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Abstract

VESUVIO is a one of a kind neutron spectrometer and diffractometer situated at the ISIS facility
on the Rutherford Appleton Laboratory (RAL) site in Oxfordshire. Recent development to the
physical instrument have seen orders of magnitude improvements in the quality of data produced by
the instrument.

This dissertation focuses on the analysis of data obtained from mass-resolved spectroscopic ex-
periments, specifically extending the current analysis workflows to reduce the amount of human
involvement required to analyse the data.

This has been attempted through the use of the FABADA minimiser recently implemented within
the Manipulation and Analysis Toolkit for Instrument Data (MANTID) framework to create a
Bayesian model selection algorithm based on a selection of models created through inspection of
mass peaks present in an experimental spectrum.
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1 Introduction

The subject of this dissertation is centred around the analysis of experimental neutron scattering data
produced by the VESUVIO instrument (see 2.1).

The work undertaken is part of an initiative to improve the data reduction and analysis workflows for
this unique instrument, which for the majority of the life of the instrument have existed as a collection of
proprietary FORTRAN routines, only recently being ported into the widely used MANTID data analysis
tooklit.

Parts of this work follow on from work that I undertook during my placement year at the ISIS facility
in Oxfordshire which are described in detail in [10].

Recent improvements made to the VESUVIO instrument have allowed the duration of a single run
to be significantly reduced, as such the volume of data produced by the instrument per operational cycle
of the ISIS facility is growing.

This increased volume of data therefore increased the time taken to process the data as each experi-
ment will require a new driver script to be created for the specific sample, which may then require testing
several times in order to tune parameters, such as the intensity constraints, to obtain the best fit of the
defined model to the experimental spectrum.

An ideal solution would be that which allows the analysis jobs to be automatically executed as the
data is produced by the instrument, taking into account that a single experiment may involve multiple
runs (data files) for example in the case where an experiment is performed over a range of sample
temperatures.

This is a solution used by several other instruments at the ISIS facility using the recently released auto-
reduction service, however currently this is not a feasible option for VESUVIO due to; the reliance on the
scientist to define the fitting model, the need to verify the model and parameters and the computational
cost of running the current analysis.

This project will aim to address only the first point; the need to manually define the fitting model.
This ill be done through the use of Bayesian model selection in which the most appropriate fitting model
is selected based on the probability of its hypothesis given the data.

As for the remaining two points; the computational cost can be addressed simply through optimisation
of the current workflow, for instance currently only one thread is used to run the overall workflow (multiple
threads are used during the more expensive correction algorithms) however as described in section 2.3 the
workflow operates by fitting each spectrum in turn which is an obvious place to introduce multithreading
due to the isolation of data treatment per spectrum.

The need to manually verify the fitting model is a difficult requirement to remove from any data
analysis workflow, especially one in which the model is derived through an automatic model selection
scheme.

1.1 Project Aim

The aim of the project is to improve the existing data analysis workflow for the VESUVIO instrument
as implemented in the MANTID toolkit.

1.2 Objectives

The objectives of the project can be summarised in two main areas:

• Adding an additional fit function that allows fitting of the multivariate Gaussian Compton peak
profile for anisotropic mass peaks, details of which are in section 3

• Providing functionality to allow the peaks in a sample to automatically be assigned a mass, detailed
in section 4

Daniel Nixon (120263697) 5
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2 Background

This section describes the general background to the project. Information specific to each feature imple-
mented is provided in sections 3.1 and 4.1 respectively.

2.1 The VESUVIO instrument

VESUVIO is a one of a kind neutron spectrometer located in target station 1 of the ISIS facility on the
RAL site, Oxfordshire.

Figure 1: VESUVIO instrument layout [8]

The physical layout of the instrument is detailed by figure 1.
The image shows the sample tank at the centre of the instrument through which the beam is directed,

two monitors are used to measure the beam intensity before (S1) and after (S2) it has passed through
the sample.

The forward scattering detectors are composed of eight banks of eight Yttrium Aluminium Perovskite
(YAP) detectors which detect Gamma rays emitted by the gold foils directly in front of the detectors
when they absorb a neutron. Each bank is vertically arranged such that there are four detectors on
either side of the horizontal plane [8].

The backscattering detectors are in three banks of 44 (Li)6 doped glass bead neutron detectors.
A measurement mode known as the foil cycling technique [13] is employed on VESUVIO, whereby

Gold foils are cycled in and out of the secondary beam path between the sample and analyser/detector.
This technique is effectively a combination of the resonance detector and filter difference measurement
techniques which can also be configured on VESUVIO.

This technique is used to give improved resolution by narrowing the Full Width Half Maxima
(FWHM) of the energy transfer function. The final spectrum is given by subtracting the foil in spectrum
from the foil out spectrum.

Daniel Nixon (120263697) 6



May 8, 2016

VESUVIO operates using a technique known as Neutron Compton scattering (NCS) in which mo-
mentum distributions are measured by means of inelastic neutron scattering. The technique is similar to
traditional Compton scattering in which the momentum of electrons is measured by means of scattering
high energy photons.

In principle VESUVIO operates as any other indirect inelastic neutron spectrometer does in that
neutrons are scattered by the sample then have their momentum changed by an analyser bank (in the
case of VESUVIO this is the gold foils) and then hit a detector.

The initial stages of analysis are therefore identical to an indirect inelastic spectrometer in that
given the geometric and neutronic parameters of the instrument the count rate at a given time can be
calculated.

The count rate (measured by the detector) is given the standard expression described by equation
2 for an indirect geometry time of flight spectrometer [17] for a system of N identical atoms scattering
neurons into a detector at polar coordinates dΩ and θ.

E0(E1, t) =
m

2

(
L0v

v1t− L1

)2

(1)

C(t) = 2

(
2

m

) 1
2 E

3
2
0

L0
I(E0)D(ER)N

d2σ

dΩdE1
dΩ (2)

where; m is the mass of a neutron, E0 is the incident neutron energy, E1 is the final energy of scattered
neutrons, L0 is the length of the incident flight path (from moderator to sample), L1 is the final flight

path (from sample to detector), v1 is the final neutron velocity and d2σ
dΩdE1

is the partial differential
scattering cross section of the atom causing scattering.

In VESUVIO a technique known as the Impulse Approximation (IA) forms the bases of the mass
resolved data analysis.

Given that the count rate of an indirect spectrometer is given by equation 2, the IA states that at
sufficiently heigh momentum transfer the count rate for NCS can be given by equation 3.

In this case given the high momentum transfer it can be assumed that all atoms cause incoherent
scattering, hence the count rate can be rewritten as a combination of contributions form several unique
atomic masses.

C(t) = 2

(
2

m

) 1
2 E

3
2
0

L0
I(E0)D(ER)

∑
M

NM
d2σM
dΩdE1

dΩ (3)

The neutron Compton profile JM (yM , q̂) is described as the probability distribution of the momentum
of atom with mass M along the direction q̂. This is related to the count rate by equation 4 [6].

C(t) =
E0I(E0)

q

∑
M

AMMJM (yM ) (4)

where AM is given by equation 5.

AM =
2

L0
D(ER)

√
2ER
m

∆ΩNMb
2
M (5)

When operating on a single mass peak a transformation from raw detector counts to momentum (y)
space is typically performed, this is described by equation 6 [2].

y =
M

h̄2q

(
ω − h̄2q2

2M

)
(6)

where; q is momentum transfer.
This transformation is commonly referred to as ”y-scaling” or ”West scaling” [16]. This implies that

the momentum transfer, q and energy ω can together be used as a measure of the neutron Compton
profile J(y).

The full theory of data treatment for NCS data is described by Mayers [7].
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2.2 MANTID

MANTID [4] is a cross platform data analysis suite centred around the reduction, analysis and visuali-
sation of experimental neutron and muon scattering data. It is actively maintained by a collaboration
of several facilities throughout the world.

As the existing data reduction workflow for the VESUVIO instrument is implemented as part of the
MANTID toolkit, new features implemented as part of this dissertation were done so in such a way that
they can be included with this software. This also has the advantage of allowing new features to leverage
the existing functionality within the MANTID project.

MANTID provides a framework on which data manipulation algorithms and curve fitting functions
can be implemented in such a way that allows use in various situations, i.e. running locally on a users
computer or running as part of a batch analysis workflow.

The majority of the MANTID code base is C++ with support for Python scripting.
The core concepts of the framework relevant to this project are: workspaces, algorithms and curve

fitting.

2.2.1 Workspaces

Workspaces are the storage type for all data within MANTID. There are several implementations for
various types of data. The two that are used within the VESUVIO workflow are MatrixWorkspace and
TableWorkspace.

MatrixWorkspaces are used for storing three dimensional data, in the X, Y and spectrum axis as well
as error values for each X value. This is the standard format for data recorded on most instruments and
typically remains in this format throughout the analysis.

MatrixWorkspaces can store data as either point data, in which the number of X values is equal to
the number of Y values or more commonly as a histogram where there is one additional X value. It is a
reasonable assumption that data derived from experimental data will be in histogram format, there are
several exceptions to this however none of them apply to either the data generated by VESUVIO or the
type of operations performed in the data analysis workflow.

TableWorkspaces are a simple two dimensional table that can store a range of data types (as opposed
to MatrixWorkspaces which can only store double precision floating points). This workspace type is used
to contain the final parameters after a fit algorithm has been executed.

2.2.2 Algorithms

All operations within MANTID are performed using operations known as Algorithms, such operations
can have a range of input, output and input/output properties of various types (including workspaces).

It is possible to use algorithms inside other algorithms to form a workflow, such algorithms are known
as Data Processing Algorithms. Many of the algorithms directly used in the VESUVIO workflow fall
into this category and have been written specifically for this data analysis task.

2.2.3 Curve Fitting

MANTID provides an extensive curve fitting library that was used throughout this project, this is split
into several key aspects:

Fitting Algorithms
Fitting algorithms are MANTID algorithms that are responsible for running the fitting, there are
several implementations for specific situations, however the one that is used in almost all of the
analysis workflows for VESUVIO is the generic Fit algorithm.

