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Abstract wheref, = w.R/c, E, = mv,c? andR is the machine

We discuss the longitudinal dynamics of an unbunche&adlus andz, is the elementa}ry machine impedance. We
ssume that the,, decay sufficiently fast ag:| — oo so

beam with a collective effect due to the vacuum chambe?]atw is a smooth2x-periodic function of zero mean, i.e
and with the discreteness of an N-particle beam (Schottky,,. W(6) = 0 P T

noise) included. We start with the 2N equations of moJo g )

tion (in angle and energy) with random initial conditions. Ve abbreviate the IVP (1'2T) by = w(z),2(0) = zo,
The 2D phase space density (Klimontovich density) for th&/Neréz := (61, e1, ..., 0, en)", and consider (1-2) as a
N particles is a sum of delta functions and satisfies thEandom IVP specified by a densifyy = Wo(z). This den-
Klimontovich equation and the Vlasov equation. An arbi-Sity €volves by the Liouville equation

trary function of the energy also satisfies the Vlasov equa- OV +w(z) V.0 =0, U(z0) =Uu(z), (4)
tion and we linearize about a convenient equilibrium den-

sity taking the initial conditions to be independent, iden VNereé w is determined by (1-2). Clearly#(z,t) =

tically distributed random variables with the equilibrium%_lgﬁ(_Kﬁ’. 2), ){Nh?rﬁé(t’ Zf’t) de@notgs the. solution of (1-2).
distribution. The linearized equations can be solved using ' ¢ fmontovich dens W'(0, €, 20) IS

a Laplace transform in time and a Fourier series in angle. 1 &
The resultant stochastic process for the phase space density Fi= D 6p(0 = 0a(t))3(c — €alt)) ,  (5)
is analyzed and compared with a known result. Work is in a=1
progress to study the full nonlinear problem. whered, is the2x-periodic delta function. In probability
theory, F' is sometimes called an empirical density. In the
INTRODUCTION following we will suppress the, dependence. Calculation

o . of the partial derivatives of' from (5) shows thaf’ satis-
We study the effect of a finite number of particles (Schotsjes the Klimontovich equation

tky noise) in a case where it is believed the Vlasov equation
is a reasonable approximation to the evolution dynamics.
Perhaps the simplest context to study this is Marti-

cle 2D coasting beam with collective effects modeled by
an impedance and with phase space variafgles) where

6 is the azimuthal angle and = (E — E,)/E, where and the Vlasov equation

E = m~c?. We consider a Vlasov equilibrium densif,,, O.F + w(€)0gF + NL(F)9.F =0 @
chooseN independent and identically distributed random ‘ ’
variables from that distribution and study the evolution ofooth with the initial condition

the Klimontovich density in a linearized approximation.

N
OF +w(€)dpF + Y W(0 —04(t)0F =0,

a=1
(6)

1 N
F(f,et=0) =+ > 6p(0 = 0a0)d(€ — €a0) . (8)
MODEL a=1

Our initial value problem (IVP) for théV particle coast-
ing beam is L(x)(0,t) == / X & OW (0 — 0')db'de’ . 9)
éa =w(€q) = wy + keg , 0,(0) =040, (1)

The operatol in the Vlasov equation is

The Klimontovich equation (6) and the Vlasov equation
. B (7) are not the same, e.g., a function onlydfatisfies (7)
€a = Z W(ba —0y) , €a(0) =€, (2 (sinceW has zero mean) but not (6).

Taking the expected value of (7), with respect to the only
wherew, > 0 is the angular velocity of the reference par-random quantity,, and definingf := EF leads to

ticle andk > 0 is the slip factor. Note that the vector field
is divergence free, so the flow is measure preserving. I‘?\tf tw(€)dof + NL(f)Of = —NE(L(0F)0F) , (10)

Appendix | we argue that a reasonable formTris wheredF := F — EF = F — f is the fluctuation ofF".
qur oy 1 - Thus f is an approximate solution of the Vlasov equation
W(0) = —(5=)—= Y Zne™, Zo=0,(3) ifthe rhs of (10) is small. Equation (10) is the analogue of

2n " B ; L .
" nez the corresponding equation in the BBGKY hierarchy where
*Work supported by DOE grant DE-FG02-99ER41104 [ is equal to the single particle probability densjty (see
t heinemanatmath.unm.edu Appendix I1).
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ANALYSIS and the dispersion function
We now study the deviation of the Klimontovich density (e)de

