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Hamiltonian formalism for solving the Vlasov-Poisson equations and its applications
to periodic focusing systems and coherent beam-beam interaction
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A Hamiltonian approach to the solution of the Vlasov-Poisson equations has been developed. Base
on a nonlinear canonical transformation, the rapidly oscillating terms in the original Hamiltonian are
transformed away, yielding a new Hamiltonian that contains slowly varying terms only. The formalism
has been applied to the dynamics of an intense beam propagating through a periodic focusing lattic
and to the coherent beam-beam interaction. A stationary solution to the transformed Vlasov equatio
has been obtained.
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I. INTRODUCTION

The evolution of charged particle beams in accelerat
and storage rings can often be described by the Vlas
Maxwell equations [1,2]. At high energies the discret
particle collision term [3] comprises a small correction
the dynamics and can be neglected. Radiation effect
sufficiently high energies for leptons can be a significa
feature of the dynamics, and should normally be includ
in the model under consideration.

The Vlasov-Maxwell equations constitute a conside
able simplification in the description of charged partic
beam propagation. Nonetheless, there are only a few c
that are tractable analytically [1,2]. Therefore, it is of u
most importance to develop a systematic perturbation
proach that is able to provide satisfactory results in a w
variety of cases of physical interest.

Particle beams are subject to external forces that
often rapidly oscillating, such as quadrupolar focusi
forces, rf fields, etc. In addition, the collective self-fie
excitations can be rapidly oscillating as well. A typical e
ample is a colliding-beam storage ring device, where
evolution of each beam is strongly affected by the elect
magnetic force produced by the counterpropagating be
[4–6]. The beam-beam kick each beam experiences is
calized only in a small region around the interaction po
and is periodic with a period of one turn.

In this and other important applications, one is primar
interested in the longtime behavior of the beam, thus d
carding the fast processes on time scales of the order o
period of the rapid oscillations. To extract the relevant
formation, an efficient method of averaging is developed
Sec. II. Unlike the standard canonical perturbation tec
nique [7–9], the approach used here is carried out in
“mixed” phase space (old coordinates and new canon
momenta [10]), which is simpler and more efficient in
computational sense. It should be pointed out that the
malism developed here is, strictly speaking, noncanon
and, in general, does not provide complete elimination
fast oscillating terms in the transformed Vlasov equation
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the mixed variables. Nevertheless, such an elimination
be performed in the new Hamiltonian in the mixed va
ables. Moreover, if the distribution function is assum
to be an arbitrary function of the new time-independe
Hamiltonian, it is a stationary solution of the nonline
Vlasov equation in the mixed variables. The canoni
perturbation method developed in this paper is further
plied to intense beam propagation in a periodic focus
structure (Sec. III) and to the coherent beam-beam inte
tion (Secs. IV and V). A coupled set of nonlinear integ
equations for the equilibrium beam densities is derived.
applied to the beam-beam interaction, the present form
ism has been developed for collisionless systems an
intended to complement and extend previous models
that calculate quasiequilibrium states in the presence
damping and quantum fluctuations.

To summarize, the effectiveness of the Hamiltonian f
malism developed in this paper is demonstrated in two p
ticular examples. In the first example, discussed in Sec.
the short-scale dynamics is contained in the external foc
ing force acting on the beam, while an essential feature
the coherent beam-beam interaction treated in Secs. IV
V is the relatively fast variation of the collective interactio
between the colliding beams. The simplicity in applyin
the Hamiltonian averaging technique is embedded in
use of mixed canonical variables. Instead of expand
the generating function and the new Hamiltonian in ter
of the new canonical coordinates and momenta [7,8],
has to simply solve the Hamilton-Jacobi equations or
by order. It should be emphasized that the mixed varia
Hamiltonian formalism can be used to derive amplitu
equations, describing processes of formation of patte
and coherent structures in a number of plasma and b
systems in which collective processes are important.

II. THE HAMILTONIAN FORMALISM

We consider anN-dimensional dynamical system, de
scribed by the canonical conjugate pair of vector variab
�q, p� with components
© 2002 The American Physical Society 021001-1



PRST-AB 5 STEPHAN I. TZENOV AND RONALD C. DAVIDSON 021001 (2002)
q � �q1, q2, . . . , qN �, p � �p1, p2, . . . , pN � . (1)

The Vlasov equation for the distribution function f�q, p; t�
can be expressed as

≠f
≠t

1 �f, H�q,p � 0 , (2)

where

�F, G�q,p �
≠F
≠qi

≠G
≠pi

2
≠F
≠pi

≠G
≠qi

(3)

is the Poisson bracket, H�q, p; t� is the Hamiltonian of the
system, and summation over repeated indices is implied.
Next we define a canonical transformation via the gener-
ating function of the second type according to

