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ABSTRACT 

This paper describes how the considerable body of knowledge on image 
reconstruction from path integrals (computed tomography) may be 
applied to total,time-of-flight neutron scattering experiments (ie 
those involving no experimental energy analysis) to obtain the neutron 
scattering law s(K,w). Ye examine the feasibility in terms of 
possible instrument geometries and reconstruction algorithms . It is 
possible that such reconstruction techniques may have wide application 
in the fields of neutron powder diffraction, amorphous scattering, 
liquids scattering and quasi-elastic incoherent scattering. 

A simple algorithm is presented which enables the tomographic problem 
with curved path integrals to be solved. 





1 INTRODUCTION 

In a time-of-flight neutron scattering experiment in which no energy 
analysis is perfomed the recorded intensity in a particular detector 
and time channel is related to a curved path integral over the K,w 
plane. Adjacent time channels from the same detector provide an 
integral over a neighbouring,parallel,curved path. Typical paths for a 
detector at a scattering angle (20) of s0 are shown in Fig.la. 
Detectors at different scattering angles have different paths and 
those for 10°,20° and 30° are shown in Fig.lb,c and d. 

If the path integral can be written down in terms of a scattering law 
which is path-independant the problem may be mapped to the image 
reconstruction problem solved in real-space tomography. 

In section 2 we establish an algorithm for the solution of a 
tomographic problem with curved path integrals. 

In section 3 we show how a total-scattering time-of-flight experiment 
may be expressed in a form suitable for reconstruction. 

Section 4 
remarkable 

presents some preliminary results which show how quite 
resolution would appear to be possible using the technique. 

Section 5 indicates some of the problems which remain to be solved and 
gives some preliminary definitions of the instrument design required 
to maximise the potential of this technique. 

2 TOMOGRAPHY 

Computed Tomography has been applied in radiology and electron 
microscopy for many years, and a review of the algorithms used has 
been published by Gordon and Herman (1) . For use with curved path 
integrals the ART (Algebraic Reconstruction Technique [2,3)) algorithm 
is particularly suitable and has a simple intuitive basis. 

The object to be considered will be represented by a rectangular array 
of n x m cells each with a density p .. , This is shown in Fig.2 below. 

lJ 

A path integral Pk may be defined by the sum, 

Pk = 2 Pij)..ijk 
i,jcpath 

- 2.1 

where the sum is taken over all i,j contributing to the path and )..ijk 
is the curved path length in cell (i,j) for path k. 
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Clearly the summation may be trivially extended over all i,j since 

- 2.2 >.. 'k = 0 
for cells not contributin!JYo the path. Thus: 

Pk = }2 Pij >.ijk 

i,j 

Tomography consists 
Aiik a~e the known 
qmtnti ties. 

in solving 
quantities 

the 
and 

- 2.3 

inverse problem in which Pk and 
pij are the unobserved,desired 

The multiplicative ART algorithm consists of the following steps: 

1. Define an initial guess (ij for all pij' 

2. Select a path k. 

3. Calculate an improved guess{'.. to satisfy the 
observed path integral Pk by a mGitiplicative 
modification of the previous (ij' 

(!. = { •• (l+cx>.. 'k) lJ lJ lJ 

Since we require 

}2 (ij>.ijk = Pk 

i,j 

for all i ,j - 2.4 

- 2.5 



then 

and 

)2 t.i/l+o:>,ijk)Xijk 

i,j 

ex = 

)) 
\\ t, .. >.. .. k II lJ lJ 

2 
C.>.. . 'k lJ lJ 

- 2.6 

- 2.7 

Repeated application of steps 2 and 3 lead to a representation t, .. for 
the desired quantities pii which is equivalent to the maximum efitropy 
solution [5]. For the putposes of the demonstration of the technique 
we have chosen the total number of paths to equal the total number of 
cells nxm, and the path selection (step 2) is made at random. 

