
The Hellerman-Rarick algorithm

IS Duff, AM Erisman, JK Reid

April 2017

 Technical Report
RAL-TR-2017-003

©2017 Science and Technology Facilities Council

This work is licensed under a Creative Commons Attribution 3.0
Unported License.

Enquiries concerning this report should be addressed to:

RAL Library
STFC Rutherford Appleton Laboratory
Harwell Oxford
Didcot
OX11 0QX

Tel: +44(0)1235 445384
Fax: +44(0)1235 446403
email: libraryral@stfc.ac.uk

Science and Technology Facilities Council reports are available online
at: http://epubs.stfc.ac.uk

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for
loss or damage arising from the use of information contained in any of
their reports or in any communication about their tests or
investigations.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
mailto:libraryral@stfc.ac.uk
http://epubs.stfc.ac.uk/
http://creativecommons.org/licenses/by/3.0/�

The Hellerman-Rarick algorithm

I. S. Duff1, A. M. Erisman2, and J. K. Reid1

ABSTRACT

We describe an algorithm for achieving a bordered block triangular form, including the case

where the diagonal blocks are themselves in this form. The original algorithm was created by

Hellerman and Rarick (1971, 1972) for solving linear programming problems. We include an

extension of this algorithm for overcoming the problem of structural singularity in intermediate

steps introduced by Erisman, Grimes, Lewis and Poole (1985). Two areas requiring further work

include: dealing with safeguards against numerical instability when factorizing the diagonal blocks

of the form, and dealing with parallelization, cache management, and memory management for

large problems. Only after doing these things would it be appropriate to explore what niche, if

any, these algorithms might address when implemented in a modern computer architecture for

the solution of very large problems.

Keywords: Bordered block triangular form, structural singularity, sparse matrices, solution of

very large problems, modern computer architectures.

AMS(MOS) subject classifications: 65F05 Direct methods for linear systems and matrix

inversion, 65F50 Sparse matrices, 90C05 Linear programming.

1 Scientific Computing Department, STFC Rutherford Appleton Laboratory, Harwell Campus,

Oxfordshire, OX11 0QX, UK.

2 11008 SE 24th Pl., Bellevue, Wa 98004, USA

Correspondence to: Iain.Duff@stfc.ac.uk

April 10, 2017

Figure 1: Bordered block triangular form.

1 Introduction

Between 1970 and the early 1980s, a large number of algorithms were developed for the

preservation of sparsity in the factorization of large matrices. Most fall into three major categories:

local orderings, dissection schemes, and banded (and variable banded) methods. There has been

significant work on the algorithms to adapt them to modern computer architectures, enabling

the solution of much larger problems. Unlike the early period when a good algorithm focused

on reducing multiplication counts, modern architectures require careful consideration of caching,

parallelization, data locations, and movement of data in general. This updated picture is captured

in our book Direct Methods for Sparse Matrices (Duff, Erisman and Reid 2017).

However, there are some interesting algorithms from the early period that have fallen out of

favour under the old rules. One is the Hellerman-Rarick algorithm for permuting to the bordered

block triangular form (Figure 1). We included a careful write-up of it in the first edition of our

book (Duff, Erisman and Reid 1986) because we could not find a clear presentation elsewhere. For

many reasons, including competitiveness with local orderings, little attention to this algorithm

has been paid since that early period, so we removed our write-up of it from the second edition.

This report reproduces this write-up because on modern computer architectures, simply reducing

multiplication counts is not a good enough measure of the success of a method. Careful memory

and cache management and algorithmic parallelization are huge factors in the success of an

algorithm in this environment. We do not know whether this algorithm could be competitive in

this environment for some class of problems, but we invite this exploration.

To lay the groundwork for such studies, we describe the method here. Its intriguing structure,

not neatly fitting in the three categories identified, suggests this might be a worthwhile pursuit.