Functions
Functions are implementations of a model that can be fitted using the fitting framework, a func-
tion may declare a number of parameters (which are optimised as part of the fitting procedure)
and attributes (which retain the same value throughout the fitting, similar to a property of an
algorithm).

Daniel Nixon (120263697) 8
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Minimizers
The minimizer is responsible for optimising the cost function by iteratively changing parameters.

The most commonly used implementation within MANTID is the Levenberg-Marquardt [3] algo-
rithm. A recent alternative is the Fitting Algorithm for Bayesian Analysis of DAta (FABADA)
[11] algorithm which was used extensively in the analysis routine implemented in section 4.

Input Workspace Fit Function (& initial parameters)

Parameter Constraints Parameter Ties

Fit

Fitted Data Parameters

Cost Function Value

Figure 2: MANTID curve fitting

2.3 Existing data analysis workflow

The current data analysis workflow for VESUVIO has recently been ported to the MANTID data analysis
toolkit as a collection of Python scripts after having been originally implemented in several routines in
VMS FORTRAN.

A brief overview of the workflow is given in figure 3.

Load data

Initial fit

Gamma Background Multiple Scattering Container Subtraction

Fit Correction Scale Factors

Subtract Scaled Corrections

Final Fitting

Figure 3: Existing data analysis workflow [10]

The workflow is initiated using a ”driver script” that allows the user to configure a given set of options
for each stage of the workflow. An example of such a script is given in appendix A.

Initially all data is loaded, cropped and grouped to the user’s selection of spectra or detector banks
and optionally rebinned, this is performed once per invocation of the workflow.
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May 8, 2016

Each of the following stages are performed once per spectrum in the loaded data, a spectrum can
either be representative of a single detector (in spectra mode) or a collection of detectors in a bank (in
bank) mode.

An initial fit is first performed using the fitting model defined in the driver script, this fit is required
to obtain a set of fitted parameters that are then used for the multiple scattering and gamma background
corrections. Only the fitted parameters are produced form this fit.

A series of corrections can then be performed, specifics of each correction and whether it is calculated
at all can be configured from the driver script.

The gamma background correction is applied only to the YAP detectors in forward scattering that
are sensitive to gamma radiation, the correction aims to remove any spurious signal in the spectrum
caused by gamma radiation emitted when stray neutrons collide with parts of the instrument and sample
environment equipment.

Ideally the measured spectrum would only contain counts from neutrons that have been scattered at
most once, this is to ensure a good quality measurement of the momentum distribution. It is possible
for neutrons to be scattered multiple times inside the sample before exiting and hitting a detector. The
multiple scattering correction aims to attenuate any signal that has been added as a result of neutrons
that have undergone multiple scattering.

The container subtraction correction is a simple correction which involves subtracting a spectrum
taken from the container without the sample material present from the spectrum with the sample present.
This is a common correction and is very computationally cheap to apply.

Each correction generates a correction spectrum which are then linearly fitted to obtain a scale factor
for each correction such that when scaled they best fit the data. Certain corrections can optionally have
this scale factor fixed in the event that this fitting gives a bad scale factor.

The corrections are then scaled by the appropriate factor and subtracted from the input spectrum.
The final step is to perform the fitting once again, this time using the corrected spectrum and also

outputting the fitted data.
Although not indicated in figure 3 there is an option to perform several iterations of this workflow,

where the fitted parameters at the end of one iteration are used as the starting parameters of the
next iteration. This can be continued until either the cost function converges on a predefined value or
maximum number of iterations has been performed.

Daniel Nixon (120263697) 10
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3 Multivariate Gaussian Fitting

The first objective concerns the addition of a new fitting model to be used in the data analysis workflow
that uses a multivariate Gaussian model to fit an anisotropic mass peak, i.e. where the momentum of the
stuck nucleus is not uniform in all directions, this is most commonly observed in experiments involving
hydrogenous samples.

Previously two fitting models were used to model a mass peak on a VESUVIO spectrum, either the
Gram-Charlier profile in the case where the mass has an anisotropic distribution (a good example of this
is the mass peak generated by Hydrogen) or a simple Gaussian approximation in all other cases.

The Gram-Charlier profile has the advantage that is is physically speaking very good at fitting the
peak and as it is an analytical method reasonably fast. However one drawback of this method is that it can
be difficult to relate to theoretical data, most prominently data obtained through ab initio simulations.

For use in such situations a multivariate Gaussian model can be used in order to describe the peak
through fitted parameters that are more easily related to simulated data, in the form of three Gaussian
standard deviations: σx, σy and σz.

3.1 Background

The multivariate Gaussian model descries the momentum distribution of the mass peak as the product
of three separate Gaussian functions where the fitted standard deviation of each individual function (σα)
is representative of the momentum along each of the three Cartesian axes.

These momentum values can then be converted to kinetic energy using equation 7.

〈EK〉α =
h̄2σ2

α

2M
(7)

where; M is the atomic mass corresponding to the peak and α is an axis α ∈ (x, y, z).
The expression of the model function is given by Romanelli [12] where the multivariate Gaussian

profile is described by equation 8.

J(y) =
1√

2πσxσyσz

2

π

∫ 1

0

d(cosθ)

∫ π
2

0

dφS2(θ, φ)exp

(
− y2

2S2(θ, φ)

)
(8)

where; y is the y-space converted intensity and S2 is given by equation 9.

1

S2(θ, φ)
=
sin2θcos2φ

σ2
x

+
sin2θsin2φ

σ2
y

+
cos2θ

σ2
z

(9)

This function defines the model in the ideal case where the momentum transfer is consistently high
enough for the impulse approximation to hold, however as this can not always be guaranteed a proven
correction for these so-called FSE must be applied.

A method of correcting for these effects is described by Sears [14] which describe the correction as
the summation of a series of corrections in powers of 1

q , as demonstrated in equation 10.

J(y, q) = J(y) +

∞∑
n=3

(−1)nAn(q)
dn

dyn
J(y) (10)

where An(q) is given by equations 11 and 12 in the case of n = 3 and n = 4 respectively [12].

A3 =
σ̄4

3q
(11)

A4 =
σ̄6

6q2
(12)

Typically only the A3 and A4 corrections are considered as beyond this the magnitude of the additive
correction becomes dwarfed by the magnitude of the error bars of the sample data.

In the case of the multivariate Gaussian function it was decided through conversation with the
VESUVIO instrument scientist that only the A3 term should be considered for this function, this is due
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to a similar reason of the magnitude of further corrections becoming insignificant as well as a desire to
reduce the computational cost of executing the function, this point will be elaborated on later.

Given that only the A3 term is being considered equation 10 can be simplified to

J(y, q) = J(y) +−A3(q)
d3

dy3
J(y) (13)

The correction is then described by equation 14, the derivation of which is discussed by Romanelli
[12].

−A3(q)
d3

dy3
J(y) =

σ4
x + σ4

x + σ4
x

9
√

2πσxσyσzq

∫ 1

0

d(cosθ)

∫ π
2

0

dφ[
y3

S2(θ, φ)4
− 3

y

S2(θ, φ)2

]
S2(θ, φ)exp

(
− y2

2S2(θ, φ)

)
(14)

Provisioning for both the FSE correction and a fitted intensity scaling parameter I the expression to
be fitted by the new fit function is given by equation 15.

y′ = I

(
J(y) +

[
−A3(q)

d3

dy3
J(y)

])
(15)

where; y is the y-space transformation of the raw time of flight data and y′ is the result of the
evaluation with the current set of parameters.

3.2 Implementation

The function was implemented within the existing fitting framework within MANTID, this provides
much of the core fitting functionality requiring only the evaluation of the function in y-space to be
implemented.

Fit functions in MANTID are implemented as classes which inherit from a given abstract class
depending on the nature of the function, for example the dimensionality of the data.

Within MANTID there is an abstract fit function already implemented that is designed to be in-
herited by fit functions that are designed to be used to fit models for neutron Compton scattering;
ComptonProfile. This function subclasses the ParamFunction and IFunction1D, for dealing with fitted
parameters and a function that is dependant on a single real value.

IFunction

ParamFunction IFunction1D

ComptonProfile

GaussianComptonProfile GramCharlierComptonProfile MultivariateGaussianComptonProfile

Figure 4: Structure of Compton profile fit functions

Fit functions implementing ComptonProfile are also able to be used in the ComptonScatteringCountRate
composite function, this is a specialisation of the existing CompositeFunction which also handles the con-
straint matrix used for setting intensity constraints from the workflow script.

The ComptonProfile function only requires that child functions implement the evaluation of the mass
peak function, in the case of the multivariate Gaussian this is given by equation 15. Data is provided
having already undergone the y-space transform.
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A cache of S2 values are maintained in the class of the fit function, as these values are dependant
on σx, σy and σz this cache must be rebuilt at the start of each fitting iteration and are calculated by a
simple iteration over the integration domain.

The integration scheme employed in the evaluation is two dimensional Simpson’s rule, whereby an
integration over a two dimensional domain Ω can be expressed as∫

Ω

f(x, y) dΩ =

∫ b

a

∫ d

c

f(x, y) dx dy ≈ 1

9
nm

n∑
i=1

m∑
j=1

An,mf(xi, yj) (16)

where n and m are the number of steps in the x and y domains respectively, both of which must be
an even number and An,m is a matrix of identical dimensions to the domain Ω of the repeating format

A =



1 4 2 . . . 4 1
4 16 8 . . . 16 4
2 8 4 . . . 8 2
4 16 8 . . . 16 4
...

...
...

. . .
...

...
1 4 2 . . . 4 1


The calculation of the neutron Compton profile J(y) and the FSE correction have been performed

in two separate integration operations, initially this was to aid in testing by providing the option to
output the FSE correction separately from the profile. However this could be modified to only require
one integration operation per data bin.

