, both the potential and limitations of 
structure determination by high resolution powder diffraction are discussed. 

The principal limitation of the powder diffraction method arises from the 
reduction of three dimensions of crystallographic information to the one 
dimension of a powder diffraction pattern. Bragg reflections with 
crystallographically distinct Miller indices overlap and lead to an 
irretrievable loss of information. Although very high instrumental resolution 
may separate closely spaced peaks, for a large number of crystal symmetries 
there is complete overlap of such a large fraction of reflections that truly 
ab initio structure determination is essentially untenable. These may be 
summarised in the following three categories: 



(1) Polar groups (applies to all symmetries except cubic). 
(e.g. With C axis unique, d(hkl) = d(hkI) : F(hkl) t F(hkI) ) 

(2) Structures with Laue classes that are not lattice point 
(holohedries). 

(e.g. Pm3 d(hkl) d(khl) F(hkl) t F(khl) 
P3ml d(hkl) d(hkI) F(hkl) t F(hkI) 
P4/m d(hkl) d(khl) F(hkl) t F(khl) ) 

(3) Higher symmetry systems (above orthorhombic and particularly 
symmetry). 

(e.g. Pm3m 
P4/m 
P6/mmm 

d(Sll) 
d(714) 
d(700) 

d(333) 
d(554) 
d(530) 

F(Sll) t F(333) 
F(714) t F(554) 
F(700) t F(530) ) 

groups 

cubic 

Such completely overlapped reflections cannot be separated by any amount of 
improved resolution, and to date equal intensities have been assigned to the 
components of such a degenerate set. As is discussed below this may lead to 
problems (in direct methods for example) if a very weak reflection is given a 
high intensity and hence a large structure factor due to being degenerate with 
a strong reflection. Techniques for improving the separation of such 
overlapped reflections are discussed later. 

Partial Structure Determination 

In many crystallographic problems, although a substantial fraction of the 
structu.re is known, the position of a crucial fragment may be undetermined. A 
good example of this, that is particularly applicable to neutron powder 
diffraction, is the location of hydrogens in organic materials where only the 
non-hydrogen atoms (e.g. carbon, nitrogen and oxygen) have been accurately 
determined from X-ray structural studies. In the following sections, two 
techniques are discussed: 
(i) difference Fouriers 
(ii) bond length & bond angle slack constraints in conjunction 

with profile refinement. 

Location of Hydrogen by Difference Fourier Techniques 

The procedure for obtaining unknown hydrogen positions using difference 
Fourier techniques may be summarised in the flow diagram below (Figure 1). 

Squaric Acid (3,4-dihydroxy-butene-1,2-dione) 
A difference Fourier map was calculated using the refined cuo4 fragment as 
input model and the result is shown in Figure. As can be seen the positions of 
the hydrogen atoms are indicated clearly as troughs in the map. The positions 
of the hydrogens as determined by this neutron study differ substantially from 
those indicated in an earlier X-ray experiment and are considerably 
better-determined. The refinement including the hydrogen atoms was very 
satisfactory. 
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OBTAIN NON-HYDROGEN POSITIONS 

.------>----i Flt PROFILE USING MODEL STRUCTUkE 

OBTAIN F(calc) & EXTRACT ESTIMATED VALUES OF ·IF(obs) I 
BY COMPARING OBSERVED AND CALCULATED PATTERNS 

CONSTRUCT DIFFERENCE FOURIER ( IF(obs) 1-IF(calc) I> x ~(calc) 

SEARCH FOR -VE DENSITY FEATURES (IN CHEMICALLY SENSIBLE POSITIONS) 

REFINE INCLUDING HYDROGENS 

ALL HYDROGENS FOUND? YES ----i SOLUTION 

Figure 1. Flow diagram indicating the procedure for determining H positions in 
a crystal structure. 