2 The Boeing version of the Hellerman-Rarick algorithm

Hellerman and Rarick (1971) introduced an algorithm which they called the preassigned pivot

procedure (P 3) and later (Hellerman and Rarick 1972) suggested an initial step of permuting to

block lower triangular form to be followed by the application of the earlier (P 3) algorithm to each

diagonal block. This later algorithm is called the partitioned preassigned pivot procedure (P 4).

A two-stage algorithm is normally used for permuting to block triangular form:

1. permute entries onto the diagonal, and

2. use symmetric permutations to find the block form itself.

1

Figure 2: The permuted matrix at a typical intermediate stage of the P 5 algorithm.

Algorithms based on the work of Kuhn (1955), which use a depth-first search, are efficient for the

first stage and are discussed in Section 6.4 of Duff et al. (2017). The algorithm of Tarjan (1972)

is efficient for the second stage and is discussed in Section 6.5.3 of Duff et al. (2017). We believe

that this two-stage process is the most efficient algorithm available for practical problems. We

therefore describe only the treatment of each block on the diagonal of the block triangular form.

Each such block is irreducible (cannot be permuted to block triangular form), so it suffices to

limit our description to the case where the original matrix is irreducible.

In this section, we consider a variant of the P 3 algorithm due to Erisman et al. (1985) because

it is a simplification and is therefore easier to describe. They call it P 5 (precautionary partitioned

preassigned pivot procedure). It produces a bordered block triangular form (Figure 1). All the

blocks on the diagonal of the block triangular submatrix are dense and the algorithm tries to

make the border thin. The original P 3 algorithm also produces a bordered block triangular form,

but tries harder to make the border thin and the diagonal blocks may themselves be bordered

block triangular matrices. We describe this in the next section.

We assume that the sparse matrix that we are seeking to process is square of order n. At a

typical intermediate stage the permuted matrix has the form illustrated in Figure 2. The leading

p × p submatrix is block lower triangular with dense diagonal blocks. The diagonal entries are

assigned pivots. The q columns in the border are called spike columns by Hellerman and

Rarick for reasons that will be apparent in the next section. Each has a leading dense block in

rows corresponding to a block of the block triangular submatrix. Each of these spike columns

extends at least as far up the matrix as its predecessors. The submatrix of rows 1 to p and

columns p + 1 to n − q is zero. We call the submatrix of rows p + 1 to n and columns p + 1

to n− q the active submatrix since it is within this submatrix that further permutations take

place. We commence with p = q = 0 and the whole matrix active and end with p+ q = n and no

columns left in the active submatrix.

In the first major step of the algorithm, m columns are chosen, where m is the minimum

number of entries in a row. Some or all of them make up the leading block column and the rest

2

1 2 3 4 5 6

1 × × × ×
2 × × ×
3 × × × ×
4 × × ×
5 × × × × ×
6 × × × ×

Figure 3: A 6 × 6 matrix pattern.

6 4 2 5 3 1

4 × × ×
2 × × ×
3 × × × ×
1 × × × ×
5 × × × × ×
6 × × × ×

Figure 4: The matrix of Figure 3 after the first major stage.

make up the end of the border. A column with most entries in rows with count m (we defer

the resolution of ties for the present) is chosen first. After removing this column from the active

submatrix, we will have the greatest possible number of rows with the minimum row count of

m−1. Next a column with most entries in rows with count m−1 is chosen. The process continues

similarly until m columns have been chosen. If the last column chosen has s singletons (rows

with one entry), the rows containing these singletons are permuted to the front and assigned as

pivotal rows. The last s columns selected (s < m, since the matrix is irreducible) are permuted

to the front and assigned as pivotal columns. The remaining m− s columns are permuted to the

back and become the end of the border.

In the simple example shown in Figure 3, the minimum row count m is 3 and column 1, being

a column with most entries in rows having 3 entries, is chosen first. We revise the row counts to

exclude this column and find that column 4 has most entries (2) in rows with the new minimum

row count of 2, so this is chosen next. Now column 6 has singletons in rows 2 and 4. Therefore

we permute rows 2 and 4 and columns 6 and 4 forward to the pivotal block, and permute column

1 to the back to become a border spike. The resulting matrix is shown in Figure 4. The active

submatrix is now rows 3 to 6 and columns 3 to 5 of the permuted matrix.