As the integration is performed once per data bin per iteration of the fitting algorithm it is desirable
to reduce the size of the integration domain as much as possible without too much reduction in the
quality of the fit, as the theoretical accuracy of the multivariate Gaussian model is dependant on the
accuracy of the integration. Romanelli recommends a domain of at least 35x35 [12], this is covered
further in section 3.3.2.

3.3 Testing

3.3.1 Effects of FSE corrections

The function was used to fit a Hydrogen peak with and without the FSE corrections to ensure both that
the neutron Compton profile and FSE correction were working as intended as it is normal for the peak
to be slightly offset without the correction applied.

Figure 5 shows the difference between the model along (red line) and the model with the FSE
corrections applied (green line) along with the original data (black line).
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runs: 19282-19331 - spectrum: 150
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Figure 5: Comparison of fit with and without FSE correction

This shows a noticeable offset caused by the addition of the correction which shifts the fitted peak
towards the centre of the experimentally measured peak. The centre of the fitted peak is still slightly
towards the low side of the experimental peak however this offset is reasonable for the quality of the data
and further corrections would only make the function slower to evaluate for only marginal improvement.

3.3.2 Effects of integration domain size

The effects of the size of the integration domain are briefly discussed by Romanelli in which it is sum-
marised that the size of the domain must be at least 35x35, here several additional tests were performed
in which the accuracy of the function relative to the Gram-Charlier profile and execution times are
compared.

The final fitted parameters and execution times for both stages of model fitting are summarised in
table 1, only the parameters relevant to the multivariate Gaussian function are listed (note that the mass
parameter is fixed to 1.0079 for the Hydrogen peak).

Domain dimensions 8x8 32x32 64x4 256x256

SigmaX 2.49073 5.06038 8.25955 12.2212
SigmaY 11.7155 5.06598 2.51403 2.04771
SigmaZ 3.1926 4.3432 4.20634 4.16945
Intensity 1.20557 0.937984 0.945023 1.18128
Cost function 1.10373 1.20871 1.20523 1.07845
Initial fit time (s) 3.8 49.3 151.4 2456.4
Final fit time (s) 6.2 34.6 152 2591

Table 1: Comparison of final fitted parameters and execution times for different integration domain
dimensions

Figure 6 shows a comparison between the Gram-Charlier profile (black line) and the four different
integration domain dimensions: 8x8 (cyan line), 32x32 (green line), 64x64 (blue line) and 256x256 (red
line).

Daniel Nixon (120263697) 14



May 8, 2016

This plot shows the majority of the fitted time of flight range used in VESUVIO model fitting, this
emphasises the changing shape of the wings of the peak at < 200µs and > 300µs.

Note that the peak at approx. 370µs is from a combination of Carbon and Oxygen, both of which are
fitted using the standard isotropic Gaussian hence will have the same peak shape in all fitted spectra.

runs: 19282-19331 - spectrum: 150
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Figure 6: General comparison of different integration domain dimensions

Figure 7 shows the same fitted spectra as figure 6 with the plot area focused around the Hydrogen
peak. This provides a good view of the quality of each fit in terms of its peak centre and shape with
respect to the Gram-Charlier profile.
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runs: 19282-19331 - spectrum: 150
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Figure 7: Comparison of different integration domain dimensions at Hydrogen peak

Given the lower cost function value is assigned to the domain of size 256x256 this fit is likely to
be the best description of the data, however looking at the plot of each fitted spectrum around the
Hydrogen peak in figure 7 it can be seen that the 256x256 domain (red line) is one of the furthest from
the Gram-Charlier profile (black line). Ideally the multivariate Gaussian profile should be a close math
to the Gram-Charlier profile. Having said this the final parameters produced by the fit using the 256x256
domain are somewhat reasonable given the data.

Furthermore the computational cost of this as reflected by the execution time for both fitting stages
makes this improvement in fit quality infeasible for general use.

Comparatively the 8x8 domain which is expected to have a poor fit quality is fairly close to the much
finder 256x256 sized domain.

The domains of size 32x32 and 64x64 both produce a similar and reasonable fit, however the param-
eters produced by the 64x64 domain are the best description of the data out of all that have been fitted
as part of this test.

As such this was set as the default domain size and is the size used for the evaluation performed in
section 5.1.

3.3.3 Automated Testing

The multivariate Gaussian fitting model is tested to the same extent as all other fitting models for
VESUVIO data via a set of unit and system tests that are run as part of the MANTID continuous
integration system.

These tests are mainly designed as simple logical tests to ensure that the fit function and associated
profile in the workflow scripts behave as expected in terms of the workflow rather than the quality of
the fitted data its self.

That being said there is a basic test that the function, when evaluated with a given set of parameters,
gives the correct values. As well as a function that tests the generation of the S2 matrix.

3.3.4 Informal Testing

Several informal tests were carried out as part of the development process; this included tests done by
myself, the instrument scientist and the developer that approved the changes to MANTID.
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This testing is a good source of a second opinion on the implemented function both from the scientific
and software engineering perspectives.

Having the model tested by the scientist did highlight an issue that had previously gone unnoticed
due to not being directly related to the work being carried out. As mentioned in section 2.3 an initial
fit is performed to obtain a set of parameters to be used in the calculation of several corrections, one of
which - the multiple scattering correction - when using parameters form the multivariate Gaussian profile
was giving a largely underestimated correction for the area around the Hydrogen peak the function was
fitting where there is known to be a large multiple scattering contribution to the measured signal.

Figure 8 shows the difference is multiple scattering correction caused by the differing parameters
which are in turn provided in table 2.

In this table the function fitting the Hydrogen peak is the first function in the composite function f0.
The values given for the width of the multivariate Gaussian function are obtained using the following
equation which is used in the workflow script to convert the Sigma[X,Y,Z] parameters into a single
width parameter σ̄ for the multiple scattering correction algorithm.

σ̄ =

√
σ2
x + σ2

y + σ2
z

3
(17)

Gram-Charlier Error Multivariate Error

f0.Mass 1.0079 0 1.0079 0
f0.Width 4.48946 0.122974 8.19068 -
f0.SigmaX - - 2.96842 1.53772
f0.SigmaY - - 13.4967 0.664743
f0.SigmaZ - - 3.20772 1.18797
f0.Intensity 69.1487 1.76213 0.967407 0.216778
f1.Mass 12.011 0 12.011 0
f1.Width 10 0 10 0
f1.Intensity 0.170138 1.07746 1.41289 1.29345
f2.Mass 15.9 0 15.9 0
f2.Width 13 0 13 0
f2.Intensity 5.78972 1.05313 5.53164 1.21508
f3.A0 0.0086126 0.00491099 0.0200821 0.0047604
f3.A1 -116.651 40.4553 -274.6 45.23
f3.A2 201.274 65400.6 462892 76824.8
Cost Function 1.0404 0 1.21149 0

Table 2: Fitted parameters used for multiple scattering calculation

As shown in table 2 the calculated with of the multivariate Gaussian profile is almost double that
of the Gram-Charlier profile, however it is much more likely that the significantly lower intensity is the
cause of the difference in multiple scattering calculation.

The reduced intensity is effectively removing the relative contribution of the Hydrogen peak to the
multiple scattering in the sample, hence why the contributions of other masses are increased beyond
their contributions when using the parameters from the Gram-Charlier profile.
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runs: 19282-19331 - spectrum: 150
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Figure 8: Comparison of multiple scattering corrections

Although not demonstrated the same effects are seen when comparing with the standard Gaussian
profile.
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4 Bayesian model selection

The second objective is to develop and integrate a model selection algorithm that given a set of raw
time of flight data from the instrument can obtain a fitting model that best describes the data, this
will be used to aid analysis in cases where the sample contains unexpected impurities that contribute to
additional mass peaks or when the composition of the sample is unknown.

4.1 Background

The model selection algorithm will use Bayesian model selection to select the most likely model form a
set of hypothesis, this has been chosen due to the wide use of this methodology in various other neutron
scattering data analysis workflows.

Probability theory gives the two basic rules: the sum rule; given the probability of x being true we
can derive the probability of x being false and the product rule; given the probability of x being true
and the probability of y being true we can derive the probability of both x and y being true, given in
equations 18 and 19 respectively.

P (x|I) + P (x̄|I) = 1 (18)

P (x, y|I) = P (x|y, I)× P (y|I) (19)

where; | denotes a ”given that” relationship between two events, x̄ denotes the case where x is false
and I is background information that could affect the probability of either x or y.

Given experimental data the measurable probability is that of the data given a hypothesis P (D|H),
however in data analysis the desirable probability to measure is the probability of a hypothesis given the
experimental data P (H|D).

P (x|y, I) =
P (y|x, I)× P (x|I)

P (y|I)
(20)

Using Bayes’ theorem given in equation 20 it is possible to effectively swap the dependency order of
the given that relation between the hypothesis and data. [15]

Take for example two unique hypotheses A and B, in order to determine which best describes data
D the ratio of their probabilities given the data can be calculated as

posterior = prior ×Bayes factor (21)

P (A|D)

P (B|D)
=
P (A)

P (B)
× P (D|A)

P (D|B)
(22)

where the prior ratio is used to define the probability ratio of the two hypotheses based on prior
knowledge, i.e. disregarding the data D.

This model works when both A and B are simple hypotheses that do not rely on fitted parameters,
however assuming hypothesis B required an additional parameter to define the model the value of this
parameter must be considered in the calculation of the probability ratio.

posterior = prior ×Bayes factor ×Ockhamfactor (23)

P (A|D)

P (B|D)
=
P (A)

P (B)
× P (D|A)

P (D|λ0, B)
× λmax − λmin

δλ
(24)

Equation 23 [15] shows how a fitted parameter λ can be integrated into the model selection. In this
case the so called ”Ockham factor” is used to penalise hypothesis B for its additional fitted parameter,
this follows the general desire for the best model to be the one which best describes the data with the
fewest parameters.