Location of Hydrogen by Restrained Profile Refinement Techniques 

Dimethyl-ammonium tin chloride 
In this example all non-hydrogen positions were again refined satisfactorily 
but there are potential problems with the stability of the refinements when 
the hydrogen atoms are included due to possible rotational disorder of the 
methyl group about the N-C bond. To counter some of these problems the 
hydrogen atoms are constrained to have sensible bond lengths and to lie on a 
circle at a sensible angle from the N-C bond. The H positions, site 
occupancies and temperature factors can then be refined subject to these 
constraints and the shape of the potential in which the methyl hydrogen atoms 
sit can be inferred. As can be seen in Figure the result of this constrained 
least-squares refinement of the hydrogen atoms indicates a twofold rotational 
degeneracy of each methyl hydrogen atom, thus defining the disposition of 
these atoms with far more reliability than could an X-ray experiment. 

Completely Unknown Structures 

The determination of completely unknown crystal structures from powder 
diffraction data has now been established as a reasonable technique performed 
on several materials in both true ab initio and "as ab initio" cases (Rudolf 
and Clearfield, 1985; Christensen, Lehmann and Nielsen, 1985; Cheetham et al, 
1986; Attfield, Sleight and Cheetham, 1986; Lehmann et al, 1987; Lightfoot, 
Cheetham and Sleight, 1987) 

The experimental requirements for producing a set of IFhkll values that are of 
sufficient quality to lead to a structural solution are straightforward though 
relatively demanding. First and foremost, an accurate unit cell must be 
determined before Miller indices can be assigned to the reflections. Most 
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auto-indexing programs require the accurate location of around 20 of the 
highest d-spacing reflections to produce a reliable solution. Having obtained 
a lattice, the pattern is then checked for systematic absences that enable the 
number of possible space groups to be reduced substantially. This requires 
good peak/background statistics. In order to obtain the most extensive set of 
Bragg intensities the pattern should be profile-fitted using the method 
developed by Pawley (1981), in which the peak intensities are refined as 
variables along with cell constants and peak-shape parameters. As a general 
rule of thumb, experience shows that for a structural determination to 
succeed, the set of reflections obtained should extend as close to lA as 
possible. Clearly, however, the largest range of Bragg intensities that can be 
reliably extracted should be obtained. Methods do exist for attempting to 
extend the Bragg intensity data set and are discussed further in a later 
section. 

Assuming that one has a list of IFhkll values extracted from the pattern the 
problem is no longer uniquely one oI powder diffraction until the refinement 
stage is reached when the Rietveld method is used on the measured profile. At 
the structural solution stage, however, the problem is one of standard 
crystallography and the full range of single crystal structure solving 
techniques are in principle available to be exploited. 

The Solution of Crystal Structures 

The general strategy of structural solution is summarised below: 

1. If the structure can be solved by comparison with an expected similar 
structure or by trial-and-error, then do so. This intuitive approach is 
perfectly valid and of especial use when a series of similar and possibly 
isomorphous materials are under study. 

2. If a heavy atom is present use heavy-atom Patterson methods. This technique 
is more applicable to X-ray struc2ures where there are more likely to be 
genuine "heavy" atoms because of the Z dependence of the Patterson peaks. 

3. If there is expected to be a group of known stereochemistry in the 
structure information can be obtained about the orientation and positioning of 
this group again in Patterson methods. This can be especially useful if there 
is a significant planar moiety in the structure. For inorganic compounds this 
technique should be more widely applicable in the neutron than in the X-ray 
case since location of orientation of a group can be difficult if a heavy atom 
is present to swamp out the contributions of the remaining atoms. 

4. In the case where no information can be garnered from any of the above, or 
when such information is insufficient in itself to solve the structure, the 
most powerful structure solving technique remains to be exploited - direct 
methods. Many codes are available for direct methods calculations, offering a 
wide range of options for the solution of structures. 

5. There are other less well established techniques which have shown some 
promise in this field. Strategies based on maximum entropy methods using 
algebraic recombination techniques have produced hopeful results in fairly 
simple cases as described below. Also under consideration with the advent of 
super-fast computers are methods based on statistical mechanics using a 
Monte-Carlo random-walk simulation technique (Semenovskaya, Khatchaturyan and 
Khatchaturyan, 1985), using the crystallographic R-factor as the criterion for 
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acceptance or otherwise of any individual incremental motion of an atom in the 
cell. 

