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1 Introduction

Compton scattering of high energy photons by electrons is a well established tech-
nique for probing electron momentum distributions [1]. The technique relies upon
the assumption that when the energy transferred from the photon to the electron is
large compared with the electron binding energy, the Impulse Approximation (1A} is
valid. The scattering cross-section is then related in a simple way to the electron’s
momentum. Hohenberg and Platzmann [2] suggested in 1966 that the same principle
could be used to measure nuclear momentum distributions by neutron scattering at
very high energy transfers. However until the recent advent of spallation neutron
sources, such as ISIS at the Rutherford Appleton Laboratory, neutron scattering has
been limited by the available intensity at high energies to energy transfers less than
~ 0.3 electron volts. At such low energy transfers, the IA is inaccurate and the
simple relationship between the momentum of the target nucleus and the scattering
cross-section does not apply.

ISIS has intensities greater by a factor of >~ 100 than reactor sources at ener-
gies between 1 and 50eV. The pulsed nature of the source also allows for the use
of time-of-flight measurements to measure high energy transfers accurately. On the
EVS instrument at ISIS, where energy transfers greater than 10eV can be measured,
corrections to the IA are small and in principle EVS provides a unique opportunity
for accurate measurement of the nuclear momentum distribution function n(p). The
function n(p) is one of the most fundamental properties of a condensed matter system
and cannot be measured by any other technique. The measurement of atomic mo-
mentum distributions by high energy neutron scattering is known as ‘Deep Inelastic
Neutron Scattering’ (DINS), ‘Neutron Compton Scattering’ or ‘Recoil Scattering’.

In systems containing hydrogen it is often a good approximation to replace the
interaction between the proton and other atoms by an averaged single particle poten-
tial. In this case n(p) is related by Fourier transform to the wavefunction and hence
to the spatial localisation of the proton. DINS from hydrogen is complementary to
other neutron spectroscopy, which measures the quantised energy levels of the proton
in the potential rather than the wavefunction. We anticipate that the main applica-
tion of EVS will be to measure the momentum distribution of hydrogen or deuterium
in, for example, hydrogen bonds, hydrogen in metals and hydrogen in semiconduc-
tors. However the instrument has sufficient resolution to measure the momentum
distribution of other atoms with atomic masses below ~ 15 amu.

In this report we summarise the work done during 1990 to develop the EVS spec-
trometer as a probe of atomic momentum distributions. We start in section 2 by
outlining the theory required to understand the DINS technique and data analysis
procedures on EVS. In section 3 we describe the EVS instrument. In sections 4 and 5
we describe the calibration procedures and the measurement of the instrument reso-
lution function. In section 6 we describe the data analysis procedures currently used



on EVS and in section 7 we give examples of measurements. In section 8 we discuss
the experimental evidence for the validity of the IA on EVS. Finally in section 9
we discuss some current problems and suggest ways in which future progress can be
made.

2 Theory

2.1 The Impulse Approximation

The analysis of data on EVS relies upon the assumption that at the high momentum
and energy transfers available on the instrument the impulse approximation (1A i
valid. The calculation of corrections to the IA is a difficult theoretical proble:- ¢, 4,
but as we show in section 8 corrections to the IA on EVS are small. In this section
we discuss the implications of assuming that the IA is valid for the analysis of EVS
data.

In the Impulse Approximation, the neutron scattering function S(q,w)is given by

5
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where n(p)dp is the probability that an atom has momentum p, M 1s the atomic
mass, q is the momentum transfer and w is the energy transfer. This expression
for §(q,w) is identical to that obtained for a free gas of particles with a momentum
distribution n(p). For a free gas, the §-function ensures that kinetic energy and
momentum are conserved in collisions between neutrons and individual atoms. For
purposes of data analysis, we can treat the target system as if it were a fictitious
free gas with the momentum distribution of atoms in the target system. However we
emphasise that n(p) in the target system, is modified from n(p) of a free gas at the
same temperature by particle interactions and hence a measurement of n(p) provides
information on these interactions.

Taking the z-axis along q and using the well known property of the é-function,
6(az) = §(z)/a, equation 1 reduces to,

M

S(q,w) = ?J(y) (2)
where o )
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and
J(y) = /n(Px,p,,)pz)ﬂpz - y)dp.dp,dp, = /n(pz,py,y)dpzdpy (4)
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It follows from equation 4 that the function J(y)dy is the probability that an atom
has a momentum component of magnitude y, along the direction of q.

The geometrical interpretation of J(y) in atomic momentum space is shown in
figure 2.1. J(y) is calculated by measuring a distance y along the direction of q from
the origin of momentum space to the point R = yq, where q is the unit vector parallel
to q and then integrating n(p) over the plane passing through R and perpendicular to
§. In the simple case illustrated of a Fermi gas at T=0, the momentum distribution
is a solid sphere, ie n(p) = p,p < p; and n{p) = 0 for p > p;. The function J(y) is
then proportional to the area of intersection of the sphere with a plane at a distance
y from centre of the sphere ie

J(y) = pr(pF — v*) (5)

J(y) is a parabola for p < py and zero for p > p;y as shown.

In a ume of flight scan on EVS the point R follows a curved path through p space
in the scattering plane as the direction of g and the magnitude of ¢ and w vary with t.
This is illustrated in figure 7.7 where time of flight scans at different detector angles
on EVS are shown. For an anisotropic n(p), such as that illustrated in figure 7.7,
J(y) depends both upon the direction of q and the magnitude of y. However in an
isotropic system such as a Liquid or polycrystalline sample, J(y) depends only on the
magnitude of y and reduces to

J(y) =/|| pn(p)dp (6)
Vi

The function J(y) is well known from Compton scattering measurements of electron

momentum distributions, where the IA is used in an almost identical way to inteprete

experimental data. In Compton scattering J(y) is known as the ‘Compton profile’

[1). In the context of DINS, J(y) is often referred to as the neutron Compton profile.

The properties of S(q,w) which follow from equations 2 to 4 are known in the
literature as ‘ y scaling ’ [6]. The condition for conservation of momentum and kinetic
energy in equation 1 links the variables ¢ and w, reducing the number of degrees of
freedom by one. Thus in an isotropic system, ¢S(q,w) is a function of one independent
variable y rather than of ¢ and w separately. The presence or absence of y scaling of
experimental data can be used to test the validity of the IA. We list the properties of
S(q,w) which are implied by y scaling.

1. It follows from equation 2 that the magnitude of S(q,w) is proportional to
1/q at a fixed y. For example along the line w = ¢*/(2M) where y = 0, the
amplitude of S(q,w) is inversely proportional to g.

54
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Figure 2.1 Illustration of how the neutron Compton profile J(y) is calculated. J(y)
is an integration of n(p) over a plane perpendicular to g at a distance y from the origin
of atomic momentum space. In the simple case illustrated n(p) is a solid sphere and
J(y) is the area of intersection of the sphere and the plane.



Thus if the FWHM of J(y) is Ay, the FWHM of S(q,w) at constant q is
Aw = gAy/M, ie the width of S(q,w) is proportional to g.

3. The physical interpretation of J(y) as a probability distribution for atomic
momenta, implies that J(y) is an even function of y with its maximum value at
y = 0. Tt follows directly from equations 2 and 3 that at constant ¢, S(q,w)
has its maximum at the recoil energy wg = ¢*/(2M) and is symmetric in «
around wg. The locus of the maxima in 5(q,w) at constant g is the line

w=—— (8)

Thus if the positions wy,,. of the maxima in 5(q,w) are determined for different
scattering angles and wy,.. is plotted as a function of ¢?, a straight line through
the origin should be obtained, with a gradient inversely proportional to the
atnmic mass This procedure can be used to test for inaccuracies in the IA as
shown in sections 6.6 and 8.

4. We note the following useful relationship between the initial and final veloci-
ties of scattered neutrons whose energy and momentum transfer are linked by
equation 8.

1% cos@—}-[(%)z—sinzl?];'

where V; is the incident velocity, V; the velocity after scattering, M 1is the
atomic mass, m the neutron mass and 8 is the scattering angle. If M = m, as1s
almost the case for scattering from hydrogen, equation 9 reduces to a = cosf
and a = 0 for § = 90°. For § > 90°, scattering from stationary hydrogen atoms
does not occur. Thus for measurements of hydrogen momentum distributions,
only forward scattering angles are useful.