S � S�q, P; t� , (4)

and assume that the Hessian matrix

Ĥij�q, P; t� �
≠2S

≠qi≠Pj
(5)

of the generating function S�q, P; t� is nondegenerate, i.e.,

det�Ĥij� fi 0 . (6)

This implies that the inverse matrix Ĥ
21

ij exists. The new
canonical variables �Q, P� are defined by the canonical
transformation as

pi �
≠S
≠qi

, Qi �
≠S
≠Pi

. (7)

We also introduce the distribution function defined in
terms of the new canonical coordinates �Q, P� and the
mixed pair of canonical variables �q, P� according to

f0�Q, P; t� � f���q�Q, P; t�, p�Q, P; t�; t��� , (8)

F0�q, P; t� � f���q, p�q, P; t�; t��� . (9)

In particular, in Eq. (8) the old canonical variables are
expressed in terms of the new ones, which is ensured by the
implicit function theorem, provided the relation (6) holds.
As far as the function F0�q, P; t� is concerned, we simply
replace the old momentum p by its counterpart taken from
the first of Eqs. (7). Because

≠pi

≠Pj
�

≠2S
≠qi≠Pj

� Ĥij �)
≠Pi

≠pj
� Ĥ 21

ij (10)

we can express the Poisson bracket in terms of the mixed
variables in the form

�F, G�q,P � Ĥ 21
ji

µ
≠F
≠qi

≠G
≠Pj

2
≠F
≠Pj

≠G
≠qi

∂
. (11)

Differentiation of Eqs. (7) with respect to time t, keeping
the old variables �q, p� fixed, yields
021001-2
≠2S
≠qi≠t

1
≠2S

≠qi≠Pj

µ
≠Pj

≠t

∂
qp

� 0 , (12)

µ
≠Qi

≠t

∂
qp

�
≠2S

≠Pi≠t
1

≠2S
≠Pi≠Pj

µ
≠Pj

≠t

∂
qp

, (13)

or µ
≠Pj

≠t

∂
qp

� 2Ĥ 21
ji

≠2S
≠qi≠t

. (14)

Our goal is to express the Vlasov equation (2) in terms
of the mixed variables �q, P�. Taking into account the
identities

≠Qi

≠qj
�

≠2S
≠qj≠Pi

� Ĥji �)
≠qi

≠Qj
� Ĥ 21

ji , (15)

≠f0

≠Qi
� Ĥ 21

ij
≠F0

≠qj
, (16)

and

≠f0

≠Pi
�

≠F0

≠Pi
2

≠f0

≠Qj

≠2S
≠Pi≠Pj

, (17)

we obtainµ
≠f
≠t

∂
qp

�
≠f0

≠t
1

≠f0

≠Qi

µ
≠Qi

≠t

∂
qp

1
≠f0

≠Pi

µ
≠Pi

≠t

∂
qp

�
≠F0

≠t
1 Ĥ 21

ji

µ
≠F0

≠qi

≠2S
≠t≠Pj

2
≠F0

≠Pj

≠2S
≠t≠qi

∂

�
≠F0

≠t
1

∑
F0,

≠S
≠t

∏
q,P

. (18)

Furthermore, using the relation

�f, H�q,p � �F0,H �q,P , (19)

where

H �q, P; t� � H�q, =qS; t� , (20)

we express the Vlasov equation in terms of the mixed
variables according to

≠F0

≠t
1 �F0,K�q,P � 0 , (21)

where

K�q, P; t� �
≠S
≠t

1 H�q, =qS; t� (22)

is the new Hamiltonian.
For the distribution function f0�Q, P; t�, depending on

the new canonical variables, we clearly obtain

≠f0

≠t
1 �f0,K�Q,P � 0 , (23)
021001-2
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where the new Hamiltonian K is a function of the new
canonical pair �Q, P�, such that

K�=PS, P; t� �
≠S
≠t

1 H�q, =qS; t� , (24)

and the Poisson bracket entering Eq. (23) has the same
form as Eq. (3), expressed in the new canonical variables.

III. PROPAGATION OF AN INTENSE BEAM
THROUGH A PERIODIC FOCUSING LATTICE

As a first application of the Hamiltonian formalism, we
consider the propagation of a continuous beam through
a periodic focusing lattice in a circular ring with mean
radius R. Particle motion is accomplished in 2 degrees
of freedom in a plane transverse to the design orbit. The
model equations consist of the nonlinear Vlasov-Poisson
equations [1]

≠f
≠u

1 �f, H�q,p � 0 , (25)

=2
qc � 24p� � 24p

Z
d2p f�q, p; u� , (26)

where

H�q, p; u� �
R
2

�p2
x 1 p2

z � 1
1

2R
�Gxx2 1 Gzz

2�

1 lc�q; u� (27)

is the normalized Hamiltonian, and q � �x, z�. The
transverse canonical momenta p � �px , pz� entering the
Hamiltonian (27) are dimensionless variables which repre-
sent the actual transverse momenta of the moving particle
scaled by the longitudinal momentum of the synchronous
particle [12]. The case of a beam propagation in a straight
focusing channel is most appropriately described in terms
of the path length s � Ru chosen as an independent
variable. Then the Hamiltonian (27) should be divided by
the mean radius R and the coefficients Gx,z�R2 redefined
accordingly [12].