6. Development of a structure - Once a fragment is located by any of the above 
methods some type of recycling procedure is often required to locate the 
remaining atoms in the strMcture. In the most favourable case straightforward 
Fourier recycling using jF0 shkll along with ~hkl calculated from the fragment 
can be sufficiently accurate to reveal the remainder of the structure. 
Providing the fragment produced in the structural solution is of large enough 
size structural solution should follow routinely by Fourier recycling. 

7. If this is not the case then some other form of recycling can be adopted to 
try to exploit the correct fragment already located, rather than throw this 
information away and begin again. Karle recycling (Karle, 1968) where the 
phases calculated from the known fragment are refined using the tangent 
formula and used to calculate a new E-map can often modify the pha~es 
sufficiently to lead to structural solution in an E-map. 

8. If all possible recycling schemes fail, then one can still exploit the 
located fragment by using this as a known group in direct methods calculations 
(Main, 1976). Proiision of a group of known stereochemistry and known or 
unknown orientation and position can alter the normalisation of the data 
(extraction of IEhkll from IFhkll) and also can alter the probabilities 
calculated for particular phase relations and hence change the phasing path, 
hopefully to a more successful route. 

9. Refinement Once all (or most) of the atoms are found, least squares and 
profile refinement together with further Fourier and difference Fourier 
calculations are used to complete definition of the structure. 

Adaptation of Crystallographic Programs for Neutron Data 

The adaptation of the direct methods program MITHRIL (Gilmore, 1984) and the 
Patterson methods program PATMET (Wilson and Tollin, 1986) and the 
implementation of these in structural solution from neutron data has been 
discussed recently (Wilson, 1987). 

For direct methods the main adaptations are in normalisation and Fourier map 
calculation, where scattering lengths rather than scattering factors are used 
and in Patterson methods they are in calculation of the model molecular 
transform where scattering lengths are used and in sharpening where either 
analytical or non-analytical (maximum entropy smoothing) techniques can be 
employed. 

Possible Problems 

Many of the possible problems inflict themselves evenhandedly on both single 
crystal and powder workers but some are certainly more pronounced in the case 
of powder experiments, primarily due to the lack of resolved data. In addition 
until fully optimised codes for neutron diffraction data are available 
(Wilson, 1987) structure solving methods will not be as reliable as for the 
X-ray case even given sufficiently good data. 

Patterson methods 2 
The main problem with these methods is that the sharpening of IFI data must 
be optimised to improve the quality of the Patterson functions calculated. The 
techniques for doing so with X-rays are fairly well-established but remain 
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undetermined for neutron data. Either an analytical approach akin to that of 
Lipson and Cochran (1953) or an ME smoothing approach to generate the best set 
of IFshkll values in a non-systematic way could be used. 

In addition the PATMET methods tend to break down for very high symmetry 
structures. 

Direct Methods 
Where there are a fairly small number of IEI magnitudes large enough to be of 
use in phase determination, generating enough reliable phase relationships can 
be a problem. Usually higher invariants will be needed in addition to triplets 
but the close relation of positive quartets to triplets can lead to problems 
of close correlation of the two sets of invariants. In terms of computing time 
invoking further options on quartet generation such as the third 
neighbourhood, 13 !El-magnitude formulae (Hauptmann, 1977a; 1977b) are not as 
serious due to the low number of IEI values available to be used. If there is 
a serious paucity of triplets and one has invoked quartets and possibly 
quintets then the proportion of higher invariants can be somewhat larger than 
ideal which can lead to problems with the phasing path (Gilmore, 1984). 