After the first major step, the matrix will always have the form illustrated in Figure 5. There

is a leading block of order s, there are m− s spikes at the end of the matrix and the first s rows

are otherwise zero. Since every row in the original matrix had at least m entries, the s×s pivotal

block and the first s rows of the border are dense.

The algorithm now treats the active submatrix in exactly the same way, continuing until it

produces the form illustrated in Figure 2. The active submatrix is rectangular, so it is possible

that all the columns selected are assigned as pivotal. The simplest case is when m = 1, in which

case a row singleton is moved to the leading position and assigned immediately as a pivot.

In describing the algorithm, we purposely omitted to say which column is chosen if several

3

Figure 5: The general form after selection of the first set of spikes.

have the maximum number of entries in rows with minimum row count. In this case, Hellerman

and Rarick aim to reduce the number of spikes in later stages by choosing the candidate that has

greatest column count unless they have a single entry in a row of minimum count. In the latter

case, account is first taken of the number of entries in rows of second least row count, then a

remaining column with greatest count is taken.

This completes our description of the algorithm. For ease of reference, we summarize it in

pseudo-algol in Figure 6. It is convenient to describe each column as being permuted to the end

of the active submatrix as it is chosen. If it has s singletons then it and the appropriate number

of its successors are moved forward into the pivotal block.

Erisman et al. (1985) experimented with the use of the implicit factorization(
A11 A12

A21 A22

)
=

(
I

A21A
−1
11 I

)(
A11 A12

A22

)
, (1)

where A11 is the block lower triangular submatrix of the P 5 ordering and the rest is the border,

thereby confining the fill-in to the block A22. Their test comparisons with the algorithm of

Markowitz showed the two to be broadly comparable, with neither consistently better than the

other. Unfortunately they did not have any proposals for safeguards against numerical instability,

so the algorithm cannot be regarded as a serious challenger to that of Markowitz. Because

their goal was structural stabilization rather than numerical stabilization, they did not introduce

strategies for dealing with potentially unstable pivots. Before going further this would need to

be done. Duff et al. (2017) outline some strategies for dealing with small numerical pivots in a

sparse numerical factorization.

3 The Hellerman-Rarick ordering

The aim of Hellerman and Rarick was not so much to produce a bordered block triangular matrix

as to produce a spiked matrix of the form illustrated in Figure 7. By a spike, we mean the part

4

Count the number of entries in the rows and columns;

Initialize the active submatrix to be the whole n× n matrix;

j := 1; while j ≤ n do

begin

find the minimum row count m;

for m1 := m step -1 until 1 do

begin

find the set T of columns with maximum number s of entries in rows with

count of m1;

if there is more than one column in T and s = 1 then find the second

least row count m′ of rows with entries in columns of T and reduce T to

those columns with maximum number of entries in rows with count m′;

choose a column ĵ of T with greatest column count;

exchange column ĵ with the last column of the active submatrix;

remove column ĵ from the active submatrix and revise the row counts to

correspond;
end;

j := j + m;

assign pivots

end;

procedure assign pivots

begin

permute the rows so that the s rows that have just had count 1 are the leading

rows of the active submatrix;

for i := 1 step 1 until min(s,m) do move the first column in the border ahead

of the active submatrix; i = min(s,m);

remove the leading i rows from the active submatrix;

end;

Figure 6: A summary of the P 5 version of the Hellerman-Rarick algorithm in pseudo-algol.

5

Figure 7: A spiked matrix.

Figure 8: The matrix of Figure 7, regarded as a nested bordered block triangular form.

of a spike column that lies on and above the diagonal. Any pair of spikes have the property

that the set of rows for the first is either contained in or disjoint from the set of rows for the

second. This property corresponds to being able to regard each spike as the border of a block

lower triangular form in a properly nested set, as illustrated in Figure 8.

