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Abstract 

The longitudinal dynamics of electrons in eB storage rings has been studied, when the radiation damping and quantum 
excitation of synchrotron radiation are taken into account. It has been shown that the electron beam propagates according to 
the law specified by a stochastic Schrijdinger-like equation, in which the role of Planck’s constant is played by an effective 
longitudinal thermal beam emittance. @ 1997 Published by Elsevier Science B.V. 

1. Introduction 

The dynamics of high-energy leptons in a storage ring device differs essentially from that of heavy particles. 
The reason is that the contribution of synchrotron radiation, taking place whenever the trajectory of a charged 

particle is bent, becomes significant and cannot be neglected in general. Consequently, the electron dynamics 
is dissipative, provided the radiation friction force is present. Moreover, quantum fluctuations of synchrotron 

radiation (due to the random acts of photon emission) give rise to a Langevin-type force in the equations 
of motion. Thus, the analogy with classical Brownian motion of a particle suspended in a viscous medium is 

complete with the radiation friction force playing the role of the well-known Stokes force. Fluctuations, implied 
by the existence of many degrees of freedom in the beam, are also present, which adds to the complexity of the 
problem. We further assume that these fluctuations do not lead to subsequent dissipation (the only source of 
dissipation being the synchrotron radiation), which is equivalent to considering the beam fluid inviscid. Their 
implementation in the formalism developed here is achieved in a way similar to that of Ref. [ 11. 

In the present paper we study the motion of an electron coupled to the thermal bath constituting the random 
photon field. In addition, we take into account the effect produced by the rest of the beam, substituting it 
by a random inhomogeneous medium [ 11, where our test particle has been suspended. As a result, the beam 
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propagation is governed by a stochastic Schrodinger-like equation in which the role of Planck’s constant is 
played by an effective longitudinal beam emittance. The latter is a random quantity in its turn with an evolution 
law specified by a corresponding Fokker-Planck equation. 

An approach similar to ours has been recently proposed [ 21, based on analogies between relativistic particle 

beam motion and non-relativistic quantum mechanics. 

2. Hamiltonian description of beam dynamics with synchrotron radiation 

Our starting point is the system of stochastic differential equations [ 3,4] 

$=V,H, 
dp - = -VH - C(s)V,H, 
ds 

(2.la) 

dt aH dH dH 
--- 

ds=zI’ ds- 8(-t) 
+ 2C(s) g, (2.lb) 

describing the motion of an electron with rest mass mc and charge e in a storage ring device, when the 
synchrotron radiation is taken into account. Here x = (xl, x2) is the particle displacement in a plane transverse 
to the orbit, p = (~1, ~2) is the conjugate momentum and s is the curve length along the circumference of the 
accelerator. The Hamiltonian H (which is in fact the longitudinal momentum) reads 

H=-(1+x-K) (‘F-eqo)2/c2- rn$z2 - (p - eA)2 - ( 1 + x - K)eA,, (2.2) 

where K = ( K1 , K2) is the local curvature of the orbit (for plane orbits K2 = 0)) ‘H is the total energy of the 

electron and rp, A, and A = (Al, AZ) define the electromagnetic field providing beam acceleration and focusing 
(we exclude beam-beam interaction from consideration throughout the present paper). Furthermore, 

C(s) = Cl(S) + C2(~M(S), (2.3) 

where the coefficients CI (s) and C~(S) are defined in terms of the mean and fluctuating parts of the radiated 

power as follows [4,5], 

P4CI (s) 
Cl(S) = 7 9 C2(s) = 

P2JGGi 

c2 . 
(2.4) 

In Eqs. (2.4) p is the total momentum of the electron, y is the relativistic factor and the quantities cl (s) and 
c2( s) are given by 

Cl(S) = $&K:(s) 7 c2(s) = 
55r&.c 

-K:W, 

0 24&m: 
(2.5) 

where rr is the classical electron radius, 

e2 
r, = 

47rTTEcfrQC2 . 

The quantity l(s) is a white noise variable with formal correlation properties 

(2.6) 

(5(s)) = 0 > (5(S)5(Sl)) = as - 31). 