In addition to the above, problems can arise in the calculation of IEl
(Fourier) maps. These are calculated after the direct method procedures have 
produced a set of phases to be used, but are calculated using just those IEI 
magnitudes which have been used in the phasing process. If there are a very 
limited number of reflections with IEl>l.O in the data set then a Fourier 
calculation based on this can very easily miss details. There is a possibility 
of lowering the acceptable IEI value for inclusion in the phasing and the 
safest way of exploiting this may be to use these low IEI reflections in a 
passive way. This would involve using the low IEI magnitudes more than just to 
calculate probabilities for negative quartet relations (Schenk, 1982) but 
instead allowing these to be allocated phases in the phasing procedure but not 
to be used in further expansion. These reflections could then be used to 
improve the resolution of the Fourier calculations. 

A different type of problem can arise due to the paucity of good, reliable 
invariants which can render less useful the more complicated procedures for 
phase determination such as YZARC (Baggio, Woolfson, Declercq and Germain, 
1978), MAGEX (Hull, Viterbo, Woolfson and Shao-Hui, 1981), RANTAN (Yao 
Jia-Xing, 1981) etc., thus removing some powerful ·weapons from the armoury of 
the crystallographer trying to solve stubborn structures. 

The importance of the data in the 1-1.2A range cannot be overstressed. While 
many structures will solve in direct methods at 1.2A resolution, many which 
would solve easily at lA may in fact fail at 1.2A due to a combination of a 
paucity of phase relationships and a small number of IEI magnitudes used in 
E-map calculations. 

One interesting point which has arisen in studies of direct methods solutions 
from HRPD data is that occasionally a higher resolution data set can fail to 
solve a structure as easily as a lower resolution set. This can be caused by 
even a single reflection being included at an early stage of the phasing 
procedure which leads to some incorrect phases at a later stage. If there are 
very few invariants available, even a few incorrect relations can dramatically 
alter the phasing path and lead to problems. If unresolved reflections have 
been split by some method then invariants involving these which occur early in 
the phasing path should be regarded with some suspicion, since an overestimate 
in IEI can give undue prominence to an individual reflection in the phasing 
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procedure. 

The problem of the effect of negative scatterers (such as hydrogen) in a 
neutron experiment could be severe if these form a substantial part of the 
structure. Merely searching for negative peaks in a Fourier map is trivial, 
but the existence of such "holes'' in the scattering density map raises serious 
questions about the applicability of the basic tenets of direct methods 
philosophy. There have been some suggestions of how to modify the direct 
methods p~ocedures if this problem proves to be serious, and these are 
discussed elsewhere (Wilson, 1987). 

Fourier Recycling 
Most packages need adaptation for neutron data, although some such as CCSL 
(Brown and Matthewman, 1987) already have fully integrated neutron diffraction 
calculations. Fourier calculations can often give poor results if only a small 
fragment is obtained, especially in high symmetry cases where the located 
atoms may lie on special positions. For interpretation of Fourier maps the use 
of chemical and crystallographic intuition can be very important and 
occasionally crucial. 

Karle Recycling 
This procedure can suffer as ever from the paucity of large IEI magnitudes, 
leading to a restricted phase expansion and again poor E-maps. 

Examples 

Patterson Methods - Squaric acid 
Data were collected on HRPD from a sample of 3,4-dihydroxy-cyclobutene-
1,2-dione (squaric acid) (Nelmes, Tun, David and Harrison, unpublished) ' and 
intensities of 193 reflections were extracted from the profile. Overlapping 
reflections were given equal proportions of the total intensity of the peak. 

Many attempts were made to solve the structure of squaric acid in MITHRIL, 
using various numbers of triplets, quartets, various weighting schemes, the 
procedures YZARC (random phasing - steepest descents), MAGEX (magic integers) 
and RANTAN (random phase tangent recycling) and various types of input groups. 
Since squaric acid was attempted ''as ab initio" the published model of 
Semmingsen, Hollander and Koetzle (1977) was used in a Karle (phase) recycling 
procedure, but even this did not produce the correct answer. 

In addition to the above attempts, exhaustive attempts were made to solve the 
structure using lA resolution simulated data, but again these failed to 
produce even a fragment of the correct structure. 