2.2 Isotropic Harmonic Systems

We illustrate some of the formalism using the model of an 1sotropic harmonic system,
where 5{q,w) and J(y) can be calculated exactly [4]. In the harmonic approximation
the atomic momentum distribution is identical to that for a free gas, except that the
temperature T is replaced by an effective temperature T (8].

n(p) = (%Jif:r-)a/z“p <—2J§T') o)
e 7" = [wz(w)coth (%) d (11)



with Z(w) the density of states. From equations 4 or 6 we obtain

J(y) = (m)m exp (— 21&2-) (12)

Thus the neutron Compton profile has a Gaussian form with a standard deviation

o= (MT')é. In the impulse approximation, it follows from equations 2, 3 and 12

that ' ( .
_ 1 —(w — wpg
S(q)W) B (47TUJRT') exP ( 4wgrT™ ) (13)

where wg = ¢*/(2M).

At T = 0, we obtain from the Debye model for Z{w)
3 1/2
o= (MT")/? = (Zo.ngsMMD) (14)

with M in amu, ¢ in A~ and wp is the Debye energy in meV. Throughout this report,
energies and temperatures are measured in milli electron volts (meV), momenta in
inverse Angstroms (A™!) and masses in atomic mass units (amu). In Appendix B we
discuss the conversion factors required to obtain numbers from the various formulae.
Equations 10 to 13 also apply to a single particle in an isotropic harmonic potential
of frequency wo, ie with Z(w) = §(w — wo). At T = 0, we obtain,

o = (0.1196 Mw)'/? | (15)

For future reference, some values of 7" and o calculated at 20K and 290K, using
the Debye model for Z(w) are given in table 2.1.

Table 2.1 Properties of different elements in the isotropic Debye Approximation.
6p is the Debye temperature, T the temperature, T~ the effective temperature and o
the standard deviation of the Gaussian momentum distribution.

[ E.lemenq Mass(amu) l 6p(K) } T(K) } 7°(K) “ o(A™Y) ]

L 6.941 400 290 316.9 | 6.74
L 6.941 400 20 150.0 | 4.63
Be 9.012 1000 | 280 442.2 {1 9.06
Be 9.012 1000 | 20 374.9 | 8.35
Al 26.982 394 290 316.1 || 13.3
Al 26.982 394 20 147.8 | 9.06
\Y 50.942 390 250 315.6 | 18.2
A% 50.942 390 20 146.2 || 12.4
Pb 207.19 88 290 291.2 | 35.3
Pb 207.19 88 20 36.0 12.4




2.3 Determination of J(y) from EVS Data

A schematic diagram of an inverse geometry spectrometer is shown in figure 2.2. The
energy E; (and velocity Vi) of the detected neutromns is fixed by the analyser, which
on EVS is a resonance foil. The velocity V, and energy Ep of the incident neutron
can be determined from the measured time of flight t via

Ly L,

=+t 16

% V'I 0 ( )
where Lo is the distance from moderator to sample, L, the distance from sample to
detector and tg is a time delay constant. The energy of the neutron in meV is related
to its velocity in m/sec via

E = 52276 x 107°V* (17)

a1d the wavenumber of the neutron in A~} is related to the energy in meV via

- (2.0517>1/2 (18)

The energy transfer from the neutron to the target system is

w=E; - E; (19)
and the momentum transfer g 1s given by
g = (k2 + k? — 2k; ko cos 6)*/? (20)
where 6 1s the scattering angle.

The g and w corresponding to a particular time channel in a time of flight spectrum
are easily calculated via equations 16 to 20 if the fixed instrument parameters Lo,
Ly, 6, to, and E; are known. The parameter y can then be calculated from equation
3 and the atomic mass M.

The number of counts collected in a time channel of width At centred at t is [9],

dE d*o
C(t)At = I(Eo) dt" tNdeE1 7(E))AQAE, (21)

where J(Eo)%EL At is the number of incident neutrons/em? corresponding to the time
channel, N is the number of scattering atoms, AQ is the detector solid angle, AE;
is the energy resolution of the analyser, n(E;) is the efficiency of the detector and
d’c/dQdE; is the partial differential neutron scattering cross-section. The latter
quantity is related to the neutron scattering function S(q,w) via [5],

o ok,

&o _ 9k 29
d0dE, 4 kos(q"") (22)
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From equations 2, 21 and 22 we obtain,

NAQn(El)klAElch} (I(Eo)"—j%ﬂdw(y)>

C(t)dt = (23)

4r kog
The brackets | ] contain all factors which are independent of t. We show in section
3.5 that I(Ep) E-%% Furthermore k; x E¢°* and it is easily shown from equations
16 and 17 that for a fixed final energy E;, dE¢/dt o« Ej°. Thus

qC(t)
E-

J(y)=A (24)
where A is the product of all parameters which are independent of t. The value of A
can be determined from

/J(y)dy =1 (25)

which is necessary since J(y) is a probability distribution.

3 The Electron Volt Spectrometer (EVS)

A schematic diagram of the EVS instrument is shown in figure 3.1. At present there
are four banks of deiectors; two banks of 10 detectors centred at £45°and two banks
of 5 detectors centred at +£135°. The detectors are 10 atmosphere *He gas counters,
each of which is 2.5cm in diameter and 30cm in length. The detectors are vertical
with their centres in the horizontal plane. In addition to the 30 *He gas detectors,
there are standard ISIS glass scintillator beam monitors, before and after the sample
position. The standard sample geometry is a plane slab perpendicular to the incident
beam, which is circular with a diameter of 3cm at the sample position.

On EVS the final energy is determined using the filter difference technique [10].
The filter is a thin foil of 2 material containing a nuclear resonance absorption, with
a significant absorption cross-section only over a narrow range of neutron energies.
Two measurements are made; the first with the foil placed between the sample and
the detectors and the second with the foil removed. The difference between these
two measurements provides a measurement of the scattered neutron energy E; with
a resolution

R(E))=1-T(E,) (26)

where T(E;) is the transmission of the foil as a function of energy.

Most heavy elements contain nuclear resonance absorption peaks but only a few
are suitable for the filter difference technique. The main requirements are

1. A narrow intrinsic width for the resonance absorption peak in the cross-section.
This width determines the energy resolution of the instrument.

g
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2. The resonance must be well separated in energy from other resonance energies.
Otherwise the instrument simultaneously detects neutrons at two different val-
ues of E; and features from the two different detection energies may overlap in
the data, making interpretation difficult.

3. Not too high an energy (< 50eV). Otherwise the accuracy with which the
neutron time of flight can be measured starts to dominate the energy resolution
of the instrument. Higher energies require longer flight paths and hence lower
count rates for good resolution.

A gold foil has been used almost exclusively on EVS so far. Although the gold
resonance at 4.906eV has a relatively broad intrinsic width compared to resonances
of suitable energy in Ta and U, the next resonance does not occur unti] 60.3eV/,
so that overlap eflects from different resonances are absent. This is particularly
advan..geous for scattering from hydrogen, where overlap effects are particularly
troublesome with a Tantalum analyser and where the resolution of the Au filter
is adequate for measurement of the H momentum distribution. However for other
systems Tantalum and Uranium are also potentially useful.

In figure 3.2 we show time of flight scans in ¢, w space available on the eVS forward
angle banks with a gold foil analyser. The shaded region is bounded by the FWHM of
the response from a hydrogen atom in zirconium hydride which has a momentum dis-
tribution with a FWHM of 947, In figure 3.3 we show a similar plot for the forward
and backward banks for scattering from Li, and in figure 3.4 for scattering from Pb.
The energy and momentum transfers available on resonance filter spectrometers are
much greater than those attainable on any other neutron instrument. It can be seen
from figure 3.2 that on EVS, for H scattering, 1.2 <w <14 eVand 30 < g < 804~
, while for M > 2, w ~ 30eV and ¢ =~ 90A™". At such high energy and momentum
transfers corrections to the IA are small, as we show in section 8.

4 Instrument Calibration

The instrumental parameters Ly, L,,E,,f and {,, defined in section 2.3 must be deter-
mined by a calibration of the instrument. Any errors in these parameters will lead
to systematic errors in the calculation of y and J(y) from experimental data. The
sensitivity of EVS is such that even small deviations from the IA can be measured
accurately, so a very accurate calibration of the instrument parameters is required.
In this section we present the calibration procedure for EVS in some detail.
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Figure 3.2 The boundary of the chaded area denotes the HWHM of 5(q,w) for
scattering from the protons in zircomum hydride. The left hand line crossing the
shaded area is a time of flight scan on EVS at scattering angle of 35°, the right hand
line at 55°. Scans on the forward angle banks on EVS lie between these limits.
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Figure 3.3 The boundary of the shaded area is the HWHM of S(q,w) for lithium
at 290K. The lines crossing the shaded area are time of flight scans at angles of
35°,55°,125° and 145°. The 45° bank scans lie between 35° and 55° and the 135° bank
scans between 125° and 140°.
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Figure 3.4 The boundary of the shaded area is the HWHM of S(g,w) for vanadium
at 290K. The lines crossing the shaded area are time of flight scans at angles of
35°.55°.125° and 145° respectively from left to right. The 45° bank scans lie between
35¢ and 55° and the 135° bank scans between 125° and 140°.