In addition, R is the mean radius of the accelerator and
c is a normalized potential related to the actual electric
potential w according to

c �
4p´0

Neb
w , (28)

where N is the total number of particles in the beam, eb is
the particle charge, and ´0 is the electric susceptibility of
vacuum. Moreover, the parameter l is defined by

l �
NRrb

b2
s g3

s
, (29)

where bs � ys�c is the relative velocity of the synchro-
nous particle, gs � �1 2 b2

s �21�2 is the Lorentz factor,
and
021001-3
rb �
e2

b

4p´0mbc2 (30)

is the classical radius of a beam particle with charge eb

and rest mass mb . The coefficients Gx,z�u� determining the
focusing strength in both transverse directions are periodic
functions of u,

Gx,z�u 1 Q� � Gx,z�u� , (31)

with period Q.
Following the procedure outlined in the preceding sec-

tion, we transform Eqs. (25)–(27) according to

�F0,K�q,P � 0 , (32)

≠S
≠u

1 eH�q, =qS; u� � K �q, P� , (33)

=2
qc � 24p

Z
d2P F0�q, P� det�=q=PS� , (34)

where e is formally a small parameter, which will be set
equal to unity at the end of the calculation. Similar to
Ref. [8], the small parameter e is proportional to the ap-
plied focusing field. Specifically, the parameter e scales as
e � sy�2p , 1, where sy is the vacuum phase advance
[8]. Note that all contributions to the original Hamiltonian
(27) are allowed to be of the same order of magnitude,
where the small parameter e multiplies H�q, =qS; u� in
Eq. (33). Therefore, in this maximal ordering, self-field
effects are allowed to be as large as (or weaker than) the
applied focusing field. The next step is to expand the quan-
tities S, K , and c in a power series in e according to

S � S0 1 eS1 1 e2S2 1 e3S3 1 . . . , (35)

K � K0 1 eK1 1 e2K2 1 e3K3 1 . . . , (36)

c � c0 1 ec1 1 e2c2 1 e3c3 1 . . . . (37)

We now substitute the expansions (35)–(37) into Eqs. (33)
and (34) and obtain perturbation equations that can be
solved order by order.

The lowest order solution is evident and has the form

S0 � q ? P, K0 � 0 , (38)

=2
qc0 � 24p

Z
d2P F0�q, P� . (39)

First-order O�e�.—Taking into account the already ob-
tained lowest-order solutions (38) and (39), the Hamilton-
Jacobi equation (33) to first order in e can be expressed as

≠S1

≠u
1

R
2

�P2
x 1 P2

z � 1

1
2R

�Gxx2 1 Gzz2� 1 lc0 � K1�q, P� . (40)
021001-3
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Imposing the condition that the first-order Hamiltonian
K1 be equal to

K1�q, P� �
R
2

�P2
x 1 P2

z � 1
1

2R
�Gxx2 1 Gzz

2�

1 lc0�q� , (41)

we obtain immediately

S1 � 2
1

2R
�G̃x�u�x2 1 G̃z�u�z2� , (42)

c1 � 0 . (43)

Here we introduce the notation

Gx,z �
1
Q

Z u01Q

u0

du Gx,z�u� ,

G̃x,z�u� �
Z u01u

u0

dt �Gx,z�t� 2 Gx,z� .

(44)

Note that since the focusing coefficients are periodic
functions of u they can be expanded in a Fourier series

Gx,z�u� �
X̀

n�2`

G�n�
x,z exp�inVu� , (45)

where

G�n�
x,z �

1
Q

Z Q

0
du Gx,z�u� exp�2inVu� , (46)

and V � 2p�Q. Therefore, for the quantities Gx,z and
G̃x,z�u� expressed in terms of the Fourier amplitudes, we
obtain

Gx,z � G�0�
x,z , G̃x,z�u� � 2

i
V

X
nfi0

G
�n�
x,z

n
exp�inVu� .