A rationale can be given for the failure of MITHRIL to solve this structure 
since the molecule is strictly planar with all atoms at y=0,25. Traditionally 
direct methods have been at their weakest in such cases, i.e. where a planar 
moiety is a significant fraction of the scattering power of the cell. In this 
case the planar group is the whole molecule and hence the direct methods 
assumption of "equal atoms, randomly distributed'' is grossly invalid, thus 
putting the methods under severe pressure. This severe problem is evidenced by 
the failure of the phasing procedure even when Karle recycling is employed 
using the full published coordinates as model. These problems suggest recourse 
to the Patterson methods program PATMET which is designed with precisely this 
type of problem in mind. 
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A model of just a c4 square of atoms, with all bond lengths 1.4A and all bond 
angles 90° was used as input to the PATMET program. The 1(0,,) function 
revealed the plane of the molecule, a lD rotation function calculation 
completed the orientation of the fragment and the Q- (translation) functions 
were used to position the oriented fragment with respect to the symmetry 
elements in the cell. The coordinates produced by PATMET were then used as 
input to a Fourier map calculation in MITHRIL and there appeared in this map 
all 4 carbon and all 4 oxygen atoms in the structure. The hydrogen atoms were 
not located since the program was not configured to search for troughs. 
However extraction of the 8 non-hydrogen positions can be said to have 
"solved" the structure by any reasonable criterion since standard recycling 
and refinement would lead to final atomic parameters for all atoms. Similar 
results were obtained using an 8 atom fragment [C-C, 1.4A~ C-0, 1.3A, C-C-C, 
90°, C-C-0, 135°), again all 8 non-hydrogen atoms were revealed easily in 
PATMET followed by Fourier calculations. 

Hence PATMET has easily solved the structure of squaric acid from HRPD data 
assuming just a perfect square c4 group or a c4o4 group as input model. 

Direct Methods - Copper Phosphate 
A total of 768 intensities were extracted for reflections collected from a 
sample of cu3(P0

4
) 2 on HRPD (Forsyth, David, Harrison, Ibberson and Maze, 

unpublished). Again overlapping reflections were given equal proportions of 
the total intensity. 

The MITHRIL program was run with default values for input parameters for data 
cut off at lA resolution (289 reflections). TRIPLETS and QUARTETS were 
calculated for the top 98 IEhkll values and the top 8 peaks in the first E-map 
were as follows : 

Peak Height X y z - - -

1 3019 1.0000 0.0000 1.0000 
2 2979 0.2718 0.2312 0.3051 
3 2501 0.3907 0.1361 0.6390 
4 2218 0.8541 0.3446 0.3538 
5 2129 0.2249 0.2313 0.9951 
6 1948 0.3501 0.3621 0.7669 
7 1791 0.6875 0.3296 0.8390 

8 759 1.0043 0.2390 0.1536 

By comparing with the refined coordinates from the profile fit : 

Atom b X y z Peak 
Cu(l) o. 7718 0.0000 0.0000 0.0000 -1-
Cu(2) o. 7718 0.2776 0.2258 0.3157 2 
p 0.5130 0.3586 0.3534 0. 7785 6 
O(l) 0.5805 -0.1536 0.3443 0.3389 4 
0(2) 0.5805 0.3324 0.6515 0.1695 7 
0(3) 0.5805 0.2303 0.2274 0.0049 5 
0(4) 0.5805 0.3786 0.1498 0.6334 3 

it can be seen that the top 7 peaks in the E-map correspond to the 7 atoms in 
the asymmetric unit of the structure. The noise level in the map is shown by 
peak number 8 which is at less than half the height of peak 7. Thus MITHRIL 
has solved the structure of Cu3(P04) 2 from HRPD data. 
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To investigate the effect of resolution on the structural solution, attempts 
were made to solve the structure using the same input parameters with 
different sections of the data. These attempts are summarised in Table 1, 
along with the number of degenerate (overlapping) reflections in the data set. 

As can be seen from this the structure seems to solve with data down to a 
resolution of -1.25A but fails thereafter. However the failure of the attempt 
at 0.9A resolution warrants some comment. 