Note that the parameters limits λmin and λmax must be chosen appropriately, an obvious general
case may be to set them to infinity however this causes an infinite penalty to be applied for the addition
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of a parameter. Typically enough is known about the domain of the problem to allow a sensible selection
of these limits.

Most curve fitting in MANTID uses the χ2 cost function as defined by equation 25. Typically the χ2

is divided by the number of free fitting parameters.

χ2 =

N∑
i=1

(
Di − f(Di,M)

σi

)2

(25)

where; N is the number of data points, Di is the ith measured/sample data point, f() is a function
defining the model being fitted, M are parameters defining the model and σi is the standard error of the
ith data point.

One issue with the χ2 cost function is that it has a large dependence on the shape of the χ2 distribution
[9], for example if no local minima are found when searching for the global minimum.

The Fitting Algorithm for Bayesian Analysis of DAta (FABADA) provides a fitting methodology that
does not depend on the shape of the cost function or relations between fitting parameters. This algorithm
provides a probability distribution function for all fitted parameters as well as the cost function, which
through inspection of can be used to create a Bayesian model selection scheme.

The FABADA algorithm is a Markov Chain Monte Carlo algorithm that operates by randomly
changing a fitting parameter and accepting the change if it causes a decrease in the value of the cost
function. There is also a chance that an increase in the cost function value will be allowed, the probability
of which is given in the equation [9]

P (H(Pnewi )|D)

P (H(P oldi )|D)
= exp

(
−χ

2
new − χ2

old

2

)
(26)

where; P (H|D) is the probability of the hypothesis being true given the measured data, H(Pi) is the
hypothesis described by parameter set Pi.

It is this property that allows the FABADA algorithm to ”jump” over obstacles in the shape of the
cost function that may cause traditional Levenberg-Marquardt methods to converge to a non-optimal
fit.

One issue of this method is the number of steps in parameter value required to converge to the optimal
solution, to address this the algorithm adds a bias to the changes applied to each parameter such that
parameters who’s changes are infrequently accepted are assigned larger steps in an attempt to invoke a
larger step in the cost function. The opposite of this process happens for parameters with frequently
accepted changes.

Fitting is complete when all parameters have converged, this is defined as the point at which the
probabilities of each parameter have been accepted with equal probability.

4.2 Implementation

The model selection algorithm will be implemented as a new workflow algorithm within MANTID lever-
aging already implemented peak finding and fitting routines.

In this implementation the ”model” is described as a composition of fitting functions that describe
the data, typically this is one Compton profile per mass (where multiple masses can contribute to the
same peak) and one background function which is usually a polynomial of order 2.

In MANTID a model is composed of:

• A fit function string which defines the functions being fit and their initial parameters

• A ties string which defines values which certain parameters are fixed to, this can be either a fixed
value of another parameter.

• A constraints string which defines upper and/or lower constraints for he value of certain parameters

An example of a typical model for the VESUVIO data analysis workflow for a sample containing
Hydrogen, Oxygen and Caesium in an Aluminium container is as follows:
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Function
composite=CompositeFunction,NumDeriv=1;

name=GramCharlierComptonProfile,Mass=1.007900,HermiteCoeffs=1 0 0,Width=4.480264,

FSECoeff=0.528532,C 0=12.239281;

name=GaussianComptonProfile,Mass=16.000000,Width=10.000000,Intensity=2.829303;

name=GaussianComptonProfile,Mass=27.000000,Width=13.000000,Intensity=0.392174;

name=GaussianComptonProfile,Mass=133.000000,Width=30.000000,Intensity=0.707326;

name=Polynomial,n=2,A0=-0.003896,A1=5.387158,A2=1.003049

Ties
f0.Mass=1.007900,

f0.FSECoeff=f0.Width*sqrt(2)/12,

f1.Mass=16.000000,

f1.Width=10.000000,

f2.Mass=27.000000,

f2.Width=13.000000,

f3.Mass=133.000000,

f3.Width=30.000000

Constraints
2.000000 < f0.Width < 7.000000,

f0.C 0 > 0.0,

f1.Intensity > 0.0,

f2.Intensity > 0.0,

f3.Intensity > 0.0

The fitted results of this model are shown in figure 9, the Hydrogen peak can be seen around the
200µs to 300µs time of flight region and the single peak for all higher masses around 380µs to 400µs.

runs: 15039-15045 - spectrum: 150
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Figure 9: Example fitting model

The general workflow for the new algorithm is described by figure 10.
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Load data

Find Peaks in all Spectra

Find Peaks in each Spectrum

Create models for found peaks

Fit model to peak

Run FABADA on model

Figure 10: Model selection algorithm workflow

In the case of this implementation a model as described above is a single hypothesis in the context
of the Bayesian model selection.

The first step is to load the sample data, this uses the same implementation of the data loading step
as is used in the existing VESUVIO workflow described in section 2.3.

The next step is to use the MANTID peak finding algorithm FindPeaks to search for peaks in all
spectra of the loaded data, this provides an initial guess as to the locations of mass peaks in the measured
data. This peak finding algorithm operates by fitting a Gaussian peak with a background to the specified
input range [5], the search can be refined by providing additional information about the position and
nature of the peak however at this stage no such information is provided.

This list of found peaks is then used as a peak position estimate in order to find a reasonable accurate
peak position and shape for the relevant peak on each spectrum.

After this operation a list of reasonably accurate peaks for each spectrum will have been generated,
these are then used to generate a list of models for the Bayesian model selection. This is done by
assuming that each detected peak can have between 0 and 4 masses contribute to it (this is a fixed value
at the moment but should be exposed to the user as a property for the algorithm) then creating a model
with each permutation of number of masses for each peak.

Take, for example the following peaks having been found in a spectrum:

Position Width

250µs 15
370µs 8

Table 3: Example found peaks

The following 25 models would be created:
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Model Peaks under 250µs Peaks under 370µs

0 0 0
1 1 0
2 2 0
3 3 0
4 4 0
5 0 1
6 1 1
7 2 1
8 3 1
9 4 1
10 0 2
11 1 2
12 2 2
13 3 2
14 4 2
15 0 3
16 1 3
17 2 3
18 3 3
19 4 3
20 0 4
21 1 4
22 2 4
23 3 4
24 4 4

Table 4: Example models

In the models generated by the algorithm only the standard isotropic Gaussian function is used and
has its mass parameter constrained based on the width of the peak found in the peak finding stage.

The limits of the mass constraint are obtained by taking the limits in time of flight which are calculated
by taking the peak position plus/minus the Half Width Half Maxima (HWHM), these limits in time of
flight are then converted into limits in atomic mass using equations 27 and 28.

tof =
L0rt + L1

v0
(27)

where; L0 is the length of the primary flight path (form moderator to sample), L1 is the length of
the secondary flight path (from sample to detector), v0 is the final neutron velocity and rt is given by
equation 28.

rt =
cosθ +

√
m
mn

2 − sin2θ

m
mn

+ 1
(28)

where; θ is the scattering angle, m is the mass of the atomic mass of the stuck nucleus and mn is the
atomic mass of the neutron.

The following fitting is then performed per generated model per spectrum in the sample data.
Additional constrains on the model include the requirement for both the intensity and width param-

eters to be positive non zero values and that masses fitted by each Gaussian function must be unique to
prevent the same mass being fitted by multiple functions.

These models are then fitted to each spectrum using the standard Levenberg-Marquardt algorithm
in order to obtain a reasonable set of starting parameters for the fit using the FABADA minimiser which
is known to require good parameters when a fit is performed over a large number of degrees of freedom.
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This is also the reason parameters are constrained whenever possible in order to narrow the search space
as much as it can be.

Once a set of starting parameters is derived the model is then fitted using the FABADA minimiser
to obtain a refined set of parameters and their probability, the probabilities of each model are then
compared and the most likely selected as the best model.

4.3 Testing

4.3.1 Automated Testing

As the model selection algorithms is yet to be functional to the full satisfaction of the instrument scientist
no automated tests have been written for it as of yet.

4.3.2 Informal Testing

Throughout the implementation of the algorithm several stages of informal testing were performed to
asses the accuracy and reliability of independent stages of the algorithm (which were in turn typically
separate algorithms already implemented in MANTID).

One of the main examples of this was in the output generated by the FindPeaks algorithm which
was used to perform the initial significant peak finding to search for peaks that could correspond to a
mass peak.

The most significant issue raised by the use of this algorithm is the wide range of results given by
the algorithm when executed with different data sets; some of which give a reasonable estimation of the
location of peaks, some assign peaks to noise while missing larger more visually obvious peaks and some
fail to find any peaks.

Several examples of common problems are shown with four samples; Iodobenzoic acid (C7H5IO2),
Polycrystalline zirconium-beryllium (Zr40Be20), Squaric acid (C4H2O4) and Graphite (C). All samples
are in Aluminium containers with the exception of Graphite which is in a Tin container.

Figure 11 shows the raw time of flight spectrum for a sample of Iodobenzoic acid in an Aluminium
container, here true peaks are observed at around 200µs to 300µs for the Hydrogen peak and around
350µs to 420µs for heavier masses.
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Figure 11: Raw spectrum of Iodobenzoic acid sample

Table 5 shows the results of the peak finding algorithm. In this case no true peaks were found by the
algorithm, instead the two tallest peaks in the spectrum caused by noise were reported as the significant
peaks in the sample.
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Position (µs) Width Height

117.848 1.07304 0.304676
129.286 1.33195 0.453472

Table 5: Peak finding results for Iodobenzoic acid

The polycrystalline zirconium-beryllium sample (figure 12) is an example of where the results of peak
finding contain both true and spurious peaks.
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Figure 12: Raw spectrum of Polycrystalline zirconium-beryllium sample

In this case the peak caused by the masses known to be present in the sample is detected correctly
(the peak at around 374µs) however an additional peak has been found in noise at around 285µs.