4.1 Length Calibration

The scattered flight paths L, were measured using a meter rule. The distance from
the centre of the sample to the detector centre was 0.5 & 0.005 metres for the 135°
bavk: and 0875 = 0000 metres {or the 43¢ banks. The quoted error of 25mn is &
generous estimate of the measurement error. The total distance L = Ly + L;, from
the moderator to the detector and the time constant ¢; can be determined from the
positions of uranium resonance absorption peaks in the time of flight spectra. The
energies of these peaks, which are very accurately known and the corresponding neu-
tron velocities, are given in table 4.1.

Table 4.1 Energy of Resonance Absorption Peaks In Uranium

[ Er(meV) ] Vr(m/sec) I
I RRTIE2 | 35722%5
2087246 - 63187=0
36680+11 | 83765=13
6602020 | 112379+17
102540+30 | 140053=20
189670440 | 190479420

A uranium foil was placed in the incident beam and the scattering spectrum from
a Pb sample at room temperature was collected. If the scattering from the sample
is strictly elastic then the resonance absorption peak occurs in the time of flight
spectrum at

t—£+t (27)
=y, th

However there is some inelasticity in the scattering due to the recoil of the Pb atoms.
At the high neutron energies used in the calibration, the scattering from Pb at room
temperature is well described by the impulse approximation. Thus the ratio of the
final and incident velocities of the scattered neutrons is determined by equation 9
and equation 27 must be modified to

Lo+ 4 _

t—_-(——ﬁ—"—)-rto:v%ﬂ%)(laa)m (28)
The correction for inelasticity of the scattering from Pb makes a small (>~ 5mm)
difference to the calculated values of L. The values of L and ¢, were determined for
each detector by performing a straight line least squares fit to equation 28, using
the values of Vg in table 4.1. The resonance peak positions in ¢ were determined by
eye, using the cursor in the standard ISIS GENIE graphics package. The values of L
and t, obtained from the fits, with standard errors, are given in table 4.2. From the
measured values of L and L;, Ly can be calculated (see table 4.3). The mean of the L
values for the 30 detectorsis 11.126 metres, with a standard deviation of 0.003 metres.

10



Table 4.2 Results of Si powder and U foil Calibrations

[ Detector | Lsin(6/2) (metres) | L (metres) | to(psec) |
1 10.848+0.004 11.617+0.013 1.64+0.16
2 10.733+0.003 11.635+0.020 1.02+£0.26
3 10.604+0.004 11.635+0.020 1.02+0.26
4 10.470+0.003 11.635+0.020 | 1.02x0.26
5 10.328+0.004 11.623+0.020 1.33+0.20
6 10.853+0.003 11.618+0.008 1.29+0.10
7 10.739+0.007 11.620£0.020 0.88+0.26
8 10.608+0.003 11.621+0.019 1.07+0.24
9 10.472+£0.004 11.631+0.017 1.02+0.26
10 10.330+0.003 11.613+0.017 1.26£0.22
11 5.385%0.002 11.967+0.015 2.14=0.19
12 5.205£0.002 11.987+0.013 1.47£0.17
13 5.021x0.002 11.899+0.022 0.82+0.28
14 4.8414+0.002 11.990£0.013 1.43£0.17
15 4.658+0.002 11.994=+0.019 1.39+0.25
16 4.4511+0.002 12.001£0.019 1.57+0.25
17 3.883+0.001 11.962+0.024 1.99x0.31
18 4.071+£0.002 12.026+£0.014 0.88+0.18
19 4.264+0.002 12.000£0.010 1.12+£0.13
20 3.693+0.001 11.999=0.010 1.12+0.13
21 5.394+0.003 12.008+0.016 1.41+0.15
22 5.207=0.001 12.008+0.018 1.29=0.23
23 5.028+0.002 12.033x0.017 0.96+0.23
24 4.842+0.002 12.023£0.014 1.00+0.17
25 4.662+0.001 12.033x0.017 1.18%0.22
26 4.469+0.001 12.007x+0.012 1.41x0.15
27 4.280+0.002 12.007+£0.012 1.41£0.15
28 4.094+0.002 12.007£0.012 | 1.41£0.15
29 3.904+0.002 12.029+0.018 0.24+0.23
30 3.711£0.002 11.969+0.020 1.32+0.27
31 8.57+0.05 | —0.87+0.62
32 13.38+0.06 | —0.24=0.90

11



Table 4.3 Calibrated Instrument Parameters with Errors

[ Detector | Lo (metres) | Ly (metres) | 6 (degrees) | to(usec) |

1 11.117+0.014 | 0.500+0.005 | 138.07+0.35 | 1.64+0.16
0 11.135+0.021 | 0.5004+0.005 | 134.58+0.48 | 1.024-0.26
3 11.13540.62: | 0.500£0.005 | 131.39+0.45 | 1.02+0.26
4 11.135+0.021 | 0.50040.005 | 128.28+0.41 | 1.02+0.26
5 11.123+0.021 | 0.500+0.005 | 125.39+0.39 | 1.33+0.20
6 11.118+0.009 | 0.500+0.005 | 138.18%+0.22 | 1.2920.10
7 11.120+0.021 | 0.500+0.005 | 135.09+0.51 | 0.88+0.26
8 11.1214+0.020 | 0.500+0.005 | 131.80+0.42 | 1.07+0.24
Y 11.131+0.021 | 0.5004+0.005 | 128.40+0.42 | 1.02+0.26
10 11.113+0.018 | 0.500+0.005 | 125.62+0.33 | 1.26=0.22
11 11.092+0.016 | 0.875+0.005 | 53.49+0.08 | 2.14+0.19
12 11.112+0.014 | 0.875+0.005 | 51.47+0.06 | 1.47+0.17
10 11.124+0.023 | 0.8750.005 | 49.4740.10 | 0.82+0.28
14 11.115+0.014 | 0.875=0.005 | 47.62+0.06 | 1.43+0.17
15 11.119+0.020 | 0.875+0.005 | 45.71+£0.08 | 1.39+0.25
16 11.126+0.020 | 0.875+0.005 | 43.54+0.07 | 1.57+0.25
17 11.087+0.025 | 0.875+0.005 | 37.88+0.08 | 1.99+0.31
18 11.151+0.015 | 0.875+0.005 | 39.57+0.05 | 0.88+0.15
19 11.125+0.011 | 0.875+0.005 | 41.62+0.04 | 1.12+0.13
20 11.124+0.011 | 0.875+0.005 | 35.85+0.03 | 1.12+0.13
21 11.133+0.017 | 0.875+0.005 | 53.3820.08 | 1.41+0.15
22 11.133+0.019 | 0.875+0.005 | 51.40+0.08 | 1.29+0.23
23 11.158+0.018 | 0.875+0.005 | 49.40%0.08 | 0.96+0.23
24 11.148+0.015 | 0.875+0.005 | 47.50+0.06 | 1.00%0.17
25 11.158+0.018 | 0.875+0.005 | 45.59+0.07 | 1.18+0.22
26 11.132+0.013 | 0.875+0.005 | 43.70%0.05 | 1.41+0.15
27 11.132+0.013 | 0.875+0.005 | 41.77£0.05 | 1.41+0.15
28 11.132+0.013 | 0.875+0.005 | 39.87+0.05 | 1.41+0.15
29 11.154+0.019 | 0.875+0.005 | 37.87+0.06 | 0.24+0.23
30 11.094+0.021 | 0.875+0.005 | 36.12+0.07 | 1.32+0.27

4.2 Angle Calibration

The scattering angles were determined by scattering from a silicon powder sample.
The peaks in the powder pattern occur at time of flight values determined by Bragg's
law

6 -
2dsin <§> = A = 3.9554 x 10—39—7@ (29)

where d is the spacing of the Bragg reflection planes in A, I is the neutron wavelength
in A and t is the time of flight in psec. The time of flight ¢ of the (111), (220), (311),
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(400), (331) and (422) peaks was determined by eye, using the GENIE cursor. From
equation 29, the accurately known values of d and the values of £; obtained from the
fit to U resonances, a value of Lsin (g) was calculated for each of the 6 peaks. The
mean of these 6 values, with standard error is given for each detector in table 4.2.
From the calibrated values of Lsin (g) and L, the values of 6 given in table 4.3 were

calculated.