There is no doubt that with 397 reflections available and judging from the 
other successful attempts at structural solution, the solution for this data 
should be straightforward. However with a relative paucity of invariants any 
error early in the phasing path can be fatal, especially if the erroneous 
phase is then used extensively in the further development of phases. If such a 
reflection is introduced with high IEI when the resolution is increased from 
lA to 0.9A then the first attempt at phasing might fail. This occurrence 
brings out a general point for direct methods solution from powder data 
(Wilson, 1987). If a reflection which is given an "arbitrary" intensity in the 
splitting of overlapping reflections is used early and often in the phasing 
process because it has a high IEI value derived from this intensity, then the 
phasing path should be regarded with some caution - if this reflection is in 
fact weak some of the invariants derived will be invalid and the phasing 
incorrect. In such cases it may be best to disregard such reflections totally 
and omit them from the observed data set. 

Table 1 - Direct methods solution of cu
3

(P04) 2 . 

d . (A) singles doubles triples quads quints total solution? m1n 

0.70 629 50 10 1 1 768 ./ 
0.75 586 42 5 1 1 694 ./ 
0.78 542 32 3 615 ./ 
0.79 527 28 3 592 ./ 
0.80 506 28 3 571 ./ 
0.90 363 17 397 X 

1.00 269 10 289 ./ 
1. 25 140 2 144 ./ 
1. 33 115 115 X 

1.43 98 98 X 

(some atoms indicated) 

The Probabilistic Determination of Intensities of Completely Overlapping 
Reflections in Powder Diffraction Patterns 

Two techniques have been developed for the extraction of the individual 
intensities of completely overlapping reflections in a powder diffraction 
pattern (David, 1986). The first is analogous to Sayre's (1952) squaring 
method while the second is based upon maximising the entropy of the Patterson 
function subject to the constraints imposed by the observed intensities o2 single and overlapping groups of reflections. The agreement between true IFI 
values of overlapping reflections and the values obtained by maximum entropy 
is, in most simulated cases, excellent. 
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The Squaring Method 

Sayre (1952) developed an elegant argument, which he called the squaring 
method, that was useful as a new method of phase determination. An analogous 
argument may be used for the extraction of the relative contributions of 
d2generate reflections. Consider a Patterson function P(r) and its square 
P (r). Their Fourier transforms are respectively 

and 

J (P(i) 
V 

J P
2
(i) 

V 

cos 

cos 

(2Jili.i) dV (1) 

(2Jili. i) dV (2) 

where IFhl is the modulus of the structure factor of reflection h, Vis the 
unit cell volume and the latter equation is obtained by the convolution 
theorem. Consider a simple Patterson with N identical non-overlapping 
Gaussian inter-atomic vector loci. The square of that Patterson looks similar 
to the Patterson itself. Indeed, if the Gaussians are situated at r (n), 
n = 1, ... ,N with standard deviation s/l(2n) then ° 

~ 
N 

~ - in/ /s2) P(r) 1: exp ( - Jt ( r (3a) 
n=l 

0 

and N 
P2(i) 1: 

~ in)2/s2) (3b) exp (- 2n (r -
n=l 

0 

Manipulation of equations 1 and 2 yields 

1Fhl
2 2 2 

1:~ I Fit I 
2 2 (4) (12/V) exp (-~Jts /dh) IFh-kl 

k 

wher2 db is the d spacing of the reflection, h. The scale factor linking 
IFhl with its self-convolution depends only on the magnitude of the d spacing 
anij is thus identical for overlapping reflections. The fractional inteniity 
contribution of the nth of N overlapping reflections may then be estimated by 
the following equation: 

jn IFh ,2 jn ~ 1Fit1
2 , 2 

IFh -kl 
n k n (5) 

N 
IFh.1

2 
N 

(~ 1Fit1
2 2 1: j . 1: ji IFh.-kl ) 

i=l l l i=l k l 

Experience indicates that the squaring method shifts the relative intensities 
in the correct sense away from equipartitioning but, in the majority of cases, 
to a degree often substantially less than the true amount. 