If Gaussian elimination without interchanges is applied to such a sparse matrix, fill-ins can

take place only within spike columns. Indeed the fill-in may be confined to the spikes themselves

if the matrix is reduced to a diagonal matrix by a sequence of elementary row operations that

create zeros successively in the lower triangular part of row k then in the upper triangular part

of column k, for k = 2, 3,..., n. Hellerman and Rarick aim to minimize both the number of spikes

and the extent to which they project above the diagonal.

The total number of spikes produced by Hellerman and Rarick is the same as for the P 5

variant described in the last section, but they try harder to move spikes forward. If an active

submatrix has minimum row count m and the last of the m columns chosen has more than m

singletons, then some of the previously assigned spikes may be moved forward to become pivotal,

× × ×
× × × ×
× × × ×
× × × ×
× × × × ×

× × ×
× × × ×
× × × ×
× × × ×
× × × × ×

× × ×
× × × ×
× × × ×
× × × ×
× × × × ×

Figure 9: A simple example showing extra spikes being moved forward.

6

× × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

× × × × × × × ×
× × × × × × × ×
× × × × × × × ×

Figure 10: The 8 × 8 example of Erisman et al.

which shortens them. A trivial illustration is shown in Figure 9. On the left, the active submatrix

is in rows 2 to 5 and columns 2 and 3, and column 2 contains two singletons. Erisman et al.

(1985) would accept entry (2,2) as a pivot, then find the singleton in column 3 and assign this to

give the form shown in the middle of Figure 9. Hellerman and Rarick, on the other hand, after

finding 2 singletons in column 2 would bring the spike forward to give the last form in Figure 9.

If extra spikes are always brought forward in this way, we may place a zero in a pivotal

position, as is the case for the matrix of Erisman et al. (1985) shown in Figure 10, where column

5 is a spike column that has been moved forward. In this particular case, not only is the fifth

pivot zero, but it remains zero during Gaussian elimination. Hellerman and Rarick do not make

clear how they treat such a situation. Erisman et al. (1985) make the interpretation that if a

column has s singletons, s−m previously assigned spikes are always moved forward, and found

that this variant of the algorithm failed quite often. Since the algorithm is widely used in linear

programming codes, it seems more likely that the authors intended spikes to be brought forward

only if nonzero pivots can be assigned, perhaps with the help of permutations of the singleton

rows. The P 5 approach of never assigning previous spikes seems over-cautious. The pseudo-algol

procedure assign pivots in Figure 11 summarizes this part of the algorithm and replaces the

procedure of the same name in Figure 6. It uses our interpretation of the algorithm, rather than

that of Erisman et al. (1985)

These extra movements can mean that the leading square submatrix is no longer a block

lower triangular matrix with dense diagonal blocks. Instead it is a bordered block lower triangular

matrix (Figure 1) whose diagonal blocks are themselves bordered block triangular matrices, nested

to any depth. When an extra spike is moved forward we add a border to a block triangular matrix

because spikes always start in the same row as a block.

For actual factorization of the matrix, further permutations may be needed, since the

diagonal blocks can be singular or nearly so, even with the P 5 algorithm which avoids structural

singularity. For instance the Figure 12 example (Westerberg, private communication 1974) is

already permuted to the form the algorithm (both versions) leaves. Even though the matrix is

structurally nonsingular, pivoting in the order given will yield a seventh pivot that is zero (that

is the leading 7 × 7 submatrix is structurally singular). Thus the normal implementation of the

Hellerman and Rarick algorithm would fail. Note, however, that if we consider the matrix of

Figure 12 to have a border of order 3 and regard the leading block diagonal matrix of order 6 as

A11 in the matrix (2), then the Schur complement A22−A21A
−1
11 A12 is not structurally singular

7

procedure assign pivots

begin

for i := 1 step 1 until s do

begin
move the first spike column in the border ahead of the active submatrix;

if it is possible to permute the rows so that the i diagonal coefficients

ahead of the active submatrix are entries

then do so

else move the column ahead of the active matrix back to the border and

goto quit;
end i := s+1;

quit: remove the leading i− 1 rows from the active submatrix;

end

Figure 11: The alternative procedure assign pivots, that converts the pseudo-algol program of

Figure 6 to the Hellerman-Rarick algorithm.