4.3 Energy of Analyser Foil

In most measurements described in this report a gold analyser foil was used. This has
a resonance absorption peak at a nominal energy of Ey = 4906 = 10meV. Since the
energies of the uranium resonance peaks are known much more accurately than those
of gold, the calibrated instrument parameters were used to determine the - rv of
the Au resonance. This procedure is also necessary for the internal consiste ~ the
calibration. The foil was inserted in the incident beam and Lorentzian fits to tume of
flight spectra were made, to determine the positions of the peak. The neutron energy
corresponding to the peak position was calculated from the calibrated instrument
parameters for each detector. The recoil of the sample atoms was taken into account
as in section 3.1. In table 4.4 we give the mean energies calculated from the detectors
in the forward and backward angle banks from measurements on Pb and V samples.
The mean of all the measurements is E; = 4922 & 1meV.

Table 4.4 Energy of Gold Foil Resonance

| Sample | Detector numbers [ Ey (meV) | Angular Range |

Pb 1-10 49182 35°-55°
Pb 11-30 49252 125°-138°
\Y 1-10 4922=2 35°-55°
A% 11-30 4921+2 125°-138°

4.4 Incident Beam Intensity

The incident beam intensity I(E) is required for the calculation of J(y) from the
time of flight spectrum via equation 21. The time of flight spectrum in the incident
beam monitor was transformed to E; using the standard GENIE routines. A least
squares fit to

A
30
= (30)

gave n = 1.380 for the incident beam monitor and n = 1.405 for the transmitted beam
monitor. The spectrum and fit to the incident beam monitor spectrum are shown
in figure 4.1. It can be seen that the functional form of equation 30 describes the

I{Eq) =

13
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spectrum extremely well. After correction for the efficiency of the monitor ( E';’)
we obtain I(E) o< E7%®. This agrees very well with the predicted incident spectrum
[11].

5 Instrument Resolution

In any measurement the detected neutrons sample distributions of instrument pa-
rameter values about the mean values. The form of these distributions determine
the resolution function of the instrument in y space. There are five independent
contributions to the y resolution, corresponding to the 5 instrument parameters.

1. The energy resolution AE; of the instrument. With a gold foil this 1s always
the dominant contribution.

2. The angular resolution. In a single detector there is a distribution of scattering
angles due to the finite size of the detector and sample. This contribution is
small except for scattering from hydrogeneous systems.

3. Thereis a distribution of Ly values caused essentially by the depth of the neutron
moderator. This contribution is always small compared to that from AE;.

4. A distribution of L, values due to the finite sample width and detector depth.
This contribution to the resolution is larger than that from ALy, but small
compared to that from AE;.

5. The uncertainty in the time of flight due to the finite width of the time bins,
At. We choose At so that this effect 1s neghgible.

We first discuss the angular and length contributions to the resolution, as these are
required for the precise measurement of the energy contribution.

5.1 Angular Resolution

The angular resolution of the forward angle detectors can be determined from the
peak shape of powder diffraction peaks, as for § < 60°, the shape of powder peaks is
dominated by the angular resolution. From equation 29 we obtain

6\ Af 6\ At
A6 =2tan | 2| 22 = i et
2tan (2) 7 2tan (2> ; (31)

In table 5.1 we list the positions and standard deviations of Gaussian fits to the
silicon (111) powder peak and the corresponding standard deviation of the angular
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distribution calculated from equation 31. A typical fit is shown in figure 5.1. It
can be seen that the distribution in t and therefore in 8 is well approximated by a

Gaussian form. b g
f(6) x exp (——————((2;2)0) > (32)

The small deviation from Gaussian behaviour is caused by the time structure of the
pulse of neutrons. This introduces asymmetries and slightly broadens the peak. We
note that the fitted widths therefore slightly overestimate the width of the angular
distribution of scattered neutrons. The results in table 5.1 show that o4 slowly in-
creases as § gets smaller. This is a geometrical effect introduced because the detector
is straight rather than curved, so that it does not Lie precisely on the cone defined by
scattering angle 8. The scattering angle at the ends of the detector is thus slightly
different from that at the centre. This effect is a maximum at § = 0 and § = 180° and
absent for 8 = 90°. However this is 2 small effect (>~ 0.02°) and the angular resolution
of the detectors in the forward angle bank is well approximated by og = 0.58° £ 0.02°.

The angular resolution of the backward angle banks cannot be measured so di-
rectly, as the angular and time components of the Bragg peak resolution function are
comparable for backscattering. However the angular component of the y resolution is
relatively unimportant for backscattering and a precise measurement of og is not so
necessary. We assume that og scales linearly with distance, so that for backscattering
os = 0.58 x 0.875/0.50 = 1.02°. The only inaccuracy in this assumption is caused by
changes in the small effects mentioned above, due to the detector not lying on the
scattering cone.

15
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Table 5.1 t is the peak position and At the standard deviation obtained from
gaussian fits to a silcon powder (111) peak. 6, is the scattering angle and o5 the
standard deviation of the angular resolution function obtained from equations 31
and 32.

[ Spectrum | t(usec) | At(usec) | 6o(degrees) | og(degrees) |

11 8532 81.4 53.49 0.551
12 8247 84.6 51.47 0.566
13 7956 84.4 49.47 0.560
14 7671 85.5 47.62 0.564
15 7381 874 45.71 0.572
16 7052 89.3 43.54 0.580
17 6154 95.4 37.88 0.610
18 6454 93.2 38.57 0.595
19 6753 92.1 41.62 0.594
20 5853 85.3 35.85 0.603
21 8540 87.2 53.38 0.588
22 8253 83.2 51.40 0.556
23 7965 84.3 49.40 0.557
24 7673 87.3 47.50 0.574
25 7384 88.1 45.59 0.575
26 7078 87.2 43.70 0.566
27 6782 91.4 41.77 0.589
28 6486 95.3 39.87 0.611
29 6183 93.4 37.87 0.594
30 5884 95.2 36.12 0.605

5.2 Instrument Length Effects

In the epithermal region, the pulse shape from the moderator is of the form [11]
é(t) = C(vt)* exp(—PBut) (33)

where v is neutron velocity, t is time of flight and C and 3 are comstants. This
distribution of flight times can be interpreted as being caused by a distribution of
incident flight paths, ie

F(Lo) « (Lo— < Lo>)* exp|—B(Lo— < Lo>)) (34)

where < Ly > is the mean value of Ly. A Monte Carlo calculation of the of the pulse
shape at 1eV [11] predicts 2 FWHM of 1usec. This correponds to 8 = 246M ! and
a HWHM of 0.7cm for F(Lo).

The uncertainty in the final flight path can be estimated from the diameter of
the *He detector (2.5cm) and the diameter of the beam (3cm). With a plane slab
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sample pependicular to the beam, the distribution of final flight paths L, can be
approximated as a Gaussian with a standard deviation of 1.5cm.

Although the flight path uncertainties cannot be measured directly they have a
small effect on the instrument resolution for all atomic masses compared to the com-
ponent from the gold foil analyser. Thus errors in the estimation of ALy and AL,
and the approximation of equation 34 by a Gaussian function should have little effect
on the calculated instrumental resolution in y space.

5.3 Calibration of Energy Component of Resolution

The energy component of the resolution in y space was calibrated by scattering mea-
surements from polycrystalline lead, vanadium, aluminium and lithium samples. We
assumed that the momentum distribution of atoms in these materials could be calcu-
lated in the harmonic model, using the Debye approximation for the density of states
as in section 2.2. The measured neutron Compton profile, J,.(y), is a convolution
of the gaussian contribution from the intrinsic momentum distribution J(y) with the
various resolution contributions.

Im(y) = J(y) * Re(y) x Re(y) * Re(y) (35)

where Rs(y) is the angular, Rz(y) the length and Rg(y) the energy component of the
resolution in y space. Since we assume that J(y),Rs(y) and Ry(y) are gaussians,

Jm(y) = Jo(y) * Re(y) (88)

where Jy(y) = J(y)* Re(y) = Re(y) is a gaussian. The width of Jy(y) can be calculated
by summing in quadrature the widths of Rs(y) and Rp(y) and the calculated width
of J(y). Typical values for the various components are given in table (5.2). It can be
seen that J,(y) is only slightly broadened by the angular and length components of
the resolution.

Table 5.2 o, 0 and o are the standard deviations of the Gaussians J(y),Rs(y)

and Rz(y) respectively. o, = [0? + 05° + aLz];— is the standard deviation of Ji(y). 0k
is the HWHM of the Lorentzian component of the resolution.

Sample | og A™1 [0y A7 [0 A1 | o A Y] o A7?
Pb 231 40.6 35.3 0.46 20.0
A% 60.3 18.9 18.2 0.46 4.95
Al 29.2 13.6 13.3 0.46 2.64
Li 8.36 6.8 6.74 0.46 0.70

The energy resolution function is

R(E))=1-T(E) (37)
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where T(E;) is the transmission of the foil. It is found empirnically that R(E;) is well
approximated by a Lorentzian function,

constant

(Er - Ei)* + AF?

