
RAL-TR-2009-004

April 27, 2009

J. D. Hogg, J. K. Reid and J. A. Scott

A DAG-based Sparse Cholesky Solver for
Multicore Architectures



c© Science and Technology Facilities Council

Enquires about copyright, reproduction and requests for additional
copies of this report should be addressed to:

Library and Information Services
SFTC Rutherford Appleton Laboratory
Harwell Science and Innovation Campus
Didcot
OX11 0QX
UK
Tel: +44 (0)1235 445384
Fax: +44(0)1235 446403
Email: library@rl.ac.uk

The STFC ePublication archive (epubs), recording the scientific output of the
Chilbolton, Daresbury, and Rutherford Appleton Laboratories is available
online at: http://epubs.cclrc.ac.uk/

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their reports
or in any communication about their tests or investigation



RAL-TR-2009-004

A DAG-based Sparse Cholesky Solver for Multicore

Architectures

J. D. Hogg1 2 , J. K. Reid1 and J. A. Scott1

ABSTRACT

In this paper, we describe the design and development of a new code for the solution of sparse symmetric

positive-definite linear systems aimed primarily at multicore architectures. Our new Fortran 95/OpenMP

code, HSL MA87, is available as part of the software library HSL and extends to the sparse case the task

DAG-based approach that is becoming popular in the design and development of dense linear algebra

kernels.

Comparisons are made with existing parallel solvers, using problems arising from a range of practical

applications. We demonstrate that HSL MA87 obtains good serial and parallel times on an 8-core machine.

Keywords: Cholesky factorization, sparse symmetric linear systems, DAG-based, parallel, multicore,

Fortran 95, OpenMP.

AMS(MOS) subject classifications: 65F05, 65F50, 65Y05

1 Computational Science and Engineering Department, Rutherford Appleton Laboratory, Chilton,

Oxfordshire, OX11 0QX, UK.

Email: john.reid@stfc.ac.uk and jennifer.scott@stfc.ac.uk

Work supported by EPSRC grants EP/F006535/1 and EP/E053351/1.

Current reports available from http://www.numerical.rl.ac.uk/reports/reports.html.

2 School of Mathematics, University of Edinburgh, JCMB, King’s Buildings, Edinburgh, EH9 3JZ, UK.

Email: J.Hogg@ed.ac.uk

Work partially supported by EPSRC grant EP/F006535/1.

April 27, 2009



1 Introduction

Many problems require the efficient and accurate solution of linear systems

Ax = b (1.1)

where A is a large, sparse, real and symmetric matrix of order n. In recent years a number of direct solvers

have been developed for this problem, including the serial codes MA57 [8] and HSL MA77 [19] from the HSL

software library [15] and CHOLMOD [6] as well as the parallel codes MUMPS [2], PARDISO [20], PaStiX

[12] and WSMP [11]. A detailed comparison of serial codes is provided by Gould, Hu, and Scott [10].

The emergence of multicore machines has led to the need to design new solvers that are able to effectively

exploit these architectures. In this paper, we describe how we have extended the directed acyclic graph

(DAG) approach used by recent dense linear solvers [4, 5, 13] to the solution of sparse positive-definite

linear systems on multicore architectures.

Multicore machines are shared memory systems featuring a complex hierarchy of shared caches, and

are normally exploited through one of the following APIs:

OpenMP: Initially developed to allow easy exploitation of loop based parallelism, OpenMP works

through pragmas in the program source code, enabling serial and parallel versions of a code to

coexist. Modern versions allow non-loop based parallelism to be implemented in a standard cross-

platform way in either C or Fortran.

MPI: The message passing framework is designed for distributed memory programming but it can also

be implemented on shared memory systems. MPI is supported from both C and Fortran.

Pthreads: POSIX Threads are available on any reasonably POSIX compliant operating system (such as

Linux), and allow a low-level parallel implementation that can be used directly from C.

HSL is a Fortran library and so our new sparse Cholesky solver HSL MA87 is written in Fortran 95 with

the widely available extension of allocatable components of structures, part of Fortran 2003. To provide a

portable approach that allows the exploitation of shared caches, HSL MA87 uses OpenMP.

The outline of this paper is as follows. In Section 2, we provide a short description of the recent

developments for dense linear systems that we will adapt to the sparse case. Section 3 presents a brief

outline of the design of a traditional sparse direct solver and explains the changes required for our sparse

DAG approach. Section 4 describes the implementation of our DAG-based Cholesky solver HSL MA87 and

its user interface. Results of experiments with HSL MA87 on an 8-core machine and comparisons with

a number of other modern direct solvers on selected problems from practical applications are given in

Sections 5 and 6. Finally, in Sections 7 and 8, we comment on future work and code availability.

2 Dense DAG-based approach

Recent research by Buttari et al. [4, 5] and Hogg [13] into efficiently solving dense linear systems of

equations on multicore architectures has shown that directed acyclic graphs (DAGs) can be used to obtain

significant parallel speedups. Hogg reports near perfect speedups for sufficiently large problems. A blocked

Cholesky factorization of a dense matrix A divides A into square blocks Aij of order nb and then divides

the work into a number of tasks:

• Factorize a block on the diagonal, Akk = LkkLT
kk, where Lkk is lower triangular.

• Perform a triangular solve Lik = AikL−T
kk to obtain an off-diagonal block Lik of the Cholesky factor.

• Update a block of the remaining submatrix Aij ⇐ Aij − LikLT
jk, i ≥ j.

1



A more comprehensive definition of these tasks is given in Section 4.2 (see also [13]). While a partial

ordering of these tasks must be followed, there exists much freedom in their scheduling — particularly of

the update tasks, and this has led to a number of variants (for example, left- and right-looking algorithms).

In a DAG-based approach, the dependencies between the tasks are represented using a graph. Each

task is represented by a node, with dependencies represented by directed edges. Tasks must be executed

in conformance with this task DAG. Use of an appropriate strategy for scheduling the tasks allows the

efficient exploitation of the inherent parallelism.

The following aims should be kept in mind when designing a DAG-based algorithm:

• Sufficient tasks need to be available so that it is rare for a thread to idle because of lack of available

work.

• Reloading of data into caches is undesirable so data should be reused immediately if possible, and

transfer of tasks between caches (which would cause an additional load) should be avoided when

possible. This aim is complicated by the existence of shared caches in multicore machines.

Hogg has recently implemented a DAG-based dense Cholesky factorization as the HSL code HSL MP54.

This package uses OpenMP and has been shown to perform well on multicore machines. Full details,

including performance results, are given in [13]. The main mechanism used within HSL MP54 is a single

task pool from which all threads draw tasks to execute and in which new tasks are placed when the data

they need become available. Immediate reuse of data is encouraged by the priorities used when selecting a

task in the pool for execution, but no other mechanism is implemented to avoid transfer of data between

caches.

The DAG-based approach offers significant improvements over utilising more traditional fork-join

parallelism by block columns. It avoids the time wasted waiting for all threads to finish their tasks

for a block column before any thread can move on to the next block column. It also allows easy dynamic

worksharing to cope with the case where execution by another user or an asymmetric system load causes

some threads to perform significantly slower than others. Such asymmetric loading can be common on

multicore systems, caused either by operating system scheduling of other processes on a core that is also

executing the application or by unbalanced triggering of hardware interrupts.

The sparse DAG-based factorization code described in this paper is based on a substantial rewrite and

improvement of the dense case implemented within HSL MP54.

3 General sparse direct solver framework

Sparse direct solvers for symmetric systems have a number of distinct phases. Although the exact

subdivision depends on the algorithm and software being used, a common subdivision is as follows:

1. An ordering phase that accepts the sparsity structure of the matrix A, without any numerical values.

The aim is to find an ordering that limits the fill in the matrix factor L (that is, the number of

additional entries created in L during the factorization). A good pivot sequence significantly reduces

both memory requirements and the number of floating-point operations required. The ordering

usually relies on algorithms based on heuristics such as variants of the approximate minimum degree

algorithm [1] or nested dissection [9].

2. An analyse phase (which is sometimes referred to as the symbolic factorization step) that accepts

the sparsity structure and a pivot sequence and sets up data structures for efficient factorization.

Dense subproblems are identified to speed the factorization. This phase usually replaces the given

pivot sequence by a more efficient one that would produce the same result in exact arithmetic. The

new pivot sequence is defined by a permutation matrix P .

3. A factorize phase that accepts the numerical values of the matrix A and uses the output from the

analyse phase to factorize the matrix. In the positive-definite case, the lower triangular Cholesky

factor L is computed, such that A = PL(PL)T .

2



4. A solve phase that performs forward elimination followed by back substitution using the stored

factorization. The factorization may be used for more than one solution.

In a serial implementation, factorize is usually the most time-consuming of the different phases, while the

solve phase is generally significantly faster. In many software packages, the first two phases are combined

into a single user-callable subprogram. Other packages, including HSL MA77 [19], do not include the first

phase and instead ask the user to supply an ordering. We do the same in our new code HSL MA87.

3.1 Analyse

The analyse phase of HSL MA87 is a modification of that of HSL MA77. The main purpose of the latter

is to take the user-supplied pivot sequence and use it to determine the assembly tree, from which it is

possible to compute the memory requirements and dependency information necessary for the subsequent

factorization.

The elimination tree of a symmetric sparse matrix A is defined to be the tree formed as follows:

• Each column j is represented as a node in the tree.

• The parent of node j is node i if lij is the first entry below the diagonal in column j of the Cholesky

factor L.

Before a given column of A can be eliminated, we must first process all columns represented by its

descendants in the tree. Thus the elimination tree represents a partial ordering of the elimination of the

columns.

In order to employ dense linear algebra kernels (in particular, Level 3 BLAS) that are tuned to

effectively exploit machine caches, each adjacent pair of nodes i − 1 and i whose columns have the same

sparsity structure in L from row i onwards are combined. The condensed form of the elimination tree

thus obtained is known as the assembly tree. Since improved performance can generally be obtained from

the BLAS by working with large nodes, nodes whose columns have similar structures may be further

amalgamated to form larger nodes; the penalty is that zeros are held as entries, increasing the storage

required for L as well as the number of floating-point operations needed in the factorize and solve phases.

Our existing code HSL MA77 is an out-of-core solver and, by default, it stores the matrix data and the

assembly tree in direct-access files. For our new DAG-based solver HSL MA87, we have modified the analyse

phase of HSL MA77 to work in-core and to use the new data structures described in Section 4.1 when setting

up the storage for L.

3.2 Factorize

The factorize phase of a sparse direct solver performs the actual numerical factorization. Current parallel

approaches (see, for example, the MUMPS package [2]) normally rely on exploiting two levels of parallelism:

Tree-level parallelism exploits the fact that the assembly tree specifies only a partial ordering between

operations associated with different nodes. The only requirement is that each parent node is

processed after its children. Independent subtrees can therefore be processed in parallel.

Node-level parallelism exploits parallelism within the operations performed for a node. This is

normally used near the root (node with no parent) where the nodes are large and little tree-level

parallelism is available.

We have recently developed a separate sparse parallel solver that uses these levels of parallelism (see

[14]). Our experience of implementing this approach on multicore machines is that shared caches provide

a bottleneck because of premature cache eviction. We found that the speedups achieved were less than

ideal and this motivated us to consider developing a sparse DAG-based code.

3



3.3 Solve

The solve phase takes one or more right-hand sides b and performs forward and back substitutions using

the permutation P and factor L to solve the systems (1.1). This phase is normally limited by how fast

the factor data can be streamed through the caches.

Our new code HSL MA87 currently implements this phase in serial mode, although parallelisation could

be achieved along similar lines to those used in the dense code of Hogg [13]. Our intention is that this will

be implemented in a future release.

4 DAG-based sparse direct solver

In this section, we look at adapting the use of task DAGs within the sparse factorize phase. At a high

level, our modification to the dense DAG-based algorithm is merely the addition of a new type of task

that performs a sparse update operation.

4.1 Nodal data structures

Since a node of the assembly tree represents a set of contiguous columns of L with the same (or nearly the

same) sparsity structure below a dense (or nearly dense) triangular submatrix, we can hold it in memory

as a dense trapezoidal matrix, as illustrated in Figure 4.1(a). We refer to this matrix as the nodal matrix.

We store this matrix using the row hybrid blocked structure of Anderson et al. [3] with the modification

that “full” storage is used for the blocks on the diagonal rather than storing only the actual entries (thus

a rectangular array is used to store the trapezoidal matrix). Using the row hybrid scheme rather than

the column hybrid scheme facilitates updates between nodes by removing any discontinuities at row block

boundaries. Storing the blocks on the diagonal in full storage allows us to exploit efficient BLAS and

LAPACK routines. This structure is illustrated in Figure 4.1(b). Note that the final block on the diagonal

is often trapezoidal.

If the number of columns in the nodal matrix is large, we use the block size nb (which may be specified

by the user) and most of the blocks will be of size nb×nb. We divide the computation into tasks in which a

single block is revised (details in Section 4.2). These tasks correspond to the vertices of our implicitly-held

DAG.

If the number of columns nc in the nodal matrix is less than nb but the number of rows is large, using

the block size nb can lead to small tasks and inefficient execution. We therefore attempt to balance the

number of entries in the blocks by basing the block size on the value nb2/nc. We round the size up to a

multiple of 8 since our experience is that this enhances performance. Having block sizes that differ from

node to node is unusual but we found that it sometimes greatly improves the performance. Of course, it

will not help if most of the nodes have large numbers of columns.

The tasks are partially ordered; for example, the updating of a block of a nodal matrix from a block

column of L that is associated with one of the node’s descendants has to wait for all the rows of the block

column that is needs becoming available. As soon as a thread determines that all the data needed for a

task is available, it places the task in a small stack of tasks for execution by itself or a thread with which

it shares its cache. If this stack becomes full, its bottom half is moved to a task pool for execution by any

thread, see Section 4.3.

4.2 Tasks

Following the design of our dense DAG-based code [13], we split the work involved in the sparse

factorization of A into a number of separate tasks, which we categorise as follows (and illustrate graphically

in Figure 4.2):

factorize(diag) Computes the traditional dense Cholesky factor Ltriang of the triangular part of a block

diag that is on the diagonal using the LAPACK subroutine potrf. If the block is trapezoidal, this

4



Figure 4.1: Row hybrid block structure for a nodal matrix.

1

4 5

7 8 9

10 11 12 25

13 14 15 27 28

16 17 18 29 30

19 20 21 31 32

22 23 24 33 34

(a) Graphical view (b) Indices of entries

is followed by a triangular solve of its rectangular part

Lrect ⇐ LrectL
−T
triang

using the BLAS subroutine trsm.

solve(dest, diag) Performs a triangular solve of the off-diagonal block dest by the Cholesky factor

Ltriang of the block diag on its diagonal. i.e.

Ldest ⇐ LdestL
−T
triang

using the BLAS subroutine trsm.

update internal(dest, rsrc, csrc) Within a nodal matrix, performs the update

Ldest ⇐ Ldest − LrsrcL
T
csrc

where Ldest is the matrix of the block dest, Lrsrc is the matrix of the off-diagonal block rsrc with

rows that correspond to the rows of Ldest, and Lcsrc is the matrix of those rows of the off-diagonal

block csrc that correspond to the columns of Ldest, see Figure 4.2(c). If dest is an off-diagonal

block, we use the BLAS 3 kernel gemm for this. If dest is a block on the diagonal, we use the BLAS

3 kernel syrk for the triangular part and gemm for the rectangular part, if any.

update between(dest, snode, scol) Performs the update

Ldest ⇐ Ldest − LrsrcL
T
csrc

where Ldest is a submatrix of the block dest of an ancestor of the node snode and Lrsrc and Lcsrc

are submatrices of contiguous rows of the block column scol of the node snode. The first row of

Lrsrc is the first row of scol that corresponds to a row in the block dest and the last row of Lrsrc

is the last row of scol that corresponds to a row in the block dest. Similarly, the first/last row of

Lcsrc is the first/last row of scol that corresponds to a column in the block dest. The set of rows

and columns of dest thus determine which two sets of contiguous rows in scol are involved. Unless

the number of entries updated is very small, we exploit the BLAS 3 kernel gemm (and/or syrk for

a block that is on the diagonal) by placing its result in a buffer from which we add the update into

the appropriate entries of the destination block dest, see Figure 4.2(d).

This final update could have been cast in a number of different ways. We have chosen the above

left-looking form because:

5



Figure 4.2: Graphical interpretations of sparse DAG tasks

Ldiag

Ldest

Ldiag

Lrsrc Ldest

Lcsrc

(a) factorize(diag) (b) solve(dest, diag)

Ldest ⇐ LdestL
−T
diag

(c) update internal(dest, rsrc, csrc)

Ldest ⇐ Ldest − LrsrcL
T
csrc

Ldest

scol

snode

rsrc(dest,snode,scol)

csrc(dest,snode,scol)

Buffer

(d) update between(dest, snode, scol)

1. Form outer product LrsrcL
T
csrc into Buffer.

2. Distribute the results into the destination block Ldest.

6



• The blocks of the hybrid block structure are stored contiguously and by rows (see Figure 4.1(b)), so

the boundaries between them can be ignored and we can perform operations involving arbitrary row

ranges.

• We could have cast this as an operation from a pair of blocks, each writing to multiple blocks. This

would often cause the same destination block to be updated more than once from the same block

column. As we have it, a destination block is updated exactly once for each block column of a

descendant node. This is desirable since contested writes cause more cache misses than contested

reads (as a write may invalidate a cache line in another cache but a read cannot).

• As we are updating a single block, the number of operations is bounded by 2nb3, so we are not

generating a large amount of work per task, though we do risk generating very little computation.

During the analyse phase, we calculate the number of tasks that need to be performed for each block

of L. For a block on the diagonal, this is the number of updates on it. For an off-diagonal block, it is one

more than the number of updates since we need to include the factorization of the block on the diagonal

in its block column.

During the factorization, a running count of outstanding tasks is kept for each block. This is initialized

to the value calculated during the analyse phase and decremented by one as each task is performed for it.

When the count reaches zero for a block on the diagonal, a factorize task for it is stored. When a factorize

task is completed, its count is given the special value -2 and the count of each off-diagonal block in its

block column is decremented by one. When the count reaches zero for an off-diagonal block, a solve task

for it is stored.

When a solve task is completed, the count of its block is given the special value -2. If the block overlaps

the triangular part of the nodal matrix, an update internal task with its overlapping rows as Lcsrc is stored

for each block in the block column that has count -2, including itself, as Lrsrc. If the block does not overlap

the triangular part, an update internal task is stored with it as Lrsrc for each block of the block column

that does overlap it and has a count of -2 with the overlapping rows as Lcsrc. If the block overlaps the

rectangular part, all blocks in ancestor nodes that have tasks depending on the block column are checked.

If such a task depends only on rows in blocks with a count of -2 and depends on at least one row of the

block for which the solve task was just completed, the task is stored.

4.3 Task dispatch engine

We have improved on the task dispatch engine of the dense DAG code HSL MP54 by using thread-specific

stacks to make the code more cache aware. In the dense case [13], we found that complex prioritisation

schemes that take into account critical paths offer very limited benefit. As a result, in HSL MA87 we have

opted for a simpler prioritisation scheme, and instead favour cache awareness using a system of local task

stacks together with a single task pool.

For each cache, there is a small stack of tasks that are intended for use by the threads sharing this

cache. During the factorization, tasks are added to or drawn from the top of this local stack. If the local

stack becomes full, a global lock is acquired and the bottom half of the local stack (that is, the tasks that

have been in the stack the longest so that their data are unlikely still to be in the local cache) is moved to

the task pool. The tasks in the task pool are given the following priorities:

1. factorize Highest priority

2. solve

3. update internal

4. update between Lowest priority

Tasks are prioritised in this way to try and ensure that a task is selected that, once performed, will result in

as many new tasks as possible becoming available. This can lead to the task pool becoming very large. The

default size of the task pool is 100,000. This was chosen on the basis of numerical experimentation (note

7



that the maximum size of the task pool for the test problems reported on in Section 5 was approximately

110,000 and for many of our test problems the task pool size did not exceed 10,000).

When a thread requires a task, it first attempts to draw a task from the top of its local stack. At this

stage, the task priorities are not used. If there is a factorize task available it will always be on the top of

the stack and so will be selected first. Once a solve task is completed, any update tasks that are spawned

are placed on the stack, above any remaining stacked solve tasks. It is advantageous to perform these

updates before another solve task since the data they need are likely to be in the local cache.

If the local task stack is empty, the thread tries to take a task from the task pool. Should this also be

empty, the thread searches for the largest local stack belonging to another cache. If found, the tasks in

the bottom half of this local stack are moved to the task pool (workstealing). The thread then takes the

task of highest priority from the pool as its next task.

The task pool uses a separate stack for each priority level, each implemented as a singly linked list.

The stacks share the same workarray. An additional linked list of free entries is maintained to facilitate

this. If the size of the workarray is found to be too small, its size is doubled.

4.4 User interface

In this section, we briefly discuss the user interface to our new sparse Cholesky solver HSL MA87 and the

options it offers its users. Further details, together with a simple example to illustrate how the package is

called, are given in the user documentation that is supplied with the package.

Following the normal sparse direct solver design, HSL MA87 has separate subroutines that the user must

call to perform the analyse, factorize and solve phases. An optional subroutine MA87 input may be called

before the analyse phase if the user would like his or her matrix data to be checked for errors, duplicates,

out-of-range entries etc. The matrix must be held in compressed sparse column format. Three derived

types are used:

• MA87 info: its components are used to provide information about the execution of each of the user-

callable subroutines. After the analyse phase, this includes information on the assembly tree (its

depth and the number of nodes) and, after the factorization is complete, the maximum size of the

task pool workarray. In addition, the component flag is an error flag that is set to a negative value

if a fatal error is encountered (causing the computation to terminate prematurely) and to a value

greater than 0 if a warning has been detected (for example, the matrix data on the call to MA87 input

contained out-of-range indices that have been removed).

• MA87 control: its components control the action. There are components that control diagnostic

printing, node amalgamation (and thus the size of the nodes of the assembly tree), the block size nb

and initial size of the task pool workarray. These controls are automatically given default values in

the definition of the type but one or more may be reset by the user.

• MA87 keep: used to hold data about the problem being solved. This includes the assembly tree and

the computed factor, as well as data relating to the task DAG. It must be passed unchanged between

the subroutines.

We remark that the use of derived types significantly simplifies the user interface and allows us to have

short argument lists, which helps reduce the possibility of the user introducing errors.

More than one call to MA87 factorize may follow a call to MA87 analyse and more than one call

to MA87 solve may follow a call to MA87 factorize. Note, however, that it is more efficient to specify

multiple right-hand sides on a call to MA87 solve than to make repeated calls with a single right-hand

side. This is because, with multiple right-hand sides, advantage is taken of high-level BLAS. An optional

argument to MA87 solve allows a partial solve (that is, only forward substitution or only back substitution

is performed).

8



5 Numerical results

5.1 Test environment

The experiments we report on in this paper were all performed on our multicore test machine fox, details

of which are given in Table 5.1. The sparse matrices used are listed in Table 5.2. This set comprises 30

examples that arise from a range of practical applications. In selecting the test set, our aim was to choose

a wide variety of large-scale problems. Each problem is available from the University of Florida Sparse

Matrix Collection [7].

Table 5.1: Specifications of our test machine fox.

2-way quad Harpertown (fox)

Architecture Intel(R) Xeon(R) CPU E5420

Clock 2.50 GHz

Cores 2 × 4

Theoretical peak (1/8 cores) 10 / 80 Gflop/s

DGEMM peak (1/8 cores1) 9.3 / 72.8 Gflop/s

Memory 8 GB

Compiler Intel 11.0 with option -fast

BLAS Intel MKL 10.1
1 Measured by using MPI to run independent
matrix-matrix multiplies on each core

For those matrices that are only available as a sparsity pattern, reproducible pseudo-random off-

diagonal entries in the range (0, 1) were generated using the HSL package HