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Abstract

Man-in-the-middle attacks are one of the most popular
and fundamental attacks on distributed systems that have
evolved with advances in distributed computing technologies
and have assumed several shapes ranging from simple IP
spoofing to complicated attacks on wireless communica-
tions, which have safety-critical applications such as remote
wireless passport verification. This paper proposes a static
analysis algorithm for the detection of man-in-the-middle
attacks in mobile processes using a solution based on precise
timing.

1. Introduction

Man-in-the-Middle (MiM) attacks are one of the most
popular and challenging threats in computing systems and
there is a large body of research dedicated to the detection
and analysis of different forms of these attacks (examples
include [1], [14], [17], [20], [24]). A MiM attack is defined
as an attack in which the intruder is able to read and
write messages communicated between two parties without
either party being conscious of this fact. The attack appears
in many shapes and forms and the sophistication of these
forms has evolved with the evolution of modern computing
systems. In 2004, Citibank’s Citibusiness service was the
victim of a phishing 1.0 attack (a form of MiM attacks
targeted for Web users) in which a fake web page con-
structed to resemble the original service’s page was used
to trick the users into believing they are communicating
with the authentic service, but in reality, compromising their
account details. In safety-critical systems, the problem of
MiMs becomes even more urgent.

In this paper, we are interested in analysing the abil-
ity of mobile systems, such as wireless sensor networks,
in detecting MiM attacks in a timely fashion. Wireless
sensor networks rely on a class of protocols known as
distance-bounding protocols [6], [11], [16], [22] for es-
timating entity distances. In these protocols, the distance
between two entities, measured using precise timing, is
required in defining some of the security properties of the
protocol. For example, the authenticated entity needs to

be at some distance (not more) from the authenticating
entity. This class of protocols is susceptible to a whole
new class of attacks [8], [12], [23] including MiM attacks
[10], for which some solutions have been proposed in [13],
[19], [21]. An article in recent years by Bruce Schneier
(http://www.schneier.com/blog/archives/
2006/04/rfid_cards_and.html) highlights MiM
threats on RFID-enabled passports in cross-border immigra-
tion controls and suggests precise timing mechanisms as a
means of detecting such attacks.

Distance-bounding protocols have the requirement that a
message arrives at its destination in a timely fashion. For
example, consider the following scenario:

@T1 : Alice m1−−−−→ @T2 : Carol

@T3 : Carol m2−−−−→ @T4 : Bob

in which Alice sends a message m1 to Bob at time T1.
The message is intercepted by Carol at time T2, altered to
m2 and then forwarded to Bob at time T3. Finally, Bob
receives m2 at time T4. If Bob is time-sensitive, he would
have two parameters: the first is Texp; the time at which
he expects to receive the message and the second is Diff ;
the maximum difference he is willing to tolerate between
the actual time of receipt and Texp. Therefore, in the above
scenario, one would expect Bob to time-out and reject m2

as inauthentic if |T4 − Texp| > Diff. Otherwise, if Carol
succeeds in modifying m1 in a timely fashion, i.e. such
that |T4 − Texp| ≤ Diff, then Bob is likely to accept the
message as authentic (if all other non-time related criteria
are satisfied).

Our approach in tackling this problem is formal; it is
based on designing a static analysis for capturing name
substitutions in a version of the π-calculus [18] extended
with the notion of timers [5]. This approach follows from
earlier, well-established, works on security analyses for
mobile systems and cryptographic systems (see [3], [4]).
The results of the analysis are used to define a name
integrity property, which itself forms the basis for defining
a MiM attack property. We demonstrate the applicability of
the analysis in a simple example of a distance bounding
protocol.



The rest of the paper is structured as follows. In Section
2, we give an overview of a timed process algebra and
its operational semantics. In Section 2.1, we define a non-
standard semantics for the language and show its soundness
with respect to the operational semantics. An approximation
for the semantics is defined in Section 3, over which a
definition of the MiM property is given in Section 4. Finally,
we show the applicability of the analysis in Section 5 and
conclude the paper in Section 6.

2. TPi: A Process Algebra with Timers

The process algebra we use throughout the paper,
called TPi, is defined according to the following syntax of
processes, P,Q ∈ P , inspired from the calculus of [5]:

P,Q ::=
x〈y〉.P | timert(x(y).P, Q) | P | Q | !P | (νx)P | 0

The syntax corresponds to that of the standard synchronous
π-calculus except for the fact that input actions are placed
within a timer, timert(x(y).P,Q), where t ∈ N represents
time. The input action, x(y).P , can synchronise with suit-
able output actions as long as t > 0. Otherwise, when t = 0,
the timer behaves as Q. Names constitute the set N .

The structural operational semantics of TPi are given
in terms of the structural congruence, ≡, and labelled
transition,

µ−→, relations as shown in Figure 1. The
definition of ≡ is standard, except for rule (6), which deals
with expired timers. The labels, µ ∈ {x〈y〉−→,

x(y)−→,
x(z)−→,

τ−→},
express free and bound outputs, inputs and silent actions,
respectively. Again, most of the rules for

µ−→ are
straightforward and their explanation can be found
elsewhere [2, §3.2.2] except for rule (14), where a time-
stepping function, ð : P → P , expresses the ticking of
activated timers:

ð(P ) =


timert(x(y).P,Q),

if P = timert+1(x(y).P,Q)
ð(Q) | ð(R), if P = Q | R
(νx)ð(Q), if P = (νx)Q
P, otherwise

2.1. A Name-Substitution Semantics

In this section, we define a non-standard semantics
for TPi such that it is possible to express the meaning
of processes in terms of name substitutions resulting
from message passing (note here that we exclude other
substitutions, such as those due to α-conversions or
renaming of bound names). For example, in:

!((νy)x〈y〉.0) | !timert+1(x(u).0,0)

we would like to have a meaning that captures the set of
substitutions, {y1/u1, y2/u2 . . .}, where yi is a labelled copy
of the fresh name, y, and ui is a labelled instance of the input
parameter, u, assuming that t+1 > 0. (Note: other labelling
schemes are also possible as long as they maintain bound
name uniqueness).

First however, we need to introduce the notion of tags
defined as the set, `, `′ ∈ L. The set L is then used to tag
messages of output actions: x〈y〉.P becomes x〈y`〉.P . This
tagging is performed uniquely, i.e. no two messages will
be assigned the same tag even if the two messages have
the same name. This will help distinguish every message in
the non-standard interpretation. Additionally, we define the
following two functions involving tags:

value of : L → N
tags of : P → ℘(L)

where value of(`) = y signifies that ` was assigned to
the message y and tags of(P ) = {`1, . . . , `n} signifies
the set of tags used in P . Naturally, value of is non-
injective and we sometimes write value of({`, `′ . . .}) to
mean {value of(`), value of(`′) . . .}.

Next, we define the environment, φS : N → ℘(L), such
that ` ∈ φS(x) implies that the message tagged with `
replaces the input parameter, x, at runtime. From φS , a
semantic domain, D⊥ : N → ℘(L), is formed with the
following ordering:

∀φS1, φS2 ∈ D⊥ : φS1 vD⊥ φS2 ⇔ ∀x ∈
N : φS1(x) ⊆ φS2(x)

where the bottom element, ⊥, denotes the null environment,
φS0, which maps every name in N to ∅. From the above
definition of D⊥ then, we can assign a meaning to process P
as a function S([P ]) ρ φS ∈ D⊥, defined over the structure
of P as shown in Figure 2.

In the rules of this semantics, ρ is a multiset of processes
in parallel with the interpreted process along with the
standard {| − |} : P → ℘(P) and ] : ℘(P)× ℘(P) → ℘(P)
operators over ρ. The meaning of ρ is given in (R0) using
the special union, ∪φS , defined as:

∀x ∈ N : (φS1 ∪φS φS2)(x) = φS1(x) ∪ φS2(x)

We discuss next a few interesting rules. Communications
are dealt with in rule, (S2), for input actions. The rule uses
the equivalence of two names,

φS∼ , parameterised by φS to
determine matching channel names. This is defined for any
two names, x and y as:

x
φS∼ y ⇔

(value of(φS(x)) ∩ value of(φS(y)) 6= ∅) ∨ (x = y)



Rules of the ≡ relation:
(1) (P/ ≡, |,0) is a commutative monoid
(2) (νx)0 ≡ 0
(3) (νx)(νy)P ≡ (νy)(νx)P
(4) !P ≡ P |!P
(5) (νx)(P | Q) ≡ (P | (νx)Q) if x /∈ fn(Q)
(6) timer0(x(z).P, Q) ≡ Q