F from the Vlasov equilibrium density = f.,(¢). Thus Dn(2) =1+ i2rNW, / 700(6) - (20)

we take
The dispersion function also arises naturally in the context

Uo(2) = feq(€1) -+ feq(en) (11) of (13). LetG(0, €, t) = B(e) exp(i(nd —Qot)) then it fol-

lows thatB(e) = —i2n N (Qo—nw(e)) " ., (€)W, [ Bde.

and note thatEF(0,e,t = 0) = fe(e), where Integrating over givesD,,(Q) [ Bde = 0 and thus so-

[ feq(€)dfde = 1. Let F = f., + G thenG satisfies lutions of the given form exist only if), is a zero of the

dispersion function.
0,G +w(€)0G + NL(G)(fLy(€) + 0.G) = 0. (12)
Physically, a natural equilibrium distribution is a Gaus-
We will study an approximation t& by dropping terms in - gjan. " However, a Cauchy distribution allows certain in-
(12) which are nonlinear ity. The linearized IVP is tegrals to be evaluated analytically [1] and so we take
feqle) == Pzl ) with « > 0. In this case the dis-

/ —
0G + w(€)0pG + NL(G) feq(e) = 0, (13) persion function takes the form
(Q—Qn1)(Q — Qp2)

_ Dn(Q) = , 21

Gb,e,t = 0) = —fun(O) + 2; 5,(0 — 008 (€ — €ap).- (©) -0, (21)
(14)  where

In the following,G will refer to this approximaté:. Since
EG(0,¢,t = 0) = 0 it follows from (13) thatEG (0, ¢,t) = Q1 = nw, + apsgn(nby,) — i(|n|ka — |by]) |
0 whenced ' = G. Qo := nw, — apsgn(nby,) —i(In|ka + b)) ,

To solye_ the IVP (13),(14) we expar@ in a Fourier Q, == nw, — ianksgn(n) ,
series, giving

and
Gy, + inw(e)Gy —|—277Nf’ ()W, H,(t) =0,
W, =: |W,|exp(i[0, + 7]) ,

—inba0
Gl %N Za (€ — €a0)e (15) . /sz|Z||Wn| (% -7,

3

for n # 0 where _ 2N Wl O T
. by, == ’ sin( 5 4) .
H, (1) :/ Gn(e,t)de, (16) A partial fraction expansion on (18) leads to
so (15) is an integro-differential equation. Fer= 0, H,( Z —inboa ( A1 (€0a)
Gn(e,t) = Gn(e,0) whence we only studyr # 0. 27TN Q-0
We take the Laplace transform in the for@, (e, ) := Ao (e Aa(e
Jo~ €™ Gnle t)dt, giving us 0 2—( fola)z 0 —Sn(wo(i)o )) 22
. _iGa(e,0)  i2rNW, f (€)Hp () where
e = e~ amneg @) A(€oa) = (Dn(nw(e0a))) ™, (23)
. and, for(j, k) = (1,2) or (2,1)
where H,, is the Laplace transform aff,,. Note that for
functions which have a Laplace transform, the transform is Aj(con) = (Qj — 2p)? (24)
analytic on a set of the forffiz € C : Sm(z) > co}, for i\€0a) := (= Qi) (Qnj — nw(eoa))
some reaty. ] )
To obtainf,, we integrate (17) overand use the initial "Verting (22) gives
condition in (15) yielding
~ ~ . n t —inboa ( 6 —iQn1t
Dn(Q)H () =: H,(40), (18) 27TN Z oo)e
where +Ag(egq)e 2t 4 Ag(e%)e—i"w(maﬁ). (25)
N —inba0 . . .
Fri ) € The@G,, can now be determined from (15) which then gives
H'(Q 1
(@) = 27TN Z < Q — nw(€ao)’ (19) G.
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We finish by studyingH,. We first note that  Work is in progress to study the full nonlinear problem.
E(H,(t)) = 0. WhenSm(Q,;) < 0, i.e., in the case We will continue with the Klimontovich approach devel-

of linear stability, we have for largethe covariance: oped here and investigate, in our context, the related
i deforce nonlinear iteration calculation of Vlaicu [1] as out-
E(Hn(t)" Hn(t + s)) lined in Chapter 5 of [3]. In addition we will investigate
1 e e inw(e)s d the BBGKY approach, the approach discussed in [4] and
~ 91N /ﬂc feq(e) | Dy (nw(e))|? € the large deviation approach of Donsker and Varadhan, see,
= C(s) - (26) ©9-[5 6l
wherex denotes complex conjugation. Thik, becomes APPENDIX |

a weakly stationary stochastic process for larg®laking
the change of the variable= (A — nw,)/nk we see that
Cn(s) is the Fourier transform of