Position (µs) Width Height

285.225 1.63995 0.0685314
374.626 21.1158 0.129163

Table 6: Peak finding results for Polycrystalline zirconium-beryllium

In the case of the Squaric acid sample (figure 13) the issue is the lack of detection of a true peak,
in this case the Hydrogen peak between 180µs and 310µs. This is the most acceptable case of the peak
finding algorithm failing to identify all peaks successfully and is partly to be expected by the significantly
larger width of the Hydrogen peak.
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Squaric acid
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Figure 13: Raw spectrum of Squaric acid sample

The peak contributed to by heavier masses (330µs to 400µs) has been identified correctly in this
case, as is shown in table 7.

Position (µs) Width Height

374.164 17.4555 0.191177

Table 7: Peak finding results for Squaric acid

The peak finding algorithm failed to find any significant peaks in the Graphite sample shown in figure
14. The two most likely causes of this is the relative intensity of the true peak to the background noise
and the non-Gaussian distribution of the peak, both in the asymmetry and overly steep falling edge of
the peak.
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Figure 14: Raw spectrum of Graphite sample at 300K

Typically this issue can be resolved by changing the parameters to the FindPeaks algorithm, most
notable the FWHM and Tolerance parameters.

The wide variation of peak widths can often mean fitting a single Gaussian width (determined by the
FWHM parameter) can cause only a subset of true peaks to be found while possibly selecting false peaks in
the noise, in the current peak finding solution this is a non-trivial problem to overcome without requiring
a new peak finding implementation.

Daniel Nixon (120263697) 26



May 8, 2016

An additional problem is setting a reasonable tolerance for the required acceptance of peaks, this
tolerance value is used in the implementation of the peak finding algorithm as described by Mariscotti
[5] where a lower value gives rise to stricter peak selection.

Having this value incorrectly set can cause either true peaks to be missed if the value is too low or
additional peaks being found in noise if the value is too high.

Another area that underwent ongoing manual testing was the quality of the models generated by an
initial fit using the Levenberg-Marquardt algorithm. Typically this worked as expected where a model
with a rough estimation of a peak position would have its mass fitted to be close to the mass that
contributed to the majority of the peak.

However one significant issue with the initial fitting routine is that when fitting a model in which
there are several profiles that are attempting to fit a single peak which is defined by less than the number
of profiles (for instance attempting to fit 4 masses to a peak that was only contributed to by 2) the masses
of multiple profiles tended to converge on the same mass.

This was a significant issue as it artificially increased the suitability of more complex models by
obtaining parameters that give a value to the cost function χ2 that is only marginally worse than that
of a simpler model.

While the χ2 of the initial fit is not inspected as the only purpose of this algorithm is to find a likely
set of models this issue causes a reduction in the number of possible models due to lack of exploration of
the full search space of the mass parameter, possibly excluding a correct mass from the Bayesian model
selection that follows on from this initial fitting.

A solution to that above two issues can be to allow the user to modify the range of Gaussian widths
and tolerances over which the FindPeaks algorithm is executed, however the need for the user to run
the algorithm in order to look at the results and possibly have to change input parameters and execute
the algorithm a further time until the results are reasonable somewhat negates the point of using this
algorithm in the first place. Having said that the peak finding is a relatively computationally cheap
operation compared to the full VESUVIO analysis routine so this process of manually modifying param-
eters to obtain good results at this stage is not as time consuming as doing the same with the full data
analysis workflow.
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5 Evaluation though Case Studies

Several case studies have been used to provide testing of the results of the new features implemented as
part of this project.

This method of testing has the advantage that it is testing the routines in the same way in which
they are intended to be used, this is not usually possible through unit testing and is due to build server
time constraints usually limited to a small range of sample data when running as an automated system
test.

5.1 Fitting Hydrogen peaks with a multivariate Gaussian

One of the most common use cases for a function that fits an anisotropic mass peak (i.e. the Gram-
Charlier profile or multivariate Gaussian profile) is in fitting Hydrogen peaks.

These case studies will focus on the comparison of the existing Gram-Charlier profile and new mul-
tivariate Gaussian profile in the quality of the description of the sample data. The mean kinetic energy
along each axis will also be calculated using equation 7 and compared with published data.

Two well studied hydrogenous samples will be used; water at 300K and ice at 260K.

5.1.1 Water

The fitted curves for for both the Gram-Charlier profile and multivariate Gaussian profile are given in
figures 15 and 16 respectively.

The Gram-Charlier fit is visually a very good fit of the data, shown by the mass profile for the
Hydrogen peak (blue line) closely following that of the sample data (black line).
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Figure 15: Fitting results for water sample using Gram-Charlier

In the case of the fit using the multivariate Gaussian the fit is of a noticeably lower quality. The peak
centre can be seen to be shifted to the left slightly giving a ”kink” to the greed difference curve, this can
be indicative of an understated final state effects correction.

Another possibility is the lack of exploration of the full parameter space. This can be an issue with
fit functions with a high degree of freedom using the Levenberg-Marquardt optimisation function in that
a premature minima may be reached in the cost function which is not the global minimum.
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runs: 18672-18706 (water) - spectrum: 143
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Figure 16: Fitting results for water sample using multivariate Gaussian

Parameters for both functions are given by tables 8 and 9 respectively.

Parameter Value Error

f0.Mass 1.0079 0
f0.Width 5 0.126964
f0.FSECoeff 0.5892556 0
f0.C 0 109.027 2.74958
f1.Mass 12.011 0
f1.Width 10 0
f1.Intensity 0 1.26891
f2.Mass 15.9 0
f2.Width 13 0
f2.Intensity 5.82717 1.24073
f3.A0 -0.004548 0.00589503
f3.A1 8.367988 48.387
f3.A2 1.004511 79719.6
Cost Function 1.149798 0

Table 8: Fitted parameters for water sample using Gram-Charlier

Note that in the case of the fit using the Gram-Charlier profile the parameter errors are relatively
low given the value of each parameter, this is reflective of the good quality of the fit.
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Parameter Value Error

f0.Mass 1.0079 0
f0.SigmaX 3.0069848 9.52070
f0.SigmaY 3.5111716 16.91488
f0.SigmaZ 4.1116870 3.414547
f0.Intensity 0.8536424 0.83102
f1.Mass 12.011 0
f1.Width 10 0
f1.Intensity 0.0216973 1.278684
f2.Mass 15.9 0
f2.Width 13 0
f2.Intensity 3.35907 1.24844
f3.A0 -0.01038 0.005909
f3.A1 4.224282 46.1621
f3.A2 2595.102 75832.87
Cost Function 1.68549 0

Table 9: Fitted parameters for water sample using multivariate Gaussian

In the case of the multivariate Gaussian the parameter errors are noticeably larger, particularly for
the σα parameters of the multivariate Gaussian profile.

Table 10 shows a companion between the mean kinetic energies calculated for the sample analysed
above and a similar water sample (at 285K) analysed by Romanelli.

Parameter Multivariate Gaussian Romanelli [12]

〈EK〉x 46.25 18.3
〈EK〉y 63.05 51.8

〈EK〉z 86.46 83.8

Table 10: Comparison of mean kinetic energies (meV)

The results of my implementation give similar results to that of Romanelli’s previous analysis, there
are obvious deviations from is results however given the errors on the parameters produced by my results
this is certainly expected.

5.1.2 Ice

Fitted curves for the same profile fitting data from a sample of ice are shown for the Gram-Charlier
profile and multivariate Gaussian profile in figures 17 and 18 respectively.

As before the Gram-Charlier profile is a very good fit given the noise in the sample data. Some small
fluctuations in the difference curve (shown in green) can be seen under the Hydrogen peak.
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runs: 18707-18709 (ice) - spectrum: 143
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Figure 17: Fitting results for ice sample using Gram-Charlier

Similarly in the fit using the multivariate Gaussian profile, the Hydrogen peak is fitted reasonably
well. There are two noticeable peaks in the difference curve at either side of the Hydrogen peak, this is
due to convergence on bad fitting parameters.

runs: 18707-18709 (ice) - specrum: 143
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Figure 18: Fitting results for ice sample using multivariate Gaussian

The parameters for both fitting models are shown in tables 11, for the Gram-Charlier profile and 12
for the multivariate Gaussian.
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Parameter Value Error

f0.Mass 1.0079 0
f0.Width 4.61202317 0.36917
f0.FSECoeff 0.543532 0
f0.C 0 115.3064 8.69815
f1.Mass 12.011 0
f1.Width 10 0
f1.Intensity -7.05674e-07 0.0223604
f2.Mass 15.9 0
f2.Width 13 0
f2.Intensity 5.689151 1.56584
f3.A0 -0.0068479 0.0199176
f3.A1 10.8744496 160.853
f3.A2 1.00203 263695
Cost Function 1.0332 0

Table 11: Fitted parameters for ice sample using Gram-Charlier

As before the parameters and errors for the fit using the Gram-Charlier profile are reflective of a very
good fit.

Parameter Value Error

f0.Mass 1.0079 0
f0.SigmaX 3.02910 101.9631
f0.SigmaY 3.18033 117.5588
f0.SigmaZ 4.17846 7.002974
f0.Intensity 0.873875 1.87307
f1.Mass 12.011 0
f1.Width 10 0
f1.Intensity 0.044426 4.503
f2.Mass 15.9 0
f2.Width 13 0
f2.Intensity 1.86952 4.373681
f3.A0 -0.010624 0.020005
f3.A1 3.79177 158.3326
f3.A2 2638.56 260539
Cost Function 1.0942 0

Table 12: Fitted parameters for ice sample using multivariate Gaussian

The parameters for the fit using the multivariate Gaussian show a large uncertainty in the σα pa-
rameters. This is expected given the observed peaks in the difference curve under the Hydrogen peak.

Table 10 shows a companion between the mean kinetic energies calculated for the ice sample analysed
above and a similar sample of ice (at 271K) analysed by Romanelli.