3 TOTAL NEUTRON SCATTERING 

Ye consider an idealised time-of-flight neutron scattering experiment 
in which a pulsed, white beam of neutrons is incident on a sample (S) 
and detected (D) at a scattering angle of 20, Fig 3. All neutrons are 
assumed to leave the moderator (M) at time t=O. 

M Ll s 

Neutrons arriving at a time t at 
elastically or inelastically scattered 
t determines a relationship between 
energies El and E2. 

Fig. 3 

D 

the detector may have been 
, but their overall flight time 
their primary and secondary 



Ve have 

t = t1 + t2 - 3.1 

Thus neutrons arriving at a particular time must have scattered from a 
point an a locus in the (El,E2) plane defined by eq. 3.1. 

More usefully we may describe this locus in the (K,oo) plane where 

boo = El - E2 - 3.2 

K = ~1 - ~2 - 3.3 

K2 k2 2 -2k1k2cos(29) - 3.4 = 1 + k2 

For any value of E2 ,E1 is defined (eq.3.1) and from these values boo 
and K may readily be determined (eqs. 3.2,3.4). The loci in the (K,oo) 
plane are illustrated in Figs.la-ld. 

The point of selecting the (K,oo) plane is that, as a consequence of 
the first Born approximation to the cross section [7], all neutron 
scattering cross sections may be described in the form 

= 
k2 
k F(K,oo) 

1 

where F(K,oo) is a function only of K,oo and not k1 or k2 . As an 
example a monatomic liquid has 

F(K,oo) Nac 
= 4n S(K,oo) - 3.6 

Hence the number of neutrons arriving at a time tin the idealised 
experiment is proportional to 

n(t) - 3.7 



n(t) ex J 
k2 

+(El)kl F(K,oo) - 3.8 

K,oo locus 

a path integral over the (K,oo) plane. ijriting eq.3.8 in a disrete form 
we have 

where Fij is the cross section in cell Kiooj 
is a weight for that cell ,for path p: 

- 3.9 

in the K,oo plane and w .. 
lJp 

- 3.10 

Since 3.10 is completely analagous to eq.2.3 with w .. taking the 
place of the path length within a cell it is possible tJPuse the ART 
algorithm to solve eq.3.9 for Fij when n(t)P and wijp are known. 

4 AN EXAMPLE 

To illustrate the possibilities of this method the following steps 
were followed. 

The discrete scattering law F .. 
channel boundaries were set tJ 
2.0,8.0,16.0,24.0,32.0,40.0 (meV) 
4.02,4.03 •••. 4.1 A-1. 

shown in Fig.4 was set up. Thew 
-40.0,-32.0,-24.0,-16.0,-8.0,-2.0, 

and the K boundaries at 4.0,4.01, 

Note that the oo channels were not all of the same size. The Fi 
contained a 'Bragg peak' in channel (6,6) and was surrounded by muc~ 
weaker 'inelastic' scattering. 

Ten time of flight values were chosen 
angles and their corresponding loci in 
Fig.1). The t-values at each scattering 
the near centre of each elastic channel. 

0 5,7.5,10,20,30,40,50,60,70,90. 

for each of ten scattering 
(K,oo) space computed (see 
angle were chosen to cross 
The scattering angles were 

w. . were calculated for each path and the 100 path integrals computed 
f}J~ eq.3.9 ,3.10 with the assumption that the incident neutron 
spectrum, +(E1), was constant. The path integrals were then given 
random errors corresponding to fractional errors of - 0.5%. 