First of all let us introduce the non-canonical scaling transformation 

(2.7) 

(2.8a) x =+ PI=;* 
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(2.8b) 

and specify the new Hamiltonian 

H,=RH, 
PS 

(2.9) 

where U, is the velocity of the synchronous particle, ps is its momentum and R is the mean machine radius. 

Then Eqs. (2.1) become 

dx 
z = V,,HI > 

dP, 
dB = -VH, - - 

c(e), H 

PS 
PI 17 

dr CYHI dh r3H1 -=- , C(e) PHI -- 
de ah ’ de C?T ’ /?,2ps dh ’ 

(2.10a) 

(2.10b) 

where the new independent variable is the azimuth 8. Next we perform a canonical transformation given by the 
generating function 

F:‘)(x,P*,7,rl;e)=x.P,+~(rl+l/p,2)+R77e 

and obtain the equations of motion for the new canonical variables 

Cr=7+ RB, v=h-l/p,2 

in terms of the new Hamiltonian 

(2.11) 

(2.12) 

Rc(e) 
H2 = HI + Rrl+ P:p,,a (2.13) 

that are quite the same compared to (2. lob). Obviously, the equations describing the evolution of the transversal 
degrees of freedom in terms of the new Hamiltonian (2.13) become similar to Eqs. (2.10a) _ Hence 

dx dP, 
s=V,,H2. dB=-VH2-- 

c(e)v H 

PS 
pt 2> (2.14a) 

da aH2 dT aH2 
%=-j-q’ s=-z+ 

c(e) aH2 -- 
PZPPS a’17 . 

(2.14b) 

Expanding the first term on the right-hand side of the original Hamiltonian (2.2) in the small quantities Jp, 1 
and r] we obtain [6] 

H2 = Hi” + Hi” + Hi2’ + Hi3) + . . . , (2.15) 

(2.15a) 

H”’ = -RT,J(x. K), 2 (2.15b) 

Hc2’ = ;pf + & (G,x: + G~x;), 2 

Hi3) = R(x . K) +-3x: -3x4, 

(2.1%) 

(2.15d) 

where &a (0) is the accelerating field, w and 40 are its frequency and phase respectively and k is the acceleration 
harmonic. The coefficients gc( 0) and Ae( 0) specify the quadrupolar and the sextupolar strengths of the guiding 
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magnetic field, while Gt (0) and Gz(8) determine the linear stability of the machine. If terms of higher 
order in the transverse coordinates are retained, then contributions due to higher multipoles would appear in 
the Hamiltonian (2.15). Let us now consider a second canonical transformation specified by the generating 

function 

where D( 0) is the dispersion function, satisfying the equation 

d2&(e) 
de2 

+ Gk(B)Dk(O) = R2K&‘) (k = 1,2). 

The old and the new canonical variables are related via the expressions 

x=f++jD, 
n $dD 

PI=P+Rz’ 

,. dD 
a=&+jj.D_X._, 

R de 
77=7j. 

(2.16) 

(2.17) 

(2.18a) 

(2.18b) 

Retaining terms quadratic in the momenta j3, $ the new Hamiltonian can be written as [ 61 

A=l%)+1;12, (2.19) 

. RK -2 RC(B) 
- Ho=-~T + pzps u+ (2.19a) 

(2.19b) 

where V(x; 8) collects all non-linear terms due to the guiding magnetic field. Here AEa = (eR&o(B)),, is the 

maximum energy gain per turn, K is the autophasing coefficient (phase slip factor) and cpa is the phase of the 
accelerating voltage, 

K+,--I 
rz ’ 

cpo = 40 - Bo, (2.20a) 

(eRlo(B) sin&?), 

(eR&oo(e) COSTS), 
(2.20b) 

The equations of motion for the new canonical variables given by the canonical transformation (2.18) in terms 
of the new Hamiltonian (2.19) are written now in the form 

!t=_Vfi_CV C dDdH2 

de 
f PI 2 

H _ -__ 
PS RP:P~S de drl ’ 

dii a& CD d4 c aH2 

de= a6 --_t*v,,H2, --$+__ Tic- P3Ps arl . 

(2.21a) 

(2.21b) 

(2.21c) 

In what follows we shall consider the synchrotron motion only and neglect the betatron motion and the synchro- 
betatron coupling, which generally takes place by virtue of the expressions (2.18). It is possible, however, to 
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cast Eqs. (2.21~) into a Hamiltonian form (7-91, if the time-dependent “synchrotron radius” is introduced 
according to the expression 

Then Eqs. (2.21~) become identical to the Hamilton equations 

d+ a& drj a& 

de = ag ’ 
-=-- 
de aa ’ 

where 

ti 
s 

(2.22) 

(2.23) 

(2.24) 

is the Hamiltonian function, which is not the energy of our system as has been pointed out in Ref. [ 71. 

3. The stochastic Schrijdinger-like equation 

Following in quite the same manner the strategy outlined in our previous paper [ l] we introduce in the 

Hamiltonian (2.24) the random longitudinal velocity field z,( 0) with the formal correlation properties 

(z,(@>, = 0 9 (zswzs(~l)), = •dh(@&~ - 4). (3.1) 

The notation (. . .), implies a statistical average over the ensemble of realizations of the process z,( 0) and l a 
is the longitudinal thermal beam emittance. Note that the average in (3.1) does not affect the process &( 8) 
responsible for the quantum fluctuations of the synchrotron radiation. This means that the correlation function 
eaRs( 0) is in its turn a random function (strictly speaking, a functional of the process t( 6’)). Taking into 
account the temporal behavior of the synchrotron radius R,(B) we obtain the set of equations describing the 

evolution of the Madelung fluid, 

$ + &,p) = 0, 

ids ap -- Fe=- 2 a6* 

(3.2a) 

(3.2b) 

(3.2~) 

where 

or,(a;e) = -- 

It can be checked that the system (3.2) is equivalent to the Schrodinger-like equation 

ieaR,(B)$- = - 
6$&(e) a2w 

2 s + rr,(&; e)w 

through the well-known ansatz 

P(B;B) = Jmexp [is(a;O)], 

(3.3) 

(3.4) 

(3.5) 
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In order to simplify the subsequent exposition let us adopt the following notations, 

27r 
RK 

- ___ 
ffl - 21rp;ps J 

dBCi(8), 

0 

aq8; e) = -Qso(8;e) - a,ay(e), 

c,(e) = e,(e) exp ( - a2/dr[(r)) , c,(e) = eae-alB. 

0 

Then the stochastic Schrodinger-like equation (3.4) takes its final form, 

R@(8) a*YP &(e)ff$ = -A 
2 

-+ + a,(*; e)p. 

(3.6) 

(3.7a) 

(3.7b) 

(3.7c) 

(3.7d) 

(3.8) 

The relevant quantity one can obtain from Eq. (3.8) is the beam wave function 

$(a; 0) = (w(*i; e)),, (3.9) 

averaged over the realizations of the process s( 0). Performing the above-mentioned statistical average in (3.8) 
we get the following equation, 

(3.10) 

which is unfortunately, not closed with respect to $( 6; 0)) for it contains the yet unknown correlators on both 
sides. Hence, we have to find a way to split correlations of the type (?j [ [( 0) ] ly [ [( 0) 1) and ([( 0) p [ t( 0) I). 

In order to solve this problem we use the method of the characteristic functional, initially proposed by 
Furutsu and Novikov and later developed by Klyatskin and Tatarsky (see Ref. [ lo] and references therein). 

For two given generic functionals F[ [( 0) ] and G[ &( 0) ] of the stochastic process t( 0)) their correlation can 
be computed according to the expression 

(mI5(W lG[!t(T) I) = ( :F$&)WW). f2 

where 

(3.11) 

(3.12) 

and S/S[( 7) denotes the functional derivative with respect to the process [( 7). The statistical properties of the 
latter are entirely specified by the characteristic functional 

(3.13) 



266 S.1. Tzetinv/Phy.~ics Letters A 232 (1997) 260-268 

or alternatively by the generating cumulant functional OH [ L: ] defined as 

@8[ul = exp (@e[ul). 