Parameter Multivariate Gaussian Romanelli [12]

〈EK〉x 46.93 28.9
〈EK〉y 51.73 38.1

〈EK〉z 89.29 86.7

Table 13: Comparison of mean kinetic energies for ice sample (meV)

As with the water sample my results for the kinetic energy of the ice sample deviate greatly from
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that of Romanelli, however the change in parameter values between the two samples does still follow the
same trend (i.e. the decrease of 〈EK〉y).

5.2 Model Selection

The model selection algorithm has been tested against a series of known (and some only partially known)
samples in order to provide a reliable indication as to its effectiveness.

These sample have been summarised in table 14.

Runs Sample [container]

Iodobenzoic acid (20K) 19387-19436 C7H5IO2 [Al]
Benzoic acid (20K) 19282-19331 C7H6O2 [Al]
Lithium hydride (100K) 21303-21342 LiH [Al]
Lithium deuteride (100K) 21143-21182 LiD [Al]
Squaric acid (scan) 16929-16948 C4H2O4 [Al]
Boron Nitride (4K) 16648-16655 BN [Sn]
Boron Nitride (300K) 16656-16661 BN [Sn]
Graphite (4K) 16674-16679 C [Sn]
Graphite (300K) 16719-16725 C [Sn]
Super Proton Conductor (scan) 14917-14928 Rb3HSO4 [Al]
Deuterated Ammonium Palladium Hexachloride (scan) 14515-14529 (ND4)2PdCl6 [Al]
Glassy zirconium-beryllium (300K) 22542-22575 Zr40Be60 [Al]
Polycrystalline zirconium-beryllium (300K) 22576-22608 Zr40Be60 [Al]

Table 14: Model selection case studies

The results of each sample that was successfully predicted a model are analysed in detail in the
following sections.

Lithium hydride, lithium deuteride and graphite (300K) failed to find a significant model. In all cases
this was due to the failure of the initial peak finding algorithm to find significant peaks in the sample
data.

When a sample was successfully assigned a model the best model was selected as per the output of
the algorithm and the best fitted spectrum selected manually based on the masses identified. All samples
were fitted within the 142 to 148 spectra range.

Note that only the fitting parameters relevant to the mass peaks are shown in the parameter tables
(i.e. not the background function).

The mass of Deuterium (D) will only be considered in sample known to contain it, where its atomic
mass is 2.014102.

5.2.1 Iodobenzoic acid

Figure 19 shows the best model found for the sample of iodobenzoic acid. As with all hydrogenous
samples there is a large contribution from Hydrogen in the form of a wide peak around 200µs and a
cluster of heavier masses around 360µs.
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runs: 19387-19436 - spectrum: 142
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Figure 19: Fitted peaks for Iodobenzoic acid

The parameters describing the best model for iodobenzoic acid are shown in table 15.
Out of the masses detected this was a relatively good fit. The only misidentified mass was Oxygen

which was identified as Nitrogen, however given the close masses of the two elements (14.007 vs 15.999)
this is a reasonable error.

There are two masses missing from the identification; Carbon and Iodine. It is possible that the
peak identified as Nitrogen was actually a combination of the contributions for both Carbon and Oxygen
given the closeness of their atomic masses.

Parameter Value Error Closest Element Likely Element

f0.Mass 14.9833 8.86602 N O
f0.Width 0.0666095 614.831 - -
f0.Intensity 2.04385 5.25302 - -
f1.Mass 1.04072 0.0262829 H H
f1.Width 0.038286 57.0594 - -
f1.Intensity 1.57235 0.804694 - -
f2.Mass 27.4341 118.367 Al Al
f2.Width 0.419496 1065.94 - -
f2.Intensity 0.458271 5.24503 - -
Cost function 2.59649 0 - -

Table 15: Masses predicted for Iodobenzoic acid

One issue notable both here and throughout the rest of the samples is the low quality of the fitted
parameters of the selected model. In this sample the lowest error of a fitted mass is approx. 40% (in the
case of f1.Mass) and in the case of f2.Mass the error far exceeds the value of the parameter.

This does not give good reliability to the model generated, however as demonstrated in this case it is
sufficient to determine masses in the sample which can then be used in the existing workflow to obtain
a higher quality fit.

5.2.2 Benzoic acid

The best model for benzoic acid is shown by figure 20. This shows the prominent (yet missed by the
selection algorithm) Hydrogen peak and a relatively wide peak contributed to by the heavier masses.

There is also a significant overestimation of the background function (shown by the dark purple line).
As the peak of this can be seen to be around the 100µs to 300µs region the most likely cause of this is
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the fact that the large Hydrogen peak has not been fitted. Therefore the background function sees this
as noise to be removed.

runs: 19282-19331 - spectrum: 142
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Figure 20: Fitted peaks for Benzoic acid

The parameters describing the bets model are given in table 16.
This shows that multiple peaks have been fitted to what is most likely a contribution form the same

mass. This is most obvious in f1.Mass and f3.Mass (which correspond to the cyan and orange lines in
figure 20 respectively).

Only two of the four elements present in this sample could be attributed to the generated fitting
parameters and only one of them (Carbon) could be inferred without knowledge of the sample.

Parameter Value Error Closest Element Likely Element

f0.Mass 8.72683 0.851248 Be C
f0.Width 4.95629e-07 0 - -
f0.Intensity 0.493435 3.84378 - -
f1.Mass 21.0068 0.553725 Ne Al
f1.Width 1.34619e-06 0 - -
f1.Intensity 1.62224 4.10071 - -
f2.Mass 13.0533 1.48582 C C
f2.Width 1.52466e-06 0 - -
f2.Intensity 1.78076 3.96747 - -
f3.Mass 21.0065 0.441612 Ne Al
f3.Width 8.65973e-06 5.96076e-07 - -
f3.Intensity 1.29374 4.1007 - -
Cost function 4.62681 0 - -

Table 16: Masses predicted for Benzoic acid

The low quality of this selection is likely due to two issues; the low quality of the fit alluded to by
the high cost function value and erroneous width parameter values and the fact that multiple peaks have
been fitted for the same mass.

5.2.3 Squaric acid

The sample of squaric acid shown in figure 21 is another example of a hydrogenous sample with two
distinct peaks; the broad Hydrogen peak and a peak around the cluster of heavy masses.

In this case despite the large cost function value shown in table 17 the fit is reasonable with the
exception of the underestimated Hydrogen peak and overestimated background function.
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As with the boron nitride sample, the overestimated background is likely partly due to the underes-
timation of the Hydrogen peak.

runs: 16929-16948 - specturm: 143
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Figure 21: Fitted peaks for Squaric acid

The parameters of this model are given in table 17.
Generally there is good agreement between the fitted masses and the mass the peak is most likely to

correspond to, keeping in mind the proximity of Boron and Carbon in terms of atomic mass.

Parameter Value Error Closest Element Likely Element

f0.Mass 34.5203 146.887 Cl Al
f0.Width 0.0137715 25682.8 - -
f0.Intensity 2.213 22.8747 - -
f1.Mass 17.031 29.7924 O O
f1.Width 0.0153673 24686.8 - -
f1.Intensity 2.19405 40.8207 - -
f2.Mass 1.0489 0.00928642 H H
f2.Width -1.35839e-05 0.0223607 - -
f2.Intensity 3.14565 0.383372 - -
f3.Mass 11.2096 16.754 B C
f4.Width 0.0155789 3558.19 - -
f5.Intensity 2.19305 20.6385 - -
Cost function 5.80133 0 - -

Table 17: Masses predicted for Squaric acid

Again with these fitted results there is consistently higher than desired error values on every param-
eter, however this is partially expected for a fit where obvious features have not been correctly defined
(i.e. the Hydrogen peak).

5.2.4 Boron Nitride (4K)

The fit of the best model for boron nitride as shown by figure 22 is one of the highest quality fits of the
samples used in these case studies.

This is characterised by the relatively low (yet still higher then desired) parameter errors and low
cost function value in table 18 and the good description of the sample data by the fit curve (displayed
in red).
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runs: 16648-16655 - spectrum: 143
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Figure 22: Fitted peaks for Boron Nitride at 4K

Despite the quality of the fit each of the predicted masses have been misassigned, however in the case
of Boron and Nitrogen this can be expected given the proximity of the misassigned elements.

The misassignment of Tin is most likely due to noise in the sample data making the true peak centre
difficult to observe, therefore a shift in the peak centre would make little difference to the fit quality.

Parameter Value Error Closest Element Likely Element

f0.Mass 15.9064 1.59037 O N
f0.Width 10.3502 1.02807 - -
f0.Intensity 3.71348 5.53052 - -
f1.Mass 6.8638 2.95772 Li B
f1.Width 2.99084e-07 0 - -
f1.Intensity 0.744579 6.42603 - -
f2.Mass 177.747 0.00661947 Hf Sn
f2.Width 1.90087e-07 0 - -
f2.Intensity 0.852565 7.47332 - -
Cost function 0.964627 0 - -

Table 18: Masses predicted for Boron Nitride at 4K

5.2.5 Boron Nitride (300K)

In the case of boron nitride at 300K as shown in figure 23 similar mass missassignments have been made,
however the model selection preferred a model with 4 masses which slightly changed the nature of the
missassignment.
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runs: 16656-16661 - spectrum: 142
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Figure 23: Fitted peaks for Boron Nitride at 300K

The parameters for this mode are given in table 19.
The peak misassignments for this sample are typically further from the correct mass than the same

sample at 4K. The reason for this is likely due to the addition of an extra peak in the model, this causes
peaks to be more spread out across the observed peak in the sample data rather than converging on
more reasonable peak centres.

Parameter Value Error Closest Element Likely Element

f0.Mass 7.63575 2.62601 Li B
f0.Width -6.48345e-07 44.7214 - -
f0.Intensity 0.892253 5.13656 - -
f1.Mass 19.9917 1.39316 Ne N
f1.Width 9.52517e-07 0 - -
f1.Intensity 2.82771 5.35195 - -
f2.Mass 130.97 0.0289522 Xe Sn
f2.Width 9.80083e-07 0 - -
f2.Intensity 2.27163 5.8403 - -
f3.Mass 11.3929 4.7515 B B
f3.Width 1.02277e-06 0 - -
f3.Intensity 3.35674 5.19103 - -
Cost function 1.01451 0 - -

Table 19: Masses predicted for Boron Nitride at 300K

This is still a relatively good fit given the low parameter errors and cost function value, the failure
of the model selection in both cases of the boron nitride sample is most likely due to noise in the sample
data.