R(E,) = (38)

The energy component of the resolution function in y space is also well approximated
by a Lorentzian function

constant
R = —_ 39
where AE is related to og via
OF,
AFE ~ 05( ) (40)
ay y=0

Thus, from equations 36 and 39, J.(y) is a convolution of a Gaussian and a
Lorentzian (known as a Voigt function). The measured spectra in y space were
fitted to a Voigt function with a Gaussian component of fixed width oy, to determine
og for each detector. The corresponding AE for each detector was calculated using
equation 40. (A typical fit to lead data is shown in figure 5.2. Note that for lead
the gaussian component has a negligible effect and J,,(y) is almost Lorentzian.) The
mean values of AFE calculated from the 20 detectors at forward angles i1s given in
table 5.3 for various calibration runs. The quoted error is the standard deviation of
the values from the 20 detectors.

Table 5.3 Mean values of AF for detectors in 45° bank

ﬁlement J Run Number J AE(mel) ]

Pb 843 146.7x1.4
\Y% 887 153.8x0.7
v 894 153.7£1.2
\Y% 855 151.6x£0.5
Al 890 146.6+1.8
Al 963 148.7+1.3
Al 1053 151.7£1.5
Li 1048 151.0£2.6

The mean value for the energy resolution is AE = 150.5 £ 1.0. In figure 5.3 og
calculated from equation 40 using this mean value of AE is shown as a solid line,
while the points are the fitted experimental values of o for the different calibration
samples. It can be seen that the energy component of the resolution function is well
described by equation 40 and the single parameter AE = 150meV for all atomic
masses between 7 and 207 amu.
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5.4 Calculation of Instrument Resolution

Analytic expressions for the different contributions to the resolution in y space are
given in appendix 1. The parameters in tables 5.4 and 5.5, which are representative
of the calibrated values of the instrument parameters and resolution widths for the
+45° and +135° banks respectively, were used for the calculation of the resolution
components in y.

Table 5.4 Instrument parameters and resolution widths for £45° banks

Ly = 11.127 metres | ALy = 0.007 metres
L, = 0.875 metres | AL, = 0.015 metres
Af = 0.58°
E, = 4922meV/ AFE, = 150meV

Table 5.5 Instrument parameters and resolution widths for the £135° banks

Lo = 11.127 metres. | ALy = 0.007 metres
L, = 0.5 metres AL, = 0.015 metres
Af =1.03°

E, = 4922meV AFE; = 143meV

In figure 5.4 we show the calculated resolution components as a function of angle
for scattering from hydroger and in figure 5.5 for scattering from lithium. In figure 5.6
we show calculations of the resolution components for Lthium in the backward angle
banks. The lines are the standard deviations of the gaussian widths for the angular
(0s) and length (o; and og) components and the HWHM of the Lorentzian for the
energy (op) component of resolution. The resolution is entirely dominated by the
energy component for backscattering. The angular term is significant for scattering
from hydrogen, but the energy component still dominates the resolution of EVS at

all available angles in the £45° banks.

6 Data Analysis

We outline the basic data analysis procedure currently being used on EVS for samples
in which there is no preferred direction, eg powders or liquids. At present the analysis
is limited to the extraction of the mean atomic kinetic energy. We anticipate that
as the stability and sensitivity of EVS improves, the data analysis procedures will be
refined further to allow for peak shape analysis.
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6.1 Obtaining ‘Raw’ Data

As discussed in section 3, EVS uses the filter difference method to define the energy
of the scattered neutron. The ‘raw’ data is the difference, (filter-out) - (filter-in).
In figure 6.1 we show the time of flight spectrum collected on detector 11 (6 = 55°)
from a filter-out run on zirconium hydride, together with an 8th order polnomial fit.
The filter-out spectrum is generally a smooth function and polynomial fitting allows
for a short filter-out spectrum to be collected, with essentially no statistical error, in
a short time (~ 1 hour). However we note that this procedure must be used with
caution, since if for any reason (eg detector saturation) the incident spectrum is not
smoothly varying with ¢, the fit will not be accurate and spurious features may be
introduced into the differenced spectra.

In figure 6.2 we show the corresponding filter-in spectrum from detector 11 together
with the polynomial fit to the filter-out spectrum. The two spectra are normalised
to the sum of the counts between 100 — 150 and 500 — 600usec. These regions were
chosen for normalisation because they are unaflected by the presence of the filter,
but close to the data region. This method of spectrum normalisation is preferable to
using the incident beam monitor to normalise spectra, as the drift in relative detection
efficiency of the monitor and other detectors with time is typically 1 — 2%. There is
some drift with time of the relative efficiency of the regions 100 — 150 and 500 — 600
within a single spectrum, but this is much smaller (=~ 0.3% see section 9.1).

The difference between the smoothed foil out spectrum and the foil in spectrum is
shown in figure 6.3 for detectors in one of the two 45° banks on EVS. There are two
clearly separated peaks. The first, at shorter times is due to hydrogen scattering and
moves to lower t as the scattering angle increases. The second ‘elastic’ peak at comes
from zirconium and aluminium can scattering and has a position which 1s almost
independent of angle. The higher angles give a clear separation of the two peaks.
This separation, which is only obtained at very high g, is one of the advantages of the
EVS instrument for hydrogeneous samples. Scattering from all sources other than
hydrogen, eg cryostat tail or sample can scattering, occurs in a different region of the
time of flight spectrum to the scattering from hydrogen.

6.2 Transformation to y Space

The next step in the data analysis is to transform the time of flight data to y space
using equation 24. The results of a transformation on time of flight spectra from
detector 11 is shown in figure 6.4.
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6.3 Subtraction of Elastic Scattering

The shape of the nearly elastic peak in y space is determined by the instrument
resolution function for large masses, ie Lorentzian. The elastic component can be
removed by fitting the sum of a Lorentzian and a Gaussian to spectra of the form
shown in figure 6.4 and then subtracting the Lorentzian component from the data.
Spectra from detectors 11 and 20 are superimposed in figure 6.5 after subtraction of
the Lorentzian. Detector 11 at € = 55° and detector 20 at § = 35° correspond to
the maximum and and minimum scattering angles in the forward angle banks. We
note that the very good agreement between the two spectra after transformation to y,
indicates that the impulse approximation 1s well satisfied for scattering from hydrogen
for all detectors in the forward angle bank on EVS.

If the elastic peak is not well separated from the response from the sample atoms
(sec eg sertion 7.1), an aluminium can subtraction may be preferable to the Lorentzian
subtraction. Automatic routines are available to perform a can subtraction including
a correction for sample attenuation.

6.4 Symmetrisation

There are good arguments for symmetrising the data around y = 0 to reduce inaccu-
racies in the measured J(y), introduced by a breakdown of the impulse approxima-
tion. As mentioned in section 2.1 the physical interpretation of J(y) as a momentum
distribution implies that J(y) should be symmetric about y = 0. Antisymmetrc
components in the measured J(y) are introduced by a breakdown of the impulse ap-
proximation. Sears [6] has shown that for data taken at constant g, symmetrisation
removes 1A inaccuracies of order 1/g, leaving only 1/q¢? terms. However at the high
q and w available on EVS, inaccuracies in the IA are so far undetectable and sym-
metrisation of the data has virtually no effect. This procedure 1s available if required
and may become necessary as the quality of data improves.

6.5 Calculation of Atomic Kinetic Energy

The calculation of the atomic kinetic energy relies upon the assumption that J(y) is
of Gaussian form. The individual spectra are fitted to a Voigt function with a fixed
Lorentzian component, the width of which is calculated from the energy resolution
of EVS as in section 5. The Gaussian standard deviation of J(y) is then obtained by
subtracting the Gaussian resolution components from the fitted Gaussian component
of the Voigt function. ie

[T

Oy = (sz—-dgz—a’oz—dl?) (41)
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where o, 07 ,0¢,00 and o, are respectively the standard deviations of J(y),the fitted
Gaussian component and the resolution components due to 6,1y and L;.

The results of this procedure for a ZrH, sample are shown in table 6.1 which is
the standard output of the automated data processing routines currently used on
EVS. We note that the Gaussian resolution components make very little difference
to the derived o,. For example o, for spectrum 30 is 4.302 whereas o; = (4.302 +
0.494 + 0.119);' = 4.33 . However the energy component of the resolution does make
a significant difference. For example a Gaussian fit to spectrum 20 is shown in figure
6.6. The fit gave o0 = 4.73A7" whereas after correction for the Lorentzian resolution
component, we obtain o, = 4.2347? . The mean of the 20 ¢ values is 4434~ with a
standard error of £0.04A47".