If the process t( I!?) is a Gaussian stochastic process the generating cumulant functional becomes 

H 6 

@[u] =-i dr, J J dn (5(71)5(72))~(71)~(7~). 

0 0 

Noting that 

by virtue of (3.11) we immediately obtain the Furutsu-Novikov formula 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

which we shall apply later to split the correlation in the last term of Eq. (3.10). As far as the correlator 

(Z’,‘(0)~]~(r)l) is concerned, straightforward calculations give 

L?~“‘[u] = e:(e) exp (@[vi- ina7.1 - Oe[o]) (3.18) 

and making use of (3.1 I ) once more we find 

(?:(O)P[5(7)1) = E:(O) exp (yjdr, 1 dr2 (5(7-1)5(72)j ) 

0 0 

In writing Eq. (3.19) we have utilized the well-known formula for the functional shift 

(3.19) 

( 3.20) 

What remains now is to compute the functional derivative &P [ {] /S[( 0) entering the Furutsu-Novikov formula 
(3.17). For that purpose we first observe that provided the Schrodinger-like equation (3.8) is of first order with 
respect to the time 6, its solution at the instant 0 will functionally depend on the stochastic process [(0l) for 
0 < 01 < B and W[c] does not change under variations of l(0t) for 81 < 0, 8, > 0. Therefore, the following 
causality condition holds, 

6Q+[5(@) 1 = o 

65(h) 
(e, < o;el > 8). (3.21) 

Next varying Eq. (3.8) for 0 < 0, < 0 we get 



S.I. Tzenov/Physics Letters A 232 (1997) 260-268 267 

(3.22) 

Formally integrating the last equation in the limit 01 + 6’ with the condition (3.21) in hand we obtain the 
desired expression for the functional derivative, namely 

(3.23) 

By virtue of (3.17), (3.19) and (3.23) having started from the averaged Schriidinger-like equation (3.10) we 

finally arrive at 

i~.(t))a(W’f-a21) = _ Ref(B)e3ai"/2 a*(~[,$ - 2~~1) 
J ae 2 ai?* 

-e -“:“l*[@so(&;~) _ ; ; a &I@ - ~icu~a2E,‘(8)2(~[[5+cu2]). 

In the lowest order in the parameter LQ, Eq. (3.24) reduces to 

(3.24) 

(3.25) 

It may be worth mentioning here that the distribution of the effective longitudinal beam emittance (3.7d) is 

logarithmically normal, 

WCs; eled 0) = a2e,eel,m exp ( [ale + In (~.JE~)] * 
- 

?T 2a;e > 

and satisfies the Fokker-Planck equation, 

E, = &is, 
s 

(3.26) 

(3.27a) 

(3.27b) 

which is a direct consequence of (3.7d), For the nth moment of the effective longitudinal emittance one readily 

obtains 

(i:(e)) = $exp [--n((~, - +;)e]. (3.28) 

The latter expression indicates exponential growth of higher moments of the distribution (3.26) starting from 

3% 
n>T. 

a2 

4. Concluding remarks 

(3.29) 

In the present paper we have studied the longitudinal dynamics of an electron circulating in an eZ storage ring 
when both synchrotron radiation and interaction between particles in the beam are taken into account. It has 
been shown that the electron beam propagates according to the law specified by a stochastic Schrodinger-like 
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equation. Particle motion is governed by a beam wave function averaged over the realization of the stochastic 
process, describing the quantum fluctuations of synchrotron radiation. The squared modulus of the beam wave 

function gives the longitudinal bunch profile, while its phase contains information concerning the energy spread 

within the bunch. 

Let us finally note that the radiating electron beam represents a system being very far from thermodynamic 
equilibrium. It acts as a constant solicitor in the energy transfer from the power source to the incoherent 
electromagnetic background. Therefore, macroscopic quantities as for example the effective longitudinal thermal 

beam emittance, do not exhibit relaxation towards equilibrium values, which is indicated by Eqs. (3.26) and 

(3.28). 
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