5.2.6 Graphite (4K)

Graphite is another example of a sample that generates a good quality fit from its best model, as shown
in figure 24.

In this case the model selection correctly predicted the number of masses and the position of the
most significant mass (Carbon). Tin being the container material so is almost always known before the
experiment.
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runs: 16674-16679 - spectrum: 145
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Figure 24: Fitted peaks for Graphite 4K

The parameters in table 20 show reasonable confidence in the prediction of the Carbon contribution
given the low error on the f0.Mass parameter. Whereas the prediction of Tellurium (which in this sample
must be the Tin container) is questionable given the consistently high error on all parameters.

Parameter Value Error Closest Element Likely Element

f0.Mass 11.8535 1.9326 C C
f0.Width 12.4429 4.91039 - -
f0.Intensity 3.75095 1.00662 - -
f1.Mass 128.033 136.74 Te Sn
f1.Width 0.000175556 9.99318e+06 - -
f1.Intensity 0.98068 0.908481 - -
Cost function 1.11158 0 - -

Table 20: Masses predicted for Graphite at 4K

The quality of this fit is generally very good, as demonstrated by the low cost function value and
visually good description of the sample data. Given this has also been seen with both boron nitride
samples it is a reasonable assumption that the complexity of the sample plays a role in the accuracy of
the model selection algorithm.

5.2.7 Super Proton Conductor

The best model generated for a super proton conductor (Rb3HSO4) is shown in figure 25. This is another
example where the quality of the fit of the best model has been reasonably good visually.

The number of masses in the sample has been underestimated, only 3 have been identified as opposed
to the 5 present in the sample and container.
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runs: 14917-14928 - spectrum: 143
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Figure 25: Fitted peaks for Super Proton Conductor

The parameters describing the model are shown in table 21.
This shows that all detected peaks have been misassigned, this is almost certainly due to the over-

simplification of the selected model. In this model multiple masses will be contributing to a single peak,
therefore shifting the observed peak centre that is fitted by the model selection algorithm.

Parameter Value Error Closest Element Likely Element

f0.Mass 11.5321 5.0778 C O
f0.Width -7.26446e-07 0.0223607 - -
f0.Intensity 0.46858 1.28711 - -
f1.Mass 87.932 581.984 Sr Rb
f1.Width 0.000565619 2.87817e+06 - -
f1.Intensity 1.30862 6.45269 - -
f2.Mass 21.2588 35.5052 Ne Al
f2.Width 0.0920639 2736.79 - -
f2.Intensity 1.26992 7.53864 - -
Cost function 1.13736 0 - -

Table 21: Masses predicted for Super Proton Conductor

Despite the good visual fit and cost function value, the quality of the fit in terms of parameter errors
is less than desirable. Particularly with the high errors of the mass parameters which often exceed the
value its self.

5.2.8 Deuterated Ammonium Palladium Hexachloride

The sample of deuterated ammonium palladium hexachloride shown in figure 26 is another example of
where oversimplification of the best model causes peaks to be misassigned.

In this case only 2 of the 5 masses in the sample and container were identified.
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runs: 14515-14529 - spectrum: 145
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Figure 26: Fitted peaks for Deuterated Ammonium Palladium Hexachloride

The parameters for this model as described in table 22 further show the poor quality of the fit given
the erroneous values assigned to certain parameters (e.g f2.Width) and high parameter errors.

The fit its self contains several erroneous features, two of the most prominent are the shape of the
background which forms a negative parabola centred around 310µs and the fit of the second mass peak
(cyan on figure 26) which appears to be a very wide peak.

These two features seem to be cancelling each other out as the difference curve (green line) appears
to remain centred around y = 0 between the two between the 200µs to 500µs region.

Parameter Value Error Closest Element Likely Element

f0.Mass 0.984636 128.52 H D
f0.Width 2.83965 3.8558 - -
f0.Intensity 4.48147 4.20866 - -
f1.Mass 1.00794 74.0645 H D
f1.Width 20.1118 2.93947 - -
f1.Intensity 24.1379 2.2865 - -
f2.Mass 34.3805 1.55398 Cl Cl
f2.Width 9.04439e-07 0 - -
f2.Intensity 4.48988 14.3249 - -
Cost function 1.32818 0 - -

Table 22: Masses predicted for Deuterated Ammonium Palladium Hexachloride

5.2.9 Glassy zirconium-beryllium

A sample of glass like zirconium-beryllium is show in in figure 27.
The fit of this data is generally good despite there being an additional predicted mass (shown by the

cyan line), ideally this mass would not have been predicted and the intensities of the other two masses
increased to maintain the good fit.
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runs: 22542-22575 - spectrum: 142
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Figure 27: Fitted peaks for glassy zirconium-beryllium

The parameters for this fit are shown in table 23.
There is a single erroneous parameter; f0.Width, which is not reflected in the data as the peak seems

to match the data well. The mass of this peak is also fitted with a value lower than it should be, however
looking at the experimental data it would appear that the fitted value was in fact too high.

Both of these issues could be an artefact of the additional mass being fitted, however if the erroneous
peak were to be removed one would expect the position of the first peak (shown by the blue line) to shift
down to match the experimental data.

Parameter Value Error Closest Element Likely Element

f0.Mass 85.2165 0.146364 Rb Zr
f0.Width 5.71076e-06 0 - -
f0.Intensity 7.59551 3.80516 - -
f1.Mass 7.89529 1.84715 Li Be
f1.Width 24.6869 0.647833 - -
f1.Intensity 10.2838 1.59485 - -
f2.Mass 9.66407 5.9531 Be Be
f2.Width 8.79777 2.36345 - -
f2.Intensity 12.7169 2.57865 - -
Cost function 0.966989 0 - -

Table 23: Masses predicted for glassy zirconium-beryllium

Again this fit seems to be very good based on the majority of parameter errors and the cost function
value. It seems less likely that the failure to identify all masses in this case is the result of the sample
data given the lack of noise.

5.2.10 Polycrystalline zirconium-beryllium

A sample of polycrystalline zirconium-beryllium (shown in figure 28) was provided as an example of a
typical use case in that it contains an unexpected contribution which could be from an additional mass.

This additional contribution is visible around the 325µs area between the mass peaks for Beryllium
and Zirconium which cannot be seen on the glass like zirconium-beryllium sample.

The selected model also contains an erroneous peak f3 shown as an orange line on the plot. This is
made obvious when looking at the parameters in table 24 which show a negative mass for this peak.
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Figure 28: Fitted peaks for polycrystalline zirconium-beryllium

As shown in table 24 the additional contribution has been associated to the Aluminium container.
It is unlikely that this is the sole contribution to this given that the glass like zirconium-beryllium is

also in an Aluminium container and does not show this additional contribution.

Parameter Value Error Closest Element Likely Element

f0.Mass 8.84957 7.51495 Be Be
f0.Width 8.46154 2.76017 - -
f0.Intensity 13.7909 2.61793 - -
f1.Mass 24.4406 0.922142 Mg Al
f1.Width 11.951 0.808455 - -
f1.Intensity 6.50716 3.35977 - -
f2.Mass 172.097 0.0261974 Hf Zr
f2.Width 1.53296e-06 0 - -
f2.Intensity 4.79642 4.31215 - -
f3.Mass -4.49654 0.861339 n/a n/a
f3.Width 23.4736 0.167577 - -
f3.Intensity 2.57311 1.85932 - -
Cost function 1.01689 0 - -

Table 24: Masses predicted for polycrystalline zirconium-beryllium

The results of this fit (and several others) highlight another issue in the fitting performed by the
Bayesian model selection in that the constraints of the fit function do not appear to be respected. An
example of which is visible here by the fitted value of the f3.Mass parameter being negative.
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6 Further Development

This section describes additional work that could be carried out to improve on the additional features
implemented as part of this dissertation and how they assist is better meeting the objectives set out at
the start of the project.

6.1 Multivariate Gaussian multiple scattering correction

Further work is required to allow a correctly scaled multiple scattering correction when fitting with the
multivariate Gaussian function, as already mentioned in section 3.3.4.

While the true cause of this is yet to be found it is clear that the problem originates from the difference
in relative intensities between the fitted Hydrogen peaks between the multivariate Gaussian model and
other models.

The main issue with the lack of correct multiple scattering corrections is the lack of consistency
between results of the entire workflow using the Gram-Charlier profile and when using the multivariate
Gaussian profile. The difference being brought about due to the difference in the data spectrum at the
start of the final fitting stage.

However if the calculated multiple scattering correction is too unmatched to the sample data then
the correction scale factor fit will most likely attenuate the correction to a greater degree before it is
applied to the sample data.

6.2 Optimise calculation of multivariate Gaussian mass profile

A simple improvement that could be undertaken with respect to the multivariate Gaussian is to optimise
the calculation of the Compton profile and A3 FSE correction to be performed in the same integration,
this would greatly reduce the computational complexity introduced by the nested loop under which the
integration is performed.

Under this new method the fitted function would become:

y′ = I · J(y, q) =

∫ 1

0

d(cosθ)

∫ π
2

0

dφ (J −A3(q)) exp

(
− y2

2S2(θ, φ)

)
(29)

where; J and A3(q) are pre calculated factors defined by equations 30 and 31 respectively.

J =
1√

2πσxσyσz

2

π
S2(θ, φ) (30)

A3(q) =
σ4
x + σ4

x + σ4
x

9
√

2πσxσyσzq

[
y3

S2(θ, φ)4
− 3

y

S2(θ, φ)2

]
(31)

6.3 Optimise, constrain and cull generated models

Ideally the number of models created after the initial peak finding stage should be as low as possible to
decrease the time and chance of a bad model being selected in the Bayesian model selection stage and
models should be as simple (i.e. the lowest number of degrees of freedom) as possible in order to prevent
a good fit being generated for a bad model.