(47)

Second-order O�e2�.—To this order, the Hamilton-
Jacobi equation (33) takes the form

≠S2

≠u
2 �xPxG̃x 1 zPzG̃z� � K2�q, P� . (48)

It is straightforward to solve Eq. (48), yielding the obvious
result
021001-4
S2 � xPx
˜̃Gx�u� 1 zPz

˜̃Gz�u�, K2�q, P� � 0 . (49)

For the second-order potential c2 we obtain the equation

=2
qc2 � 24p� ˜̃Gx 1 ˜̃Gz�

Z
d2P F0�q, P� , (50)

or, making use of (39),

c2�q; u� � � ˜̃Gx�u� 1 ˜̃Gz�u��c0�q� . (51)

In Eqs. (49)–(51), ˜̃Gx,z�u� denotes application of the inte-
gral operation in Eq. (44) to G̃x,z�u�, i.e.,

˜̃Gx,z�u� �
Z u01u

u0

dt G̃x,z�t� , (52)

because G̃x,z � 0.
Third-order O�e3�.—To third order in e, the Hamilton-

Jacobi equation (33) can be written as

≠S3

≠u
1 R�P2

x
˜̃Gx 1 P2

z
˜̃Gz�1

1
2R

�G̃2
xx2 1 G̃2

z z2� 1 l� ˜̃Gx 1 ˜̃Gz�c0 � K3�q, P� .

(53)

The third-order Hamiltonian K3 is given by the expression

K3�q, P� �
1

2R
�G̃2

xx2 1 G̃2
z z2� . (54)

Equation (53) can be solved easily for the third-order gen-
erating function S3. The result is

S3 � 2R�P2
x

˜̃̃
Gx 1 P2

z
˜̃̃
Gz� 2

1
2R

�f̃G2
xx2 1 f̃G2

z z2�

2 l� ˜̃̃
Gx 1

˜̃̃
Gz�c0 . (55)

For the third-order electric potential c3 we obtain simply

c3 � 0 . (56)

Fourth-order O�e4�.—To the fourth order in the expan-
sion parameter e, the Hamilton-Jacobi equation (33) can
be expressed as
≠S4

≠u
2 xPx�f̃G2

x 1 G̃x
˜̃Gx� 2 zPz�f̃G2

z 1 G̃z
˜̃Gz� 2 lR� ˜̃Gx 1 ˜̃Gz�

µ
Px

≠c0

≠x
1 Pz

≠c0

≠z

∂
� K4�q, P� . (57)

The obvious condition to impose is that the fourth-order Hamiltonian K4 be equal to

K4�q, P� � 2xPxG̃x
˜̃Gx 2 zPzG̃z

˜̃Gz . (58)

Taking into account Eq. (58), it is straightforward to solve the fourth-order Hamilton-Jacobi equation (57) for S4. We
obtain

S4 � xPx�
ff̃G2

x 1 G̃x
f̃̃
Gx� 1 zPz�

ff̃G2
z 1 G̃z

f̃̃
Gz� 1 lR� ˜̃̃

Gx 1
˜̃̃
Gz�

µ
Px

≠c0

≠x
1 Pz

≠c0

≠z

∂
. (59)

For the fourth-order electric potential c4, we obtain the Poisson equation

=2
qc4 � � ˜̃Gx

˜̃Gz 1
ff̃G2

x 1
ff̃G2

z 1 G̃x
f̃̃
Gx 1 G̃z

f̃̃
Gz 1 lR� ˜̃̃

Gx 1
˜̃̃
Gz�=2

qc0�=2
qc0 . (60)
021001-4
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Fifth-order O�e5�.— In fifth order, we are interested in the Hamiltonian K5. Omitting algebraic details, we find

K5�q, P� �
R
2

� ˜̃G
2

xP2
x 1 ˜̃G

2

zP2
z � 1

1
R

�G̃x
f̃G2

xx2 1 G̃z
f̃G2

z z2� 1 l

∑
G̃x� ˜̃̃

Gx 1
˜̃̃
Gz�x

≠c0

≠x
1 G̃z� ˜̃̃

Gx 1
˜̃̃
Gz�z

≠c0

≠z

∏
.

(61)

In concluding this section, we collect terms up to fifth order in e in the new Hamiltonian K � K0 1 eK1 1

e2K2 1 . . . and set e � 1. This gives

K�q, P� �
X

u��x,z�

µ
RAu

2
P2

u 1 BuuPu 1
Cu

2R
u2

∂
1 lc0�q� 1 l

∑
G̃� ˜̃̃

Gx 1
˜̃̃
Gz�x

≠c0

≠x
1 G̃z� ˜̃̃

Gx 1
˜̃̃
Gz�z

≠c0

≠z

∏
,

(62)
where the coefficients Au, Bu, and Cu are defined by the
expressions

Au � 1 1 e4 ˜̃G
2
u , (63)

Bu � 2e3G̃u
˜̃Gu , (64)

and

Cu � Gu 1 e2G̃2
u 1 2e4G̃u

f̃G2
u . (65)

The Hamiltonian (62), neglecting the contribution from the
self-field c0, describes the unperturbed betatron oscilla-
tions in both the horizontal and the vertical directions.