The HWHM of the Lorentian component varies between 0.6 47! at § = 35° (detec-
tors 11 and 21) to > 1.147? at 55° (detectors 20 and 30) for scattering from hydrogen.
Thus 1v 15 not strictly correct to add spectra. However it is found empirically that if
spectra 11 to 30 are added and fitted to a Voigt function with a Lorentzian HWHM
of 0.8471, the fitted width of the Gaussian component is in good agreement with the
mean of fits to individual spectra. This procedure i1s useful primarily because a display
of the summed spectra gives a good indication of the quality of the data. In figure
6.7 we show the sum of spectra 11 to 30, with a fit. The fit gave o, = 4.41 = 0.06 4"
in good agreement with the value obtained from fits to individual spectra.

6.6 The Validity of the Impulse Approximation

The fitted positions of the maxima in J(y) measured on individual detectors can be
used to test for inaccuracies in the Impulse Approximation. Any point in y transforms
to a unique point in time of flight ¢ and hence unique values of g and w via equations
3,16, 19 and 20. Thus the positions Yme. of the peak positions in y obtained from
the data analysis, give values of g¢mnar and wpe.. for each detector. As mentioned in
section 2.1, if the IA is valid the peak positions satisfy wmaz = Gmaz>/2M; where M;
is the free atomic mass. Thus a fit 10 Wmez = (@maz + C)/2M with M and C as
adjustable parameters should give M = M; and C = 0. A fit to the values of ¢ma=
and wy,,. calculated from the fitted values of yma. in table 6.1 is shown in figure 6.8.
The fit gave M = 0.998 £ 0.006amu, which is consistent with the free atomic mass
M; = 1.0079, and C = —42 £ 27meV. The results of this test are thus consistent
with the assumption that the IA is valid.

A second indication of the validity of the IA is whether the value of o, obtained
from fits to the data changes if the data is symmetrised about y = 0.(See section
6.4.) For the ZrH, data shown in figure 6.7 we obtained o, = 4.44 = 0.04 after
symmetrisation compared with 4.43 & 0.04 before symmetrisation, ie o, is unchanged
indicating that the IA 1s a good approximation.
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I LOR HWHM

11 6.213e-01
12 6.648E-01
13 7.105E-01
14 7.555e-01
15 B8.048E-01
16 8.64%E-01
17 1.049E+00
18 9.887E-01
19 9.224E-01
20 1.126E+00
21 6.233E-01
22 6.662E-01
23 7.11%E-01
24 7.582E-01
25 8.077e-01
26 B8.603E-01
27 9.177eE-01
28 9.787e-01
29 1.048E+00
30 1.115E+00

R A N - o o - - N~ L . N L N S = N 8

SIGMA

.149E+00
.328E+00
.315E+00
.402E+00
.631E+00
.403E+00
.392E+00
.498E+00
.464E+00
.233E+00
.129E+00
.430E+00
.3€69E+00
.588E+00
.652E+00
.602E+00
.605E+00
.650E+00
.450E+00
.302E+00

DWHLEFRNAGVRFRP O W

PK POCS

.742E-01
.787E-01
.680E-01
.657E-01
.642E-01
.808E-01
.702E-01
.881E-02
.051E~01
.003E-01
.775E-02
.232E-01
.922E-01
.067E~-01
.302E-01
.894E~02
.830E-01
.453E-01
.63%9E-01
.B63E-01

o = N SN O O N N S A N N SN . Y

DYTH

.934E-01
.934E-01
.934E-01
.934E-01
.934E-01
.934E-01
.934E-01
.934E-01
.934E-01
.935E-01
.934E-01
.934E-01
.934E-01
.934E-01
.934E-01
.934E-01
.934E-01
.934E-01
.934E-01
.935E-01

Table 6.1 Output of standard data processing routines.

Celumn 1 detector number
Column 2 og = calculated HWHM of energy component of resolution function.
Column 3 o, = fitted standard deviation of J(y)

Column 4 Peak position in y.
Column 5 o5 = calculated standard deviation of angular component of resolution

function.

Column 6 (oo + 03
resolution function.
Column 7 reduced chi-square of the Voigt fit to the processed spectrum.

4 2 2 W0 WD W0 0 00 - b k3 s WO O WO D D

DYT

.498E-02
.747E-02
.025E~-02
.323E-02
.650E-02
.006E-01
.143E~-01
.083E-01
.047E-01
.199E-01
.481E-02
.740E-02
.013E-02
.315E-02
.638E-02
.002E-01
.043E-01
.087E-01
.137E-01
.194E-01

WHWR PR 0-]WWWW-W0DWw-IWw

CHI-SQ

.973E-01
.566E-01
.273E-01
.849E-01
.718E-01
.003E+00
.316E-01
.386E-01
.269E-01
.099E-01
.823E-01
.588E-01
.007E+00
.009E+00
.056E+00
.342E+00
.103E+00
.982E-01
.023E+00
.533E-01

Yf/z = calculated standard deviation of length component of
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Figure 6.6 Gaussian fit to spectrum 20.
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A third test for the validity of the IA is to calculate the difference C* = [Wrmez —
Gmaa?/2M;) for each detector. The mean value of C~ calculated from the data in table
6.1 was C* = 10 = 11meV, ie C* = 0 to within the experimental error as required by
the IA.

7 Examples of Measurements

7.1 Polycrystalline Lithium

Measurements of the neutron Compton profile in lithium were made at 20K and room
temperature. The differenced time of flight spectra from detectors 3 (6 = 131.4°) and
15 (6 = 45.7°) at 20K are shown in figures 7.1 and 7.2 respectively. The counting time
required to obtain these spectra was 3600pAhrs, ie 36 hours at normal ISIS intensity,
with a 1% scatterer. The peak to the right in figure 7.1 is caused by scattering
from the aluminium container, that to the left by scattering from Li. In figure 7.2
the lithium and aluminium peaks are merged into a single peak. This is due to the
lower momentum transfers and worse resolution available at forward angles. The
separation in energy transfer (and hence time of flight) of peaks from different atomic
masses decreases as 6 and q decrease and the resolution is worse by a factor 2.5 at
45° compared with 135°. The combination of these two effects causes the resolution
broadened peaks to merge into a single peak.

It can be seen from figure 5.6 that over the angular range of the backward angle
bank (125° < 6 < 138°), the energy component of the y space resolution for Li is
virtually constant at oy =~ 3.24-1. Thus spectra 1 to 10 can be added and fitted to
a Voigt function with the above value of o for the Lorentzian component. In figures
7.3 and 7.4 we show the summed data for the 20K and 290K data after aluminium can
subtraction and conversion to y space. The fit to 2 Voigt function and the Lorentzian
component of the Voigt function are also shown. The Gaussian components of the
fitted Voigt function were 4.8047} at 20K and 6.954-1 at 290K . The Gaussian

component of the resolution function, was (or? + cre;z)15 ~ 0.7A"!. After correction
for the Gaussian resolution component we obtain ¢ = 4.77 = 0.064°! at 20K and
o=6.91=0074"" at 290K.

An alternative procedure for data analysis is to use the procedure described in
section 6. In this case, Voigt fits are performed on individual spectra and the mean
values and standard deviation of the means from the various detectors are calculated.
This procedure is preferable for the forward angle banks, where the resolution varies
significantly over the angular range. In table 7.1 we give values for the standard
deviation of J(y) obtained from the £45° and £135° banks at 20K and 290K.
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Table 7.1 Standard deviation of J(y). ¢, was obtained using the data analysis
procedure of section 6, o, was obtained from the fits shown in diagrams 7.3 and 7.4.
op is the prediction of the Debye model (see section 2.3)

[ T [Bank | o(A7Y) | a3(A7Y) [op(47}) ]
20 1135° [ 4.76x0.06 | 4.77+£0.06 | 4.63
20 | 45° 5.28x0.06
290 | 135° | 6.90£0.08 | 6.87+0.07 | 6.74
260 | 45° 6.75+0.06

Previous measurements have suggested that the mean kinetic energy of lithium 1s
between 10% and 30% higher than the prediction of the Debye model [12], whereas the
EVS data suggests that the KE is > 5% higher than the Debye model prediction. The
agreement between the measurements at 45° and 135° 1s very satifactory considering
that (from figure 5.5) 6 < o1 < 94~ for the forward angle bank and thus the
measured J(y) is resclution dominated at 45°. The small discrepancy between the
45° and 135° results at 20K is probably caused by an imperfect can subtraction in
the latter case.

7.2 Measurements on Zirconium Hydride

Three experiments on the same sample of zirconium hydride were performed over a
three month running period, with a separation of approximately a month between
measurements. A typical data set collected over a 20 hour running period with a
5% scatterer is shown in figure 6.7 and the results of the data analysis procedures
described in section 6 are given in table 7.2.