× × × ×
× × × ×

× × × ×
× × × ×

× × × ×
× × × ×
× × × ×

× × × × × × × × ×
× × × × × × × × ×

Figure 12: Example with structurally singular leading 7 × 7 submatrix.

and any method which forms this and allows pivoting when solving for the border variables will

succeed (provided A11 is not numerically singular).

Hellerman and Rarick (1971) suggested permuting the spikes whenever necessary, and indeed

interchanging columns 7 and 9 cures the structural singularity of the Figure 12 example. In

general, however, such interchanges alter the form of the matrix even to the extent that the

spikes no longer give a properly nested bordered block triangular form unless some of them are

artificially elongated. For numerical stability it is necessary to avoid all small pivots, even in non-

spike columns. Saunders (1972) suggests column interchanges on these grounds too. This may

further worsen the structure since additional spikes are introduced, but in practice the problem

is not serious if a mild relative pivot tolerance is used. The structure is not altered by row or

column interchanges within inner blocks (for instance we did not alter the structure of the Figure

12 matrix) so it may be worthwhile to try to use such interchanges first.

4 Concluding remarks

The bordered block triangular form offers potential value for a parallel factorization. The steps

of the algorithm outlined in this paper also have potential for investigating an efficient parallel

8

implementation. However, the investigation into the implementation of the Hellerman-Rarick

algorithm had not been done in time to publish the second edition of Direct Methods for Sparse

Matrices, so we chose to eliminate this algorithm from the second edition. Rather than abandon

the algorithm, which we believe has potential promise, we have outlined it and identified what

needs to be done for further consideration.

Acknowledgements

We would like to thank Mike Saunders (Stanford) for his encouragement to issue this as a technical

report and for comments on a draft version.

References

Duff, I. S., Erisman, A. M. and Reid, J. K. (1986), Direct Methods for Sparse Matrices, Oxford

University Press, Oxford, UK.

Duff, I. S., Erisman, A. M. and Reid, J. K. (2017), Direct Methods for Sparse Matrices, Second

Edition, Oxford University Press, Oxford, UK.

Erisman, A. M., Grimes, R. G., Lewis, J. G. and Poole, W. G. J. (1985), ‘A structurally

stable modification of Hellerman-Rarick’s P4 algorithm for reordering unsymmetric sparse

matrices’, SIAM J. Numerical Analysis 22, 369–385.

Hellerman, E. and Rarick, D. C. (1971), ‘Reinversion with the preassigned pivot procedure’,

Mathematical Programming 1, 195–216.

Hellerman, E. and Rarick, D. C. (1972), The partitioned preassigned pivot procedure (P4), in

D. J. Rose and R. A. Willoughby, eds, ‘Sparse Matrices and their Applications’, Plenum

Press, New York, pp. 67–76.

Kuhn, H. W. (1955), ‘The Hungarian method for solving the assignment problem’, Naval Research

Logistics Quarterly 2, 83–97.

Saunders, M. A. (1972), Product form of the Cholesky factorization for large-scale linear

programming, Technical Report STAN-CS-72-301, Department of Computer Science,

Stanford University, Stanford, California.

Tarjan, R. E. (1972), ‘Depth-first search and linear graph algorithms’, SIAM J. Computing 1, 146–

160.

9

	RAL-TR-2017-003 - cover
	RAL-TR-cover&inner-2015
	DLTR cover&inner
	DLTR cover&inner
	DLTR cover&inner
	DLTR cover&inner
	DLTR cover&inner.pdf
	DLTR-2007-004.pdf
	DLTR inner cover

	DLTR inner cover

	DLTR inner cover

	DLTR inner cover

	DLTR inner cover

	RAL-TR-inner-cover-2015

	RAL-TR-inner-cover-2016

	RAL-TR-2017-003 - report