It is useful to compute the unperturbed betatron tunes
nx,z in terms of averages over the focusing field strengths.
021001-5
For a Hamiltonian system governed by a quadratic form
in the canonical variables of the type in Eq. (62), it is
well known that the characteristic frequencies nx,z can be
expressed as

n2
u � AuCu 2 B2

u �u � x, z� . (66)

Keeping terms up to sixth order in the perturbation param-
eter e, we obtain

n2
u � Gu 1 e2G̃2

u 1 e4� Gu
˜̃G

2

u 1 2G̃u
f̃G2

u�

1 e6�G̃2
u

˜̃G
2

u 2 �G̃2
u

˜̃Gu�2� . (67)

In terms of Fourier amplitudes of the focusing coefficients,
Eq. (67) can be expressed as
n2
u � G�0�

u 1
2e2

V2

X̀
n�1

jG�n�
u j2

n2

1
2e4

V4

∑
G�0�

u

X̀
n�1

jG�n�
u j2

n4 1 2
X̀

m,n�1
mfin

Re�G�m��
u G�n�

u G�m2n�
u �

mn�m 2 n�2 2 2
X̀

m,n�1

Re�G�m�
u G�n�

u G�m1n��
u �

mn�m 1 n�2

∏

1
4e6

V6

X̀
m,n�1

jG�m�
u j2jG�n�

u j2

m2n4 . (68)
For illustration purposes, we consider a simple FODO
lattice with equal focusing and defocusing strengths 1G
and 2G and period Q. We also assume that the lon-
gitudinal dimensions uf of the focusing and defocusing
lenses are equal; the longitudinal dimensions ud of the cor-
responding drift spaces are assumed to be equal as well.
Moreover,

2�uf 1 ud� � Q . (69)

For simplicity, we consider the horizontal degree of free-
dom only (the vertical degree of freedom can be treated in
analogous manner). The Fourier amplitudes of the focus-
ing coefficients are

G�2n11�
x �

iG
�2n 1 1�p

�exp�2i�2n 1 1�Vuf� 2 1	 ,

G�2n�
x � 0 ,

(70)

where n � 0, 1, 2, . . . . To second order in e, we obtain for
the horizontal betatron tune
n2
x �

2e2Q2G2

p4

X̀
m�1

1
�2m 2 1�4 sin2 �2m 2 1�puf

Q
.

(71)

In the limit of infinitely thin lenses, uf ! 0, Eq. (71) re-
duces to the well-known expression

n2
x �

e2u
2
fG2

4
, (72)

where use has been made of the identityX̀
m�1

1
�2m 2 1�2 �

p2

8
. (73)

It is evident from Eqs. (68) and (71) that the Hamilto-
nian averaging technique developed here represents a pow-
erful formalism for evaluating the betatron tunes in terms
of averages over the focusing field strength. The analy-
sis in this section has been carried out to sixth order to
demonstrate the ease and flexibility of the mixed-variable
021001-5
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approach. In some practical applications, a description to
lower order (e.g. fourth order) may be adequate.

IV. COHERENT BEAM-BEAM INTERACTION

As a second application of the Hamiltonian formal-
ism developed in Sec. II, we study here the evolution of
two counterpropagating beams, nonlinearly coupled by the
electromagnetic interaction between the beams at collision.
For simplicity, we consider one-dimensional motion in the
vertical �q� direction, described by the nonlinear Vlasov-
Poisson equations

≠fk

≠u
1 �fk , Hk� � 0 , (74)

≠2Vk

≠q2 � 4p
Z

dp f32k�q, p; u� , (75)

where

Hk �
nk

2
�p2 1 q2� 1 lkdp�u�Vk�q; u� (76)

is the Hamiltonian. Here lk is the beam-beam coupling
parameter, defined according to [13]

lk �
RreN32kb

�
kq

gk0L�32k�x

1 1 bk0b�32k�0

b
2
k0



2RreN32kb

�
kq

gk0L�32k�x
.

(77)

Moreover, �k � 1, 2� labels the beam, fk�q, p; u� is the
distribution function, u is the azimuthal angle, and nk is
the betatron frequency in the vertical direction. In addition,
R is the mean machine radius, re is the classical electron
radius, N1,2 is the total number of particles in either beam,
Vk�q; u� is the normalized beam-beam potential, b

�
kq is the

vertical beta function at the interaction point, and Lkx is the
horizontal dimension of the beam ribbon [14].