Table 7.2 Parameters obtained from different runs for zirconium hydride

[RUN| o(A7Y) | M(amu) | C(meV) | C*(meV) |
857 4.43£0.04 | 0.998+£0.005 | —42x27 | 10x11
837 | 4.47+0.06 | 1.002+0.009 | —28+46 | 5x17
948 4.41+0.06 | 1.004x0.008 | ~17£40 | 39£15

We note that no differences from the predictions of the IA (M = 1.0078,C =
C" = 0) are detectable within the accuracy of the measurements. From equation
15, assuming that the proton sits in a harmonic potential, o = 4.44A71 corresponds
to a harmonic oscillator with frequency wy = 164meV compared with the values be-
tween 140 and 170meV obtained from measurements of transition energies by neutron
spectrosopy [13].
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7.3 Measurements on Light and Heavy Water

Measurements were performed on H,;O and D,0 at 290K and 20K. Typical fits to
the sums of spectra 11-30 are shown in figure 7.5 for H,0 at 20K and figure 7.6 for
D,0 at 20K. We note that the measured J(y) is non-zero to the right of the peak
for both H,0O and D,0 data. For H,O this is probably caused by the detector in-
stability discussed in section 9.1. For D;O the most likely explanation is that there
was some contamination of the sample with H,O and the non-zero baseline to the
right is caused by scattering from hydrogen. Non-zero baselines are potentially a seri-
ous problem they influence the fitted width of the distribution. Typically a negative
baseline reduces the fitted width, while a positive baseline increases the fitted width.
Visual inspection of figures 7.5 and 7.6 suggests that the H,O width is accurate, but
the D,0 widths are probably slightly too large. The parameters obtained from the
data analysis procedures are listed in table 7.4.

Table 7.4 Results of measurements on H,O and D,0

| Sample | Temperature [ o(A™Y) | M(amu) | C(meV) | C*(meV) |

H,0 20 5.09+0.04 | 1.003£0.006 | —2+£30 21x10
H,0 290 5.39+0.07 | 1.007£0.010 | —16£37 | —14%14
D,0 20 5.93+0.17 | 2.008+0.020 818 14%5
D,0 2580 6.13+0.10 | 2.030%0.020 | —3%18 165

We note that the results are in agreement with simple mass scaling. If we assume
that H or D sit in the same harmonic potential, then o should be proportional to Mi
and the ratio of the o values for D/H should be 2!/% = 1.189. The ratios obtained
from table 7.4 are 1.17 £ 0.03 at 20K and 1.14 = 0.03 at 290K.

7.4 Single Crystal Measurements on Potassium Bicarbon-
ate

As a final example of EVS data we show some measurements of J(y) in a single
crystal sample of KHCOs, which is a hydrogen bonded system. The aim of the
measurement was to observe anisoptropy in the momentum distribution of the proton
in the hydrogen bond. KHCOj is & particularly favourable system as all hydrogen
bonds are aligned along a single crystalline direction. It is thought that the proton
experiences a double-well potential along the hydrogen bond direction and a harmonic
potential perpendicular to the hydrogen bond [14].

The sample was 2 20x20x1mm platelet with the H bond at ~ 10° to the plane of the

sample. It was oriented with the H bond pointing at the centre of the —45° detector
bank. With this arrangement simultaneous measurements of J(y) were made with ¢
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roughly along the bond in the +45° bank and perpendicular to the bond in the —45°
bank. Note that, as shown in Appendix A, in hydrogeneous systems g is perpendicular
to the direction of the scattered neutron at y = 0. The time of flight scans on the
different detector banks correspond to the scans through atomic momentum space
shown in figure 7.7. The direction of ¢ is a function of both scattering angle and time
of flight and varies by ~ 310° about the mean values of £45° in the two detector
banks.

The sum of spectra from the two banks is shown in figure 7.8. The anisotropy of
J(y) is obvious. Fits to the data from the two banks are shown in figures 7.9 and
7.10. We obtain ¢ = 5.3 £ 0.09 for q along the bond and ¢ = 4.55 = 0.08 with g
perpendicular to the bond. It has been shown that the measurements are consistent
with the postulated double well potential for the proton [14].

8 The Validity of the Impulse Approximation on
EVS

As discussed in sections 2.1 and 6.6, the experimental data can be used to test {for
inaccuracies in the IA. For example if the IA is valid then the standard deviations of
Gaussian fits to the measured J(y) should be unaffected by symmetrisation of J(y)
about y = 0. In table 8.1 we give standard deviations before and after symmetrisation
for a variety of samples.

Table 8.1 Standard deviations of Gaussian fits to the measured neutron Compton
profile before (¢) and after {(¢,) symmetrisation about y = 0.

[ Sample JTemperature (K)J c(A™Y) ] o, (A7) ]

ZrH?2 290 4.43+£0.03 | 4.45%0.03
NbH 280 4.48+0.04 | 4.51£0.04
KHCO; | 290 5.23x0.06 | 5.2440.06
H,O 20 5.09£0.04 | 5.10=x0.05
H,O 290 5.39+0.07 | 5.41£0.09
D0 20 5.83£0.17 | 6.13£0.15
D,0 290 6.13+0.10 | 6.33+0.09
Lt 20 5.59+0.07 | 5.59%£0.07
L 290 6.756+0.06 | 6.75=0.06

It can be seen that for all samples except D,0, symmetrisation makes no difference
to the width of the distribution. The difference in the case of D,0 is caused by the
assymmetry in J(y) which can be seen in figure 7.6. As mentioned in section 7.3
this can be explained by H,;0 contamination of the sample and is not caused by a

breakdown of the IA.
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A second test of the validity of the IA is to calculate values of wne: and gma=
for each detector, as described in section 6.6, and to perform a least squares fit to
Wmaz = (gmaz’ + C)/2M. I the IA is valid, we should obtain C = 0 and M = M;
where M, is the free atomic mass. In table 8.2 we give values of M and C calculated
for the samples listed in table 8.1, using the 20 detectors in the £45° banks.

Table 8.2 Mj is the free atomic mass. The parameters M ,C and C" are calcu-
lated as described in the text.

| Sample | Temperature | My(amu) | M(amu) [ C(meV) | C*(meV) |

ZrH, 290K 1.0079 1.002+£0.004 | —28=x30 10=x11
NH 290K 1.0079 1.007+£0.003 | —31£18 | —25=%7
KHCO; | 280K 1.0079 1.009+0.009 | —60x38 | —65+14
H,0 20K 1.0079 1.003£0.006 | —2x30 21x10
H,0 290K 1.0079 1.007+£0.010 } ~-2+£30 14x14
D,0 20K 2.015 2.008=x0.020 8x18 21=£10
D,0 290K 2.015 2.030£0.020 | —3=x18 16=5
L1 20K 6.941 6.44+0.17 | —16x12 3x3
L1 290K 6.941 6.78+0.22 —8£15 3+3

It can be seen that the A appears to be well satisfied for all samples in the table,
je M = M; and C = 0 to within experimental error.

A third way of analysing the data for departures from the prediction of the IA 1s
to calculate the quantity C7 = wmez — (gmaz?/2M;j) for each detector. In figure 8.1
we show values of O~ calculated for EVS detectors as a function of wp.. for some
hydrogeneous samples. The points at a particular scattering angle lie on a single Line
which is defined by the instrument geometry. Their position on this line is determined
by the value of Ymaz derived from J.(y). There is perhaps a suggestion from the plot
that a maximum occurs at wmee =~ 5500meV, corresponding to a scattering angle
of ~ 45°. However deviations from the IA are clearly small with C* ~ 30meV for
Wonae =~ 5000meV. The mean value of C* calculated for the 20 detectors in the £45°
banks is given in table 8.2. It can be seen that C” = 0 within experimental error in
most cases. The most likely explanation for the non zero values of C* obtained for
NbH and K HCOj is detector instability, rather than any breakdown of the IA.

9 Current Problems and Future Progress

9.1 Detector Instability

We believe that most serious problem facing EVS at present is caused by instebility
in the efficiencies of the *He gas detectors. Referring to figure 6.2 we see that the
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difference between the filter in and filter out spectra in the region of the hydrogen
peak is ~ 5%. Thus a variation in detector efficiency of = 0.2% between the filter
in and filter out runs gives ~ 4% error in the differenced spectra, introducing non-
zero baselines and spurious changes in peak shape. The instability is worse when the
detectors are close to saturation, presumably because the detector efficiency is then
dependent on the incident beam intensity. However instabilities are still present when
the detectors are not close to saturation.