6.3.1 Degrees of freedom reduction

One possible way to both decrease the time taken for a fit in the Bayesian model selection stage is to
reduce the degrees of freedom (number of freely fitted parameters) by fixing certain parameters.

One possible example is the width of the peaks associated with heavy masses (> 4amu). This will
reduce the chance that such peaks could be fitted to a spike in background noise (with a very small
width) or fitted to a curve in the background (with a very large width).
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6.3.2 Using diffraction data

Through analysis of a diffraction experiment on VESUVIO (or any other powder diffractometer for that
matter) it is possible to build a crystal structure from which the atomic vibrations within the sample
can be modelled.

The parameters describing this atomic vibration can be related back to momentum distribution
through thermal parameters U and B (in the case of isotropy) using the Debye [1] model.

Being able to obtain the momentum distribution would allow stricter constraints to be placed on the
models used in the Bayesian model selection, reducing the chance of a bad model being selected.

This additional functionality would require further investigation into the state of powder diffraction
reduction in MANTID, at the time of writing there is ongoing work to standardise the reduction of powder
diffraction data which may provide the majority of the additional functionality required to implement
these additional constraints. Otherwise this would require the implantation of a new diffraction reduction
algorithm for VESUVIO.

6.4 Improved robustness of initial peak finding

As already described in section 4.3.2 a significant issue in the full automation of the model selection
workflow was the inability to reliably obtain an initial prediction of peak positions.

There are multiple ways to address this problem; require the user to supply information to improve
the quality of the existing peak finding method, run the existing peak finding method over a series of
parameters, improve the quality of the sample data before initial peak finding is performed or implement
a new peak finding algorithm.

Parameterise peak finding

The easiest option is to provide the option to set the Tolerance and FWHM parameters of the
FindPeaks to the user when they run the model selection routine. This would still require the same
running, manual inspection and possible re-running until the results were as expected which defeats the
purpose of this algorithm.

Run existing algorithm over multiple parameter sets

An alternative to the previous option would be to create a list of parameters that would ensure all
true peaks would always be found and execute the FindPeaks algorithm over each set of parameters.
The found peaks would then be inspected and peaks that fall outside of the range possible for a mass
peak would be removed, duplicate peaks would be identified with the peak with the widest width kept
and others removed.

Two issues arise from this method:

1 The wide range of parameters will almost certainly introduce more spurious peaks which if not
removed can cause issues in the Bayesian model selection stage. Both in terms of execution speed
as this will cause more complex models to be created which take longer to optimise and depending
on the relative quality of true mass peaks to false peaks there is potential for the most suitable
model selected by the routine to contain false peaks.

2 The initial peak finding will take longer than it currently does, however this is a relatively fast
process in the context of the entire model selection routine.

Improve signal to noise ratio in sample data

The signal to noise ratio of the sample data could potentially be improved by first fitting a background
function to the sample data to obtain a background correction. The function used would most likely be
a polynomial of order 2 in order to match that used by default in the standard analysis workflow.

This would assist in reducing the number of spurious peak identifications, however would not address
the issue of missing true peaks. A realistic solution could be to employ this solution alongside the first
or second method mentioned previously.
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Implement new peak finding algorithm

Another solution is to implement a new peak finding algorithm to use as an alternative to the current
FindPeaks algorithm. This would require further investigation to find an appropriate algorithm.
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7 Conclusions

In this section I will review the project and how well it has met the original objectives as well as identify
the causes of any problems hindering the project from meeting those objectives.

7.1 Objectives

7.1.1 Multivariate Gaussian fitting

I am confident the implementation of the multivariate Gaussian peak profile is correct and that if given
a set of parameters that are known to describe an anisotropic mass peak, it would do so correctly.

The issues faced in section 5.1 are more likely to be caused by a combination of the higher dimen-
sionality of the multivariate Gaussian fit function and the lack of constrains placed upon the parameters,
other than basic constrains such as intensity being greater then zero, etc.

During the ongoing testing while implementing the new fit function I also had access to a different
data set which had considerably less noise, as such the possibility that the issues observed are related
somehow to noisy data is not zero, however it is unlikely.

If the multivariate Gaussian profile were to undergo the improvements mentioned in section 6 and
investigation into a suitable set of constrains then I am confident this could become a usable part of the
VESUVIO analysis workflow.

That being said, the implemented fit function and its integration into the analysis workflow are
already part of MANTID and will be available to users as of the next release of the software.

7.1.2 Model selection

Whilst the model selection algorithm is not at a stage at which it could be widely used it is a reasonable
indication of an unknown sample composition, especially for samples that doe not have a very complex
composition (those with less than four masses typically perform best).

Out of the predictions made over all samples analysed as part of the case studies (section 5.2) 62%
of all masses in the sample were identified as being present by the algorithm. This includes masses that
were incorrectly identified (i.e. the closest atomic mass was not that of the expected element) but still
within the error bars of the fitted mass parameter.

34% of all masses identified by the algorithm were identified correctly, a correct identification is where
the element with the closest atomic mass to the mass reported by the model selection algorithm is a
contributor to the peak being fitted. This is seen in the case studies as the Closest Element and Likely
Element columns containing the same element for a given fitted peak.

This level of accuracy is considerably less that desired for the model selection routine in its current
form to become a standard part of the VESUVIO analysis workflow. Given the amount of time taken
for the current workflow a failure of this routine to correctly identify masses could end up costing more
time than manual examination of the data and deduction of the mass based on knowledge of the sample
would.

Several ways in which this accuracy could be increased have already been discussed in section 6, these
ideas should be used to adapt the current routine into a truly robust model selection routine.

7.2 Summary

Overall I feel that this project would have progressed more if the original objectives had focused more
on a single are rather than the two distinct areas of fitting and model selection. Having to work on two
separate areas of the analysis workflow put too much of a strain on the time available for this project.

In the original objectives I state that at the end of the project what I aim to have are a set of additions
to the existing VESUVIO workflow that are ready to be used by scientists to analyse their data, in this
respect the project was partly unsuccessful. However what has been produced (especially in the case of
the model selection algorithm) is a basis for further work on these features which will result in a more
polished and ready to use solution to the problems this project aims to solve.
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My time working on MANTID both in the past and during this project has provided me with enough
knowledge and motivation to continue work in these areas of VESUVIO data analysis and produce what
I set out to at the start of this project.
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Appendices

A Example Workflow Script

1 from vesuvio.workflow import fit_tof
2

3 ## Standard flags to modify processing
4

5 runs = "15039-15045"
6

7 flags = dict()
8

9 flags[’fit_mode’] = ’spectra’
10 flags[’spectra’] = ’143-150’
11 flags[’bin_parameters’] = None
12

13 mass1 = {’value’: 1.0079, ’function’: ’GramCharlier’, ’width’: [2, 5, 7],
14 ’hermite_coeffs’: [1,0,0], ’k_free’: 0, ’sears_flag’: 1}
15 mass2 = {’value’: 16.0, ’function’: ’Gaussian’, ’width’: 10}
16 mass3 = {’value’: 27.0, ’function’: ’Gaussian’, ’width’: 13}
17 mass4 = {’value’: 133.0, ’function’: ’Gaussian’, ’width’: 30}
18 flags[’masses’] = [mass1, mass2, mass3, mass4]
19

20 flags[’intensity_constraints’] = list([0, 1, 0, -4])
21

22 flags[’background’] = {’function’: ’Polynomial’, ’order’: 2}
23

24 ## Corrections flags
25

26 flags[’output_verbose_corrections’] = True
27

28 flags[’container_runs’] = None
29 flags[’fixed_container_scaling’] = None
30

31 flags[’gamma_correct’] = True
32 flags[’fixed_gamma_scaling’] = None
33

34 flags[’ms_flags’] = dict()
35 flags[’ms_flags’][’SampleWidth’] = 10.0
36 flags[’ms_flags’][’SampleHeight’] = 10.0
37 flags[’ms_flags’][’SampleDepth’] = 0.5
38 flags[’ms_flags’][’SampleDensity’] = 241
39

40 # Optional parameters (default values are given)
41 # flags[’ms_flags’][’Seed’] = 123456789
42 # flags[’ms_flags’][’NumScatters’] = 3
43 # flags[’ms_flags’][’NumRuns’] = 10
44 # flags[’ms_flags’][’NumEvents’] = 50000
45 # flags[’ms_flags’][’SmoothNeighbours’] = 3
46 # flags[’ms_flags’][’BeamRadius’] = 2.5
47

48 ## Advanced flags
49

50 flags[’ip_file’] = ’IP0004_10.par’
51 flags[’diff_mode’] = ’single’
52

53 flags[’max_fit_iterations’] = 5000
54 flags[’fit_minimizer’] = ’Levenberg-Marquardt,AbsError=1e-08,RelError=1e-08’
55

56 flags[’iterations’] = 1
57 flags[’convergence’] = None
58

59 ## Run fit
60 fit_tof(runs, flags, flags[’iterations’], flags[’convergence’])

Listing 1: Example workflow driver script
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B List of contributions to the MANTID project

The following is a list of code contributions to the MANTID project made as a result of work carried
out on this project.

Allow fitting atomic mass of peak
Modifies the ComptonProfile fit function to allow the atomic mass of the peak being fitted by the
function to be a fitted parameter rather than a static attribute.

https://github.com/mantidproject/mantid/pull/15675

Multivariate Gaussian profile
Adds the fit function for the multivariate Gaussian profile and integrates it into the existing VESU-
VIO analysis workflow.

https://github.com/mantidproject/mantid/pull/15773

Model selection algorithm (work in progress)
Initial development of the model selection algorithm.

https://github.com/mantidproject/mantid/tree/14943_vesuvio_model_selection
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