Maximum Entropy Patterson Methods 

The principle of maximum entropy (ME), originally developed by Jaynes (1957, 
1968), is a powerful technique that has been applied to many areas of research 
and, in particular, more recently in crystallography to direct phase 
determination (Britten and Collins 1982, Narayan and Nityanda 1982, Piro 1983, 
Wilkins, Varghese and Lehmann 1983, Bricogne 1984, Livesey and Skilling 1985, 
Wei 1985). The power of the maximum entropy principle is that it yields as a 
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solution the mean of the maximum information probability density (i.e. the 
most probable solution) consistent with experimental observation (i.e. the 
constraints imposed on the solution) (Shore and Johnson 1980, Bricogne 1984). 

In the probabilistic determination of overlapping integrated intensities the 
function maximised is the "Patterson entropy" 

E 
p 

J P(i) ln (P(i)/P (i)) dV 
V o 

(6) 

where the integral is taken over the unit cell volume, V. P(r) is the 
Patterson function and P (r) the initial estimate of the Patterson func~ion. 
P (r) is ta~en to be u&iform throughout the cell and equal to IF000 1 /V, 
wRere IF000 ! is the square of the modulus of the structure factor of the 
0 0 0 reflection. Give2 that the Patterson function, P(r), is normalised 
(i.e. I P(r) dV = IF000 1 ) then the unconstrained maximum entropy Patterson 
function must be P( 2) = P (r). This is clearly physically unreasonable as it 
implied that IFhkll = 8 for all (h k 1) t (0 0 0). Thus the observed 
integrated intensities impose constraints upon the maximisation of the 
Patterson entropy. Consider a non-overlapping reflection characterised by h. 
with multiplicity j. (i.e. there are j. symmetry equivalent reflections~ 
{h.(l), ... , h.(j.)J. The constraint im~osed upon the Patterson entropy is 

l l l clearly 

For N 

(nl ~ i 

4 
j. 

~ 4 ,2 I P(r) [ 1:1 cos (2n:h.(k.).r)] dV = j. I Fh 
cell k.=1 

l l l • 
l 

l 

overlapping crystallographically distinct 
~ n2; 

I 
cell 

N = n2 - nl 

4 
P(r) 

+ 1) the constraint becomes 

(7) 

sets of reflections 

(8) 

According to the maximum entropy principle, the resulting ME Patterson map 
yields the maximum amount of information from the available observations. 
Overlapping reflections are neither left unconsidered nor arbitrarily 
partitioned into equal contributions as in traditional ab-initio powder 
diffraction Patterson techniques. The ME Patterson is thus optimal for 
structure determination from powder diffraction patterns. 

Although Patterson methods play an important role in structure determination 
in their own right, the relative intensities of overlapping reflections may be 
extracted in an unbiased manner to provide an extended list of structure 
factor amplitudes ,for use in direct methods procedures of phase 
determination using the following approach. Let PME(r) be the ME P2tterson 
function and h. be one of a set of overlapping functions. IF(h.)I may be 
estimated by evaluating the Fourier component of PME(r) correspondinl to hi; 

(9) 

The results presented by David (1986) indicate that excellent agreement may be 
achieved in (simulated) examples. In pa2ticular, it 2 was found that the 
partitioning of reflections with large IFI values (IFI ~ 1) wass over 90~ 
correct both in sense and magnitude. Moreover, perhaps surprisingly, the IFI 
partitioning is reliable even for reflections with highest Miller indices. 

l l 



Ab Initio Structure Determination using an Image Reconstruction Technique 

A new algorithm, MEDIC (Maximum Entropy Direct Inversion of Crystallographic 
Data), has been developed (Johnson & David, 1987) that provides a direct 
method of inverting the observed integrated intensities in a diffraction 
experiment to yield the scattering density within a unit cell. The method, 
based upon the METRIC algorithm (Johnson 1987), uses an image reconstruction 
technique employing the maximum entropy principle. It has been successfully 
tested on model systems with both centrosymmetric and non-centrosymmetric 
structures and on experimental neutron powder diffraction data from two small 
inorganic structures, Cu3(P04) 2 and FeAso4 . 