Our goal is to determine a canonical transformation such
that the new Hamiltonian is time independent. As a conse-
quence, the stationary solution of the Vlasov equation (21)
is expressed as a function of the new Hamiltonian. Fol-
lowing the procedure outlined in the Sec. II we transform
Eqs. (74)–(76) according to

�F�k�
0 ,Kk� � 0 , (78)

≠Sk

≠u
1 eHk

µ
q,

≠Sk

≠q
; u

∂
� Kk�q, P� , (79)

≠2Vk

≠q2 � 4p
Z

dP
≠2Sk

≠q≠P
F

�32k�
0 �q, P� , (80)

where e is again a formal small parameter, which will be
set equal to unity at the end of the calculation. In this case,
the small parameter e scales as the beam-beam parame-
ter [13] l̃k with e � l̃k � �2�p�1�2lksk��s32k�s2

k 1

s
2
32k�1�2�.
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The next step is to expand the quantities Sk , Kk , and
Vk in a power series in e, analogous to Eqs. (35)–(37),
according to

Sk � qP 1 eG
�1�
k 1 e2G

�2�
k 1 e3G

�3�
k 1 . . . , (81)

Kk � eK
�1�
k 1 e2K

�2�
k 1 e3K

�3�
k 1 . . . , (82)

Vk � Ṽk 1 eV
�1�
k 1 e2V

�2�
k 1 e3V

�3�
k 1 . . . , (83)

where

≠2Ṽk

≠q2 � 4p
Z

dP F
�32k�
0 �q, P� . (84)

Substitution of the above expansions (81)–(83) into
Eqs. (79) and (80) yields perturbation equations that can
be solved successively order by order. The results to third
order in e are briefly summarized below.

First-order O�e�:

K
�1�
k �q, P� �

nk

2
�P2 1 q2� 1

lk

2p
Ṽk�q� , (85)

G
�1�
k �q, P; u� �

ilk

2p
Ṽk�q�

X
nfi0

1
n

exp�inu� , (86)

V
�1�
k �q; u� � 0 . (87)

Second-order O�e2�:

K
�2�
k �q, P� � 0 , (88)

G
�2�
k �q, P; u� � 2

lknk

2p
PṼ 0

k�q�
X
nfi0

1
n2 exp�inu� , (89)

V
�2�
k �q; u� � 2

lknk

2p
Ṽ

�2�
k �q�

X
nfi0

1
n2 exp�inu� , (90)

where

≠2Ṽ
�2�
k

≠q2 � 4pṼ 00
k �q�

Z
dP F

�32k�
0 �q, P� . (91)

Third-order O�e3�.— In third order we are interested in
the new Hamiltonian, which is of the form

K
�3�
k �q, P� �

l
2
knk

4p2 z �2� �Ṽ 02
k �q� 2 2Ṽ

�2�
k �q�� , (92)

where z �z� is Riemann’s zeta function [15]

z �z� �
X̀
n�1

1
nz

. (93)

The effectiveness of the Hamiltonian formalism devel-
oped in this paper has been demonstrated in two particular
examples. In the first example, discussed in the previous
021001-6
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section, the short-scale dynamics is contained in the exter-
nal focusing force acting on the beam, while an essential
feature of the coherent beam-beam interaction treated in
this section is the relatively fast variation of the collective
interaction between the two colliding beams. The sim-
plicity in applying the Hamiltonian averaging technique is
embedded in the use of mixed canonical variables. Instead
of expanding the generating function and the new Hamil-
tonian in terms of the new canonical coordinates and mo-
menta [7,8], one has to simply solve the Hamilton-Jacobi
equations order by order. It should be pointed out that
the mixed variable Hamiltonian formalism can be used to
derive amplitude equations, describing processes of for-
mation of patterns and coherent structures in a number of
plasma and beam systems in which collective processes are
important.

V. THE EQUILIBRIUM DISTRIBUTION
FUNCTION

Since the new Hamiltonian Kk is time independent (by
construction), the equilibrium distribution function F

�k�
0

[see Eq. (78)] is a function of the new Hamiltonian

F
�k�
0 �q, P� � Gk�Kk� , (94)

where

Kk�q, P� �
nk

2
�P2 1 q2� 1

lk

2p
Ṽk�q�

1
l

2
knk

4p2 z �2� �Ṽ 02
2 �q� 2 2Ṽ

�2�
k �q�� . (95)
021001-7
Integrating Eq. (94) over P we obtain a nonlinear integral
equation of the Haissinski type [16] for the equilibrium
beam density profile �

�k�
0

�
�k�
0 �q� �

Z
dP Gk�Kk� , (96)

where

Kk�q, P� �
nk

2
�P2 1 q2�

1 lk

Z
dq0 jq 2 q0j�

�32k�
0 �q0�

1 2l2
knkz �2�Fk�q� , (97)