Rules of the
µ−→ relation:

(7) x〈y〉.P x〈y〉−→ P

(8) timert+1(x(z).P, Q)
x(z)−→ P

(9) P
x〈y〉−→Q ⇒ (νy)P

x(y)−→Q if x 6= y

(10) P
x〈y〉−→ P ′, Q

x(z)−→Q′ ⇒ P | Q τ−→ P ′ | Q′[y/z]

(11) P
x(y)−→ P ′, Q

x(z)−→Q′ ⇒ P | Q τ−→ (νy)(P ′ | Q′[y/z])

(12) P
µ−→Q ⇒ (νx)P

µ−→ (νx)Q if x 6= fn(µ)

(13) P
µ−→ P ′ ⇒ P | Q µ−→ P ′ | Q

(14) P
τ−→ ð(P )

Figure 1. The structural operational semantics of TPi.

(S1) S([x〈y`〉.P ]) ρ φS = φS
(S2) S([timert+1(x(y).P, Q)]) ρ φS = (

⋃
φS

x′〈z`〉.P ′∈ρ: x
φS∼ x′

R([(
⊎

R∈ρ

{|ð(R)|}) ] {|P |} ] {[P ′]}]) update(φS , y, `)) ∪φS

R([(
⊎

R∈ρ

{|ð(R)|}) ] {|timert(x(y).P, Q)|}]) φS

(S3) S([timer0(x(y).P, Q)]) ρ φS = R([{|Q|} ] ρ]) φS
(S4) S([P | Q]) ρ φS = R([{|P |} ] {|Q|} ] ρ]) φS
(S5) S([!P ]) ρ φS = snd(fix F(0,⊥))

where, F = λfλ(j, φ).f (if φ = R([(
j⊎

i=0

{|(P )σ|}) ] ρ]) φS then j, φ else (j + 1), (R([(
j⊎

i=0

{|(P )σ|}) ] ρ]) φS))

and σ = [bni(P )/bn(P )][tags ofi(P )/tags of(P )], bni(P ) = {xi | x ∈ bn(P )}, tags ofi(P ) = {`i | ` ∈ tags of(P )}
(S6) S([(νn)P ]) ρ φS = R([{|P |} ] ρ]) φS
(S7) S([0]) ρ φS = φS
(R0) R([ρ]) φS =

⋃
φS

P∈ρ

S([P ]) (ρ\{|P |}) φS

Figure 2. The definition of S([P ]) ρ φS .

For each synchronisation, the value of φS is updated with
the tag of the communicated message using the update
operator defined as:

∀φS ∈ D⊥, y ∈ N , ` ∈ L :
update(φS , y, `) = φS [y 7→ φS(y) ∪ {`}]

Rule (S2) also considers the case where no communications
take place. In either case, all active timers are decremented
some using the time-stepping defined in the previous section.
Rule (S5) deals with replicated processes using a fixed-
point calculation of the higher order functional, F . The rule
allows for as many copies of P to be spawned and the
number of each copy is used to subscript its bound names
and tags in order to maintain their uniqueness. As a result,
the interpretation of restricted names in rule (S6) drops the
ν operator in ρ.

The following soundness theorem states that name
substitutions in the structural operational semantics are
captured in the non-standard semantics.

Theorem[Soundness of the non-standard semantics]
∀P,Q, x, y : P

µ−→
∗

Q[x/y] ⇒ x ∈ value of(φ′S(y))
where, φ′S = S([P ]) ρ φS

Proof: The proof is by induction on the rules of
the structural operational semantics in Figure 1. The most
interesting cases are rules (10) and (11), where we need to
show that if a process, P , exhibits a transition, P

x〈y〉−→P ′, then
this will eventually yield a process, x〈y`〉.P ′′ ∈ ρ during
the non-standard interpretation. The same can be shown for
Q

x(z)−→Q′ and R
x(y)−→R′. From rule (S2), we can then show

that P | Q and R | Q will capture substitutions in the φS
environment in each case �

3. An Approximated Semantics

The computation of the non-standard semantics of the
previous section is not guaranteed to terminate due to the
infinite size of D⊥ as a result of the presence of replication
in processes. Therefore, we need to approximate the
meaning of processes by introducing the αk approximation,
which limits the number of copies of fresh names and tags
that can be captured by the semantics.