One of the more interesting developments over the past few years has been the 
application of maximum entropy (ME) techniques. These techniques, originally 
derived for underdetermined problems in information theory (Jaynes 1957), and 
discussed extensively by Bricogne (1984), show much promise in tackling the 
lack of knowledge associated with the absence of a-priori phase information. 
The recent work of Gull, Livesey and Sivia (1987) exemplifies this approach 
that focuses on the need to determine the phases using combinations of the 
information provided by n-tuple phase relationships and the ME principle of 
maximising the objective function 

S: - E p(r)ln{p(r)/p (r)} 
0 

(10) 

subject to the constraint (X2 ~ m) imposed by the observed structure factors 
IFohkll: 

0 C 2 
(IF hkll - IF hkll) 

2 
0 hkl 

(11) 

The summation in equation 
priori' value for p(r). 

10 is taken over the unit cell and p (r) is an 'a 
0 

The maximum entropy approach proposed by the MEDIC method differs from 
previous ME techniques in that it does not operate in Fourier space in the 
determination of phases but instead operates using the Patterson function in 
real space. The process thus proceeds in two stages: 

{IFhkll} ~ {P(r)} ~ {p(r)} (12) 

i ii 

( i) The Pattirson map is generated either by standard Fourier transformation 
of IFhkll or by ME methods [6]. 

(ii) The Patterson map is inverted (decorrelated) to provide the real space 
structure. 

12 



The MEDIC algorithm consists of treating the Patterson map decorrelation as an 
image reconstruction problem in which the real space structure (the scattering 
density, p(r), within a unit cell) represents the image to be reconstructed. 

The method has been tested on two Patterson maps derived from experimentally 
recorded {IFhkll} lists determined from neutron powder diffraction patterns of 
cu3(P04 ) 2 ano FeAso4 . The use of a powder diffraction {IFhkl} I set means that 
structure factors of overlapping reflections were averagea - a process likely 
to hinder rather than aid the inversion. 

Cu3(P04)2 A-1 
Neutron diffraction data were recorded up to a maximum sin9/A of 0.7 on the 
HRPD powder diffractometer at the ISIS facility. Although a total of 672 
reflections lie within this range only 610 reflections were non-overlapping. 
In the present analysis the structure factors for reflections in overlapping 
groups were obtained by simply assigning the same, average value to each 
reflection within the group. To minimise Fourier truncation errors the 
Patterson map was averaged over a cube of 0.7A. All negative Patterson 
density was set to zero prior to the Patterson decorrelation. 

The MEDIC . program produced a separation of the true 13 atomic positions from 
noise in the p map after 16000 cycles. Further cycles of the program led to 
dramatically improved signal-to- noise such that after 60000 cycles the ratio 
of the height of the lowest 'genuine' peak to the highest noise peak in the p 

map was 8000/1. This may be compared with the ratio of 'lowest signal/highest 
noise' of 2.4 obtained from the same set of structure factor magnitudes using 
the direct methods package, MITHRIL (Gilmore 1984). 

FeAso4 Neutr~n diffraction data were similarly recorded up to a maximum sin9/A of 
0.7A- on the HRPD powder diffractometer. In this case a total of 901 
reflections lie within the range although only 550 reflections were 
non-overlapping. Hence a total of 351 reflections lay in overlapping groups 
and were assigned average structure values. 

The . MEDIC program produced a separation of the true 24 atomic positions from 
the noise in the p map after 50,000 cycles. In all subsequent cycles up to 
300,000 the p map produced a correct separation of 23 atomic positions (40% of 
maps) or 24 positions (60%). The 'lost' position in the maps which only 
separated 23 of the 24 positions varied from one map to another, and even 
using only these 'incomplete' maps the correct structure would be revealed by 
a simple correlation technique. 
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