The ART reconstruction algorithm was then applied with initial values 



11 0.25 0.34 0.47 0.63 0.81 0.89 0 . 81 0.63 0 . 47 0.34 
10 0.33 0.44 0 . 60 0.82 1.04 1.14 1.04 0.82 0.60 0.44 
9 0.46 0.62 0.84 1.14 1.45 1.60 1.45 1.14 0.84 0.62 
8 0.76 1.03 1.40 1.90 2.42 2.67 2.42 1.90 1.40 1.03 
7 2.29 3.08 4.21 5. 71 7.27 8.00 7.27 5. 71 4.21 3.08 
6 o.oo o.oo o.oo 0.00 0.00 100.00 0.00 o.oo o.oo 0.00 
5 2.29 3.08 4.21 5. 71 7.27 8.00 7 . 27 5. 71 4.21 3.08 
4 0 . 76 1.03 1.40 1.90 2.42 2.67 2.42 1.90 1.40 1.03 
3 0.46 0.62 0.84 1.14 1.45 1.60 1.45 1.14 0,84 0.62 
2 0 . 33 0.44 0.60 0.82 1.04 1.14 1.04 0.82 0.60 0.44 

j=l 0.25 0.34 0.47 0.63 0.81 0.89 0.81 0.63 0.47 0.34 

i=l 2 3 4 5 6 7 8 9 10 

Fig. 4 

11 6.94 1. 72 2.78 4.50 1. 98 2.62 0.01 3.06 1.16 2.20 
10 o.oo 1.26 0.34 2.13 2.18 9.41 6.28 1.35 1. 78 1.91 

9 o.oo 0.43 0.68 o.oo 0.38 2.37 3.34 4.03 1. 78 0.37 
8 0.20 0.00 1.29 0.39 1.49 2.27 2.61 2.90 2.54 0.08 
7 3.79 4.00 7.19 7.81 2.32 6.34 4.00 1.15 o. 72 0.05 
6 o.oo 0.00 o.oo o.oo o.oo 99.48 o.oo 0.48 0.06 0.32 
5 0.02 2.75 0.26 2.48 4.96 6.65 6.43 3.83 3.92 1.92 
4 0.12 0.03 0.08 2.95 5 . 74 0.70 0.56 3.08 0.52 4.01 
3 0 . 11 0.08 0.08 0.29 1.63 5.37 1.02 0.04 0.03 1.10 
2 0.19 0.12 0.03 1.61 0.84 0.63 0.62 0.21 0.45 0.05 

j=l 0.06 0.17 0.23 0.85 0.81 1.11 0.97 0.61 0.23 0.16 

i=l 2 3 4 5 6 7 8 9 10 

Fig. 5 



of Gij (the guessed values of Fij) all set to 0.01. 

Fig.5 shows the reconstructed values after 9000 cycles The 
'R-factor' defined in eq.4.1 had reached 0.8% and the fractional error 
in the determination of the 'elastic component' (ie between -2.0 and 
2.0 meV) was 2.3%. 

) (G .• - F .. )
2 

lJ lJ 
R-factor = 

) F~. 
lJ 

5 CONCLUSIONS 

It is possible that the method described above may be of considerable 
use in separating elastic from quasi-elastic or inelastic scattering 
in neutron powder diffraction. If the K-range accessible to many 
detectors is sufficiently large the technique may be extended to 
liquids and amorphous problems and possibly the mapping of 
quasi-elastic incoherent cross sections. 

It should be 
section 4 has 
to demonstrate 
following: 

emphasised that, while the simulation described in 
included a number of realistic experimental parameters 
the potential of the method, it has ignored the 

- finite path extent in the (K,w) plane, 

- ,CE1) variation, 

- off-matrix contributions to the path integral. 

A more elaborate simulation is required to define completely the 
limits to the method. 

An instrument designed to make the maximum use of this technique would 
probably incorporate the following features: 

- a large number of scattering angles incorporating a high 
angular range in 20 and extending to low angles (29= 
5-150°), 

- the highest practicable resolution at each scattering 
angle, 

- the highest practicable detector solid angles, 

- a uniform, wide range of incident neutron energies.(eV -
meV). 
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Fig. la 

L1=20 m L2 = 40 m 20 = 5° 
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Fig. lb 

L1=20 m L2 z 20 m 20 = 10° 
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Fig. le 

L1=20 m L2 = 10 m 20 = 20° 

0 A-1 



Fig. ld 

Ll=20 m L2 = 5.2 m 20 = 40° 
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