Definition[The αk-approximation function]
Define αk : (N ∪ L) → (N ] ∪ L]) as follows, where
N ] = N\{xi | i > k} and L] = L\{`i | ` > k}:



∀u ∈ (N ∪ L) : αk(u) =
{

uk, if u = ui ∧ i > k
u, otherwise

And we write, αk({u, u′, . . .}), to mean
{αk(u), αk(u′), . . .}. The αk approximation function leads
naturally to the appearance of the abstract environment,
φA : N ] → ℘(L]) and the abstract semantic domain, D]

⊥
with the following ordering:

∀φA1, φA2 ∈ D]
⊥ : φA1 vD]

⊥
φA2 ⇔ ∀x ∈

N ] : φA1(x) ⊆ φA2(x)

Based on D]
⊥, we can interpret processes as a new

function, A([P ]) ρ φA ∈ D]
⊥, defined as follows:

A([P ]) ρ φA = let update = updateAαk
in let φS =

φA in S([P ]) ρ φS

which uses the same algorithm for S([P ]) ρ φS defined
in Figure 2 but replacing φS and update with their
abstract siblings. The updateAαk

operator is defined for all
φA ∈ D]

⊥, y ∈ N , ` ∈ L as follows:

updateAαk
(φA, y, `) = φA[αk(y) 7→ φA(αk(y)) ∪ {αk(`)}]

The following termination result can be shown to hold.

Theorem[Termination of the Abstract Semantics]
For any process, P , the computation of A([P ]) {||} ⊥D]

⊥
terminates.

Proof: The proof relies on two requirements: First, to
show that D]

⊥ is finite. This is true from the definition of
αk. The second is to show that the abstract meaning of a
process is monotonic with respect to the number of copies
of a replicated process:

R([(
j⊎

i=0

{|(P )σ|}) ] ρ]) φA vD]
⊥
R([(

j+1⊎
i=0

{|(P )σ|}) ] ρ]) φA

This latter requirement is proved by showing that the extra
copy of P can “only” induce more communications �

4. Man-in-the-Middle Analysis

In our analysis of the MiM attacks, we refer to the usual
finite lattice of security levels, (S,vS ,uS ,tS ,>S ,⊥S),
and based on it define ζ : N → S as a mapping from
names to their security levels. Now, we can define the name
integrity property as follows.

Property[Name integrity]
We say that a name, x, has the integrity
property with respect to a φA environment if

∀n ∈ value of(φA(x)) : ζ(x) v ζ(n) �

The predicate integrity(x, φA) indicates that x upholds
the above property with respect to φA. A MiM attack is
defined as an attack in which the intruder is capable of
breaching the integrity of names of two processes.

Property[Man-in-the-Middle Attack]
A context, C (a process with a hole) succeeds in launching
a MiM attack on two processes, P and Q, if the result of
the abstract interpretation, A([C(P | Q)]) {||} ⊥D]

⊥
= φA

proves that, ∃x ∈ bn(P ), y ∈ bn(Q) : ¬(integrity(x, φA) ∨
integrity(y, φA)) �

5. Example: Distance-bounding Protocols

We discuss here the application of our analysis to a
simplified model of the RFID distance-bounding protocol
defined in [11]. The one-way authentication protocol
consists of the following steps between a verifier, Vr, and a
prover, Pr, starting at time, T0:

@T0 : Vr → Pr : NVr

for(i = 1; i ≤ n; inc(i)) {
@Ti : Vr → Pr : Ci

@(Ti + δ) : Pr → Vr : RCi
i }

where n > 0, Ti, δ ∈ N are natural numbers such that Ti

is a point in time and δ is a very short time gap (ideally
Ti+δ < Ti+1). Also, inc : N → N is the increment function,
NVr is a fresh nonce and Ci, RCi

i are challenge values and
their corresponding responses. For the sake of brevity, we
refer the reader for a full description of the protocol to [11,
§3.1]. Here, we give in Figure 3 a non-cryptographic TPi-
based specification of the protocol for the specific case of
n = 3. The specification allows Vr to send a fresh nonce NVr

to Pr. Vr then uses the internal channel x to simulate time
waitings of T1, T2 and T3 since no inputs can be performed
over x and these will time-out. However, their continuations
will output challenges Ci to Pr. Pr itself waits on these
challenges and then replies with the expected responses Ri.
During this protocol, the intruder I is capable of interfering
with all communications over c, since it knows the name
of this channel. The protocol itself is defined as the parallel
composition of the three processes.