Fk�q� �
Z

dq0 dq00 Z�q 2 q0, q0 2 q00�

3 �
�32k�
0 �q0�� �32k�

0 �q00� , (98)

Z�u, y� � sgn�u� sgn�y� 2 2jujd�y� . (99)

Here, sgn�z� is the well-known signum function.
Let us further specify the function Gk�Kk� and assume

that it is given by the thermal equilibrium distribution
[1,12,17]

Gk�Kk� � Nk exp

µ
2
Kk

´k

∂
, (100)

where Nk is a normalization constant, defined according
to

1
Nk

�
Z

dq dP exp

∑
2
Kk�q, P�

´k

∏
, (101)

and ´k is the unnormalized beam emittance. The second
term in the Hamiltonian (97) can be transformed according
to
Z `

2`
dq0 jq 2 q0j�

�32k�
0 �q0� � q 2 �q32k� 1 2

Z `

q
dq0 �q0 2 q�� �32k�

0 �q0�

� q 2 �q32k� 1 2
Z `

0
dq1 q1�

�32k�
0 �q1 1 q� , (102)

where

�qn
k � �

Z `

2`
dq qn�

�k�
0 �q� . (103)

Expanding the beam density �
�32k�
0 �q1 1 q� occurring in the integral in Eq. (102) in a Taylor series and integrating by

parts, we obtain Z `

2`
dq0 jq 2 q0j�

�32k�
0 �q0� � �q�1�

32k� 2 �q�2�
32k� 1 �1 2 2A32k�q 1 2

X̀
n�2

C
�n�
32k

n!
qn, (104)
where

�q�1�
k � �

Z `

0
dq q�

�k�
0 �q� ,

�q�2�
k � �

Z 0

2`
dq q�

�k�
0 �q� ,

(105)
Ak �
Z `

0
dq �

�k�
0 �q� ,

C
�n�
k �

≠n22�
�k�
0 �q�

≠qn22

Ç
q�0

.

(106)

Substituting Eqs. (100) and (104) into Eq. (96), we obtain
021001-7
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�
�k�
0 �q� � Nk

s
2p´k

nk
exp

∑
2

nkq2

2´k
2

lk

´k
�1 2 2A32k�q 2

2lk

´k

X̀
n�2

C
�n�
32k

n!
qn

∏
. (107)
Taking into account that

Ak �
p´k

nk
Nk 1 O�lk� ,

C
�n�
k � Nk

s
2p´k

nk
�21�n22

µ
nk

2´k

∂�n22��2

3 Hn22�0� 1 O�lk� , (108)

where Hn�z� is the Hermite polynomial [15] of order n,
we obtain

�
�k�
0 �q� � Nk

s
2p´k

nk
exp�hk�q�� , (109)

where

hk�q� � 2
nkq2

2´k
2

lkB32kq
´k

2
2plk´32kN32k

´kn32k

∑
qF�a32kq� 1

e2a2
32kq2

a32k
p

p

∏
,

(110)

and

Bk � 1 2
2p´kNk

nk
, a2

k �
nk

2´k
. (111)

Here, F�z� is the error function [15].
In order to determine the normalization constant(s), Nk ,

we utilize the method of Laplace to take the integral of
the beam density �

�k�
0 �q� over q. The first step consists of

finding the extremum value(s) q
�e�
k of the function(s) hk�q�.

These values satisfy the (two) equation(s)

nkq
�e�
k

´k
1

lkB32k

´k
1

2plk´32kN32k

´kn32k
F�a32kq

�e�
k � � 0 . (112)

These are evidently maxima since

h00
k �q�e�

k � � 2
nk

´k
2

4plk´32kN32k

´kn32k

a32k
p

p
e2a2

32kq
�e�2
k

, 0 . (113)

Integrating the beam density (109) over q, we obtain [18]

1 � 2pNk

s
´k

nkjh
00
k �q�e�

k �j
exp�hk�q�e�

k �� . (114)

Equation (114) represents two transcendental equations for
determining the normalization constants Nk . For the beam
centroid and the beam size, i.e., the first and second mo-
ments of the beam density (109), we obtain

�qk� � q
�e�
k 1

2Nk

jh00
k �q�e�

k �j

s
2p´k

nk
exp�hk�q�e�

k �� , (115)
�q2
k� � q

�e�2
k 1

4Nkq
�e�
k

jh00
k �q�e�

k �j

s
2p´k

nk
exp�hk�q�e�

k ��

1 2pNk

r
´k

nk

∑
1

jh00
k �q�e�

k �j

∏3�2

exp�hk�q�e�
k �� .