To see that (1),(2) are not unreasonable we first note
that from the Lorentz equatiom~c? = ¢E - v where
E is the electric field andv is the velocity. For our

1 — nwr> 27) case of circular motiolE - v ~ FE,,w,R where E,,

A
o(A) = Nn|an(/\)|2f€q< nk

is the azimuthal field and? is the radius. The current
1(0,t) is approximately;N p(8, t)w, whereNp is the par-
which is therefore the spectral density of the weakly staticle density. LetV(6,t) := —27RE,., then solving
tionary process. Note that, is proportional tov'N, thus  Maxwell's equations by a Laplace transform frand a
the linear stability is lost ifV is sufficiently large. Also, Fourier series i gives V,(Q) = Z(n,Q)I,(Q) with
linear stability is lost asx — 0, ie., whenfeq(e) —  Z(0,Q) = 0. See for example [7], wher&(n,Q) is
d(e)/2m. Thus the hydrodynamical approximation to thecalled the complete impedance. Approximatifg., 2)

Vlasov equation would not be valid. by Z,, := Z(n,nw,) we obtainV,,(t) = Z,I,(t) and thus
We now compare our result with an approach used in [2y (4, ¢) = ¢Nw, > nez Znbn (t)e™?. Equations (1),(2)

There a ‘noise power spectrum’ is computed by considefollow if we defineW,, := —Z,,(qw,)?/(472E,.).

ing the quantityd(A) := 2AE(H,,(A+iA)H, (A +iA)*)

in the limit A — 0+. ForA > 0 one has by (18),(19) that APPENDIX |1
E(Hn(A+iA)Hy(A+iA)") We assume thatWo(zy,...,zy) iS symmetric under
B 1 permutations of thezq,...,zy. Thus, by the special
© 4m2N2|D, (A 4 iA)|? ' form of W (whence ofw), ¥(z4,...,zn,t) is also sym-

metric under the permutations so we g&ff, e, t)
(28) ]EF(@,E,t) = fl(H,e,t), WhETEfj(tgl,Gl, ...,Hj,ej,t)
f \11(91, €1,y ey 6‘N7 6N7t)d9j+1d6j+1 ---dOndeyn for j

. . 1,2,...,N—1landfy := V.
since cross terms do not contribute because

of stalltlsncal gdepir}?e(ggee. Thgs4(A) = ACK NOWLEDGEMENTS

TN[Dn (O TiA)2 I ConetyEiaz  Using 0(z) =

(1/7) lima_o4 #AA? we findlima o4 A(A) = a()). We are gratefu'l to P. Co!estock, R. Kashupa, anq l.
Thus the two calculations give the same result. Not/laicu for mtroduglng usto this problem. Discussions with

however that the second calculation does not use the spé-E!skens in Senigallia are greatfully acknowledged.

cific feq, it Only uses (18)-(20). Nor does it seem to care

N 1

about the analyticity properties &f,,. We suspect that, the REFERENCES
progedure in [2] g.lves the spectral denSItyHS.;fl if th'e lat- [1] I.VIaicu, Ph.D. Dissertation, University of New Mexico, De-
ter is weakly stationary. Howevef/,, generically is not cember, 2005.

weakly stationary. It seems likely that the procedure in [212] V.V. Parkhomchuk, D.V. Pestrikov, Sov. Phys. Tech. Phys.
does not make sense if the roots®f are in the upper half 25(7), 1980.

plane. If they ar.e in the lower half plane, the procHssls [3] W.Horton, Y.H. Ichikawa, Chaos and Structures in Nonlinear
not weakly stationary because of the decaying exponents. p|.smas. World Scientific Singapore, 1996.

we must leave open the ques.tl?n why the two CaICUIatlorlﬁ] Y. Elskens, D. Escande, Microscopic Dynamics of Plasmas
are in agreement for our special case. and Chaos, Institute of Physics, Bristol, 2003.
[5] R.S. Ellis, Entropy, Large Deviations, and Statistical Me-
DISCUSSION chanics, Springer, New York, 1985.

We are pursuing the issues raised after (28). In additiof®] J- Honerkamp, Statistical physics : an advanced approach
we are interested in what is really measured in an accel- ith applications, Springer, Berlin, 1998.

erator. Is it the spectral density? What is measured if th] ';'Tvxam‘l’cg' R. Rl;;th'g(';/(lj5\/%nltﬂ(r;i2' J.A. Ellison, Phys. Rev.
process is not weakly stationary? ccel. Beams 8 ( ) :
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