Applying the abstract interpretation, A([Prot]) {||} ⊥D]
⊥

,
with k = 1, we obtain the following substitutions for
i = 1 . . . n:

Ci′ ∈ value of(φA(ui)) and Ri′ ∈ value of(φA(ri))

Now, assuming that the intruder’s challenges and responses
have lower security levels than the prover’s and verifier’s
input parameters, i.e. ζ(Ci′) v ζ(ui) and ζ(Ri′) v ζ(ri),
then it can be seen that I achieves the MiM property



Vr def
= (ν NVr)(ν x) (c〈NVr〉.timerT1(x(d1).0, c〈C1〉.

timerδ(c(r1).timerT2(x(d2).0, c〈C2〉.
timerδ(c(r2).timerT3(x(d3).0, c〈C3〉.
timerδ(c(r3).0,0) ),0) ),0) ) )

Pr def
= timer∞(c(n).timer∞(c(u1).c〈R1〉.timer∞(c(u2).c〈R2〉.

timer∞(c(u3).c〈R3〉.0,0),0),0),0)

I def
= (ν NI) (timer∞(c(n′).c〈NI〉.

timer∞(c(u1′).c〈C1′〉.timer∞(c(r1′).c〈R1′〉.
timer∞(c(u2′).c〈C2′〉.timer∞(c(r2′).c〈R2′〉.
timer∞(c(u3′).c〈C3′〉.timer∞(c(r3′).c〈R3′〉.0,0),0),0),0),0))

Prot def
= I | (Vr | Pr)

Figure 3. The definition of the RFID protocol in TPi.

above with respect to ui and ri. This is due mainly to the
promptness with which I sends its challenges and responses
to both the prover and the verifier processes.

5.1. A Note on Modelling the Intruder

One of the benefits of modelling the intruder as any other
process in the specification of the system, rather than for
example hardcoding its behaviour directly into the semantics
of the language, is that it is possible to capture any class of
intruders ranging from the most passive (modelled as the
process 0) to the most general as envisioned by the Dolev-
Yao model [9], [7].

In the previous example, we defined the process I
in a manner sufficient to demonstrate the MiM attack.
However, similar results could have been obtained by a
more general, Dolev-Yao, intruder. This general intruder
could be specified as follows, where

∏
denotes the parallel

composition of multiple processes.:

I
def= (ν i) (i〈κinit〉 | ! timer∞(i(κ).(

∏
∀x,y∈κ

x〈y〉.i〈κ〉 |∏
∀x∈κ

timer∞(x(z).i〈κ ∪ {z}〉,0) | (ν net)i〈κ ∪ {net}〉),0)

In this specification, κ denotes a set of names repre-
senting the knowledge of the intruder, (ν net) allows for
the intruder to create fresh data at any time, and i is a
channel used for the intruder’s internal communications.
The initial subprocess, i〈κinit〉, outputs the set of names,
κinit, representing an instantiation of the intruder’s initial
knowledge (in general, κinit = fn(P ), for the analysed
process, P ). The specification then allows the intruder to
build its knowledge, κ, by repeatedly inputting over names
in its knowledge. The inputted name is then passed as part of
the new knowledge to the next instance of the intruder. The
intruder can also perform output actions. These are either
free output actions sending messages over channels already
in κ, or bound output actions that create a copy of the name
net and send it over the internal channel i. This allows the
intruder to learn net without the need to output it first to

external processes. The learning behaviour is interpreted as
the standard union, ∪, over κ.

6. Conclusion and Future Work

We have presented in this paper a static analysis for
detecting MiM attacks in real-time systems using precise
timing. The analysis, designed for a stochastic process alge-
braic language, captures name substitutions occurring among
processes as a result of their communications. The results of
the analysis are then used to define a name integrity property
and a notion of MiM attacks.

There are several directions for expanding this work.
For example, other security properties of protocols with
some notion of time could be investigated, such as the
minimum/maximum speed at which authentication can be
achieved in a real-time system. Also, time denotes cost,
therefore, a slow protocol could be exploited by an intruder
to mount a denial of resources attack [15].
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