(116)

In order to proceed further, we assume that the beam-
beam coupling parameter lk is small, and expand the equi-
librium beam density �

�k�
0 �q� in a perturbation series in lk

according to

�
�k�
0 �q� � �

�k�
00 �q� 1 lk�

�k�
01 �q� 1 . . . , (117)

where

�
�k�
00 �q� �

Nk
p

p

ak
exp�2a2

kq2� , (118)

and

�
�k�
01 �q� � 2

1
´k

Ω
B32kq 1

pN32k

a2
32k

3

∑
qF�a32kq� 1

e2a2
32kq2

a32k
p

p

∏æ
�

�k�
00 �q� .

(119)

The main goal in what follows is to determine the normal-
ization constant(s) Nk0. To do so we integrate Eq. (117)
over q. As a result of simple algebraic manipulations, we
obtain

pNk

a2
k

2
p
p

plk

´ka3
ka3

32k

q
a2

k 1 a2
32k NkN32k � 1 . (120)

Introducing the new unknowns

Mk �
pNk

a2
k

, (121)

we can write the two equations for determining M1,2 as

1 � M1 2 b1M1M2, 1 � M2 2 b2M1M2 ,
(122)

where

b1 �
l1

´1
p

p

q
a2

1 1 a2
2

a1a2
, b2 �

l2

´2
p

p

q
a2

1 1 a2
2

a1a2
.

(123)

From Eq. (122), as a result of simple algebraic manipula-
tions we obtain the quadratic equation

b2M
2
1 2 �b2 2 b1 1 1�M1 1 1 � 0 (124)

for M1, and the equation

b1M2 � b2M1 1 b1 2 b2 (125)
021001-8
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for determining M2 once M1 is known. Equation (124)
has one real double root if and only if the discriminant

D � �b2 2 b1 1 1�2 2 4b2 (126)

is equal to zero. This gives

b2 � �
p

b1 6 1�2. (127)

Since the scaled normalization constants M1,2 should be
positive, we choose

b2 � �
p

b1 2 1�2. (128)

Thus we obtain

M1 �
1

p
b2

�
1

j
p

b1 2 1j
, M2 �

1
p

b1
. (129)

To conclude this section we note that in the case of
D fi 0 we have two solutions for either M , i.e.,

M
�1,2�
1 �

b2 2 b1 1 1 6
p
D

2b2
,

M
�1,2�
2 �

b1 2 b2 1 1 6
p
D

2b1
.

(130)

Note also that the discriminant D is invariant (does not
change) under permutation of b1 and b2. In other words,
four different physically realizable situations are possible
for a wide range of parameters

0 , b2 , 1 1 b1 . (131)

The inequality in Eq. (131) was obtained under the con-
dition that both solutions in Eq. (130) are positive. This
case corresponds to the so-called “fl ip-flop” state [19] of
the two colliding beams, which is a bifurcated state that is
better to be avoided.

VI. CONCLUSIONS

We developed a systematic canonical perturbation ap-
proach that removes rapidly oscillating terms in Hamilto-
nians of quite general form. The essential feature of this
approach is the use of mixed canonical variables. For this
purpose the Vlasov-Poisson equations are transformed to
mixed canonical variables, and an appropriate perturbation
scheme is chosen to obtain the equilibrium phase space
density. It is worthwhile to note that the perturbation ex-
pansion outlined in the preceding section can be carried
out to arbitrary order, although higher-order calculations
become very tedious.

In conclusion, it is evident from the present analysis
that the Hamiltonian averaging technique developed here
represents a powerful formalism with applications ranging
from beam propagation through a periodic focusing lat-
tice (Sec. III) to coherent beam-beam interaction (Secs. IV
021001-9
and V). For example, in the application to the coherent
beam-beam interaction, the rapidly oscillating terms due
to the periodic beam-beam kicks have been averaged away,
leading to a new time-independent Hamiltonian (Sec. IV).
Furthermore, the equilibrium distribution functions have
been obtained as a general function of the new Hamilto-
nian, and a coupled set of integral equations for the beam
densities has been obtained (Sec. V). An intriguing feature
of the analysis in Sec. V is the derivation of a condition for
the existence of the so-called flip-flop state [19] of the two
colliding beams, which is a bifurcated state that is better
to be avoided in experimental applications.

We reiterate that the formalism developed here is,
strictly speaking, noncanonical and, in general, does not
provide complete elimination of fast oscillating terms in
the transformed Vlasov equation in the mixed variables.
Nevertheless, such an elimination can be performed in
the new Hamiltonian in the mixed variables. Moreover,
if the distribution function is assumed to be an arbitrary
function of the new time-independent Hamiltonian, it is
a stationary solution of the nonlinear Vlasov equation in
the mixed variables.

Finally, we reiterate that the mixed variable Hamiltonian
formalism developed in the present analysis can be used to
derive amplitude equations, describing processes of for-
mation of patterns and coherent structures in a number of
plasma and beam systems in which collective processes are
important.
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