As mentioned in section 6.1 the spectra are normalised to the sum of counts be-
tween 100 — 150 and 500 — 600usec. Any change by a constant factor in the detec-
tor efficiency is removed by the normalisation procedure and is therefore unimpor-
tant.However a change in the shape of the efficiency curve or of the incident spectrum
as a function of time of flight is not removed by this normalisation procedure. In figure
9.1 we show the ratio R (integrated counts between 100 and 150usec) / (integrated
counts between 500 and 600), for a series of spectra in the 45° banks as a function
of run number. A typical run length was 10 hours. Runs 902 to 906 were performed
with the filter in and 907 to 909 with the filter out. Apart from this the runs were
performed under identical conditions and any deviation of the ratio from a constant
value is caused either by instability in the detector efficiency or the shape of the
incident spectrum. Typical values for the deviations of the ratio from the mean are
~ 0.3% which translates to an error of between 5 and 10% in the differenced spectra.
It appears from figure 8.1 that the changes in R are correlated to some extent in dif-
ferent detectors, as one would expect if these changes are caused either by variations
in temperature or incident beam intensity. For example all spectra display a lower
value of R for run 905.

In figure 9.2 we show a spectrum from run 905 with the filter in and run 907 with
the filter out. The instability causes the filter out spectrum to lie below the filter in
spectrum at t < 200pusec and above at t > 200usec. The difference between these
two spectra is shown in figure 9.3. The subtraction does not give a zero baseline and
the fitted width of the hydrogen beak is likely to be incorrect due to the distortion of
the peak shape introduced by the drift in detector efficiency.

It should be possible to eliminate instability problems by frequent cycling of the
foil in — foil out runs. An automatic device for moving the foil in and out under
computer control is at present under construction and should be operational during

1991.

9.2 Detector Saturation

The instantaneous neutron intensity at short times of flight is very high and the
gas detectors are easily saturated. In figure 9.4 we show spectra from the 45° and
135° banks obtained from a berylium sample which scattered 22% of the incident
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beam. The eflects of detector saturation are easily seen if these spectra are compared
with figure 6.1. The detectors start to recover from saturation after ~ 300usec and
the detected intensity starts to increase although the incident intensity decreases
monotonically with increasing time of flight from t=0.

The most serious potential problem associated with saturation is the possibility
that the detector efficiency may be different, depending upon whether the analyser
foil is in or out. The count rate is changed by the presence of the foil and if the
detector is saturating, the efficiency is a function of count rate. This problem 1s
particularly serious as it will not be affected by rapid cycling of the foil in and out.
Another practical problem introduced by spectra such as that shown in figure 9.4 1s
that fitting of the foil out spectrum requires a higher order polynomal and care must
be taken to ensure that a good fit is obtained and that no spurious oscillations are
produced in the fit.

All these problems can be avoided by using only weak scatterers. From practical
experience it appears that a 5% scatterer is the maximum which can safely be used.
This does not seem a serious problem since count rates are high. The zirconium
hydride data in figure 6.7 was collected during a 24 hour running period, using a
sample which scattered 5% of the incident beam. There are in fact advantages in using
thin samples, as multiple scattering and self shielding effects should be neghgible. If
for practical reasons a sufficiently thin sample cannot be produced, then an attenuator
must be inserted in the incident beam. In principle the problem of detector saturation
can be overcome by the use of scintillator detectors, which saturate less easily than
gas detectors. However we note that 54-sensitive scintillators are not switable as y-rays
are produced by the analyser foil during neutron capture.

9.3 Data Analysis

The current data analysis routines assume that the neutron Compton profile J(y)
i1s Gaussian, le that the potential is harmonic. With this assumption the standard
deviation of the distribution and hence the mean atomic momentum component par-
allel to the direction of ¢ can be obtained by fitting to the data. As the quality of
the data improves, deviations from Gaussian behaviour due to anharmonicity in the
atomic potential should become apparent. For example a double well potential such
as that described in section 7 should introduce oscillations into n(p) with a periodicity
inversely realated to the well separation. We hope that the improvements in stability
introduced by, for example, foil cycling will allow for the observation of these more
subtle features of the atomic momentum distribution. The data analysis routines
will then have to be modified to allow for comparison with models other than the
harmonic model.

Further desirable developments in data analysis are routines for deconvolution of
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the instrumental resolution function, routines to fit postulated anisotropic momen-
tum distributions in single crystals simultaneously to data from detectors at different
angles and multiple scattering correction routines. Although multiple scattering ef-
fects should be small for the thin samples required to avoid detector saturation, a
calculation of these eflects will be necessary as the quality of the data available im-
proves.

10 Summary

We have summarised the present state of development of neutron Compton scattering
on the EVS spectrometer at ISIS. We believe that the data collected so far shows the
potential of the EVS instrument for obtaining fundamental information on atomic dy-
namics. We anticipate that further improvement of the instrument and data analysis
techniques will considerably improve the sensitivity of EVS duning 1891.
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A Resolution of EVS in y Space

The resolution in momentum space for both direct and inverse geometry spectrome-
ters has been treated in a previous paper {15]. We summarise the relevant results for

EVS. The definition of y 1s
y= q “ 2M (

where ¢ 1s the momentum transfer, w the energy transfer and A the atomic mass.
We calculate the partial derivatives of y at the centre of the recoil peak (ie at y = 0),
with respect to the instrument parameters.

2@)E-BE-20-@ o

where z is Lg,L,, 6 or E,. The dominant contribution to the resolution comes from
the energy resolution of the spectrometer. By direct differentiation, we obtain from

(;;—) T [l +(2) (5‘” =R (44)
and

5(] ) m <L1> (ko)s (L]) (k0>2 (ko) m
— | =—|l-{—=]|—=] +{—])[—] cos@ —{—|cosb| = —R 45
(3.51 q { Lo k] Lo kl k1 q : ( )
where m is the neutron mass, ky the wavenumber of the incident neutron, k; the

wavenumber of the scattered neutron and the dimensionless parameters R; and R,
are defined by equations 44 and 45. Using equation 43

o[- Ealer

With ¢ measured in 47!, AE; in meV,

By 0.2413 [/ M .
(5-5) AR == [(77?) Rl—RzJ AE, (47)

equations 16 to 20,
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In a similar way, we obtain

By _ kok, sin 6
(2 a6 - fh57) "
By . [% -1+ %cosG]
(5.[/0) ALy = {ko 7L AL, (49)
By B k2 [% -1+ ‘-&cos@]
(fm) B = {kl T AL (50)

A.1 Resolution for M =m

When the atomic mass M is equal to the neutron mass, which is a very good approxi-
mation for scattering from hydrogen, the resclution expressions simplify considerably.

Aty =0,

koz - k]? q2
“= om  2M (51)
When M = m equation 51 reduces to
ko = @* + k? (52)
ie g is perpendicular to k; and
ko 1 (53)
k;,  cosé
g=kitanf = kgsin 6 (54)

Substituting in equations 44 to 50

ay _ A{ Ll _ Ll '
8E, ¢ [1 N Locos 9] " kysinf [cosG - —IZ] (55)
Oy )
36 = H (56)
k2
Oy kK _ kb (57)
8Ly gLy Lptanb
k k
ay — kO 1 _ 1 (58)

8L, ~ gLy Lgsin#
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A.2 Resolution for M >m

A second important special case is when the atomic mass is much greater than the
neutron mass. In this case, it follows from equation 43 that only the contribution
from the w resolution is important. Thus the angular contribution to the y resolution
is negligible since 6w/86 = 0 . The scattering is nearly elastic, so that ko/ky ~ 1 and
g = 2k;sin (6/2). Then

By ~ [1 + %} (59)
6By~ 7 ok sin ]
J
0 0 Mk
Y ~ Y ~ 1 (60)
OLo 8L,  2Lysiné
Oy
5= 0 (61)
B Numerical Conversion Factors
In this report the following units are used;
{ Quantity J Unit } Abbreviation
energy milli electron volts | meV
momentum | inverse Angstroms Al
mass atomic mass units | amu
temperature | milh electron volts | mel/
The conversion between temperature in meV and degrees Kelvin is,
T(meV) = 11.604T(K) (62)
eg
300K 300 25.9meV (63)
= = Jgm
11.604

The conversion factors for equations involving energy, momentum and mass can be
derived from the numerical value of Planck’s constant in this system of units.

K = 2.04434(meV — amu)i /A7 (64)

Thus the energy of the neutron (m = 1.00867amu) in meV is related to its momentum

in A7? via 21s ,
K2k 2.0443

E= = k* = 2.0717k? 65

9m (2 x 1.00867) (65)
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. 32 .
The recoil energy wg = "2—}'9{— is,

2.07174%
wR = ——A—Ji (66)
and y is related to ¢, w and M via
M q° 0.2393M q°
= lw—- == - 7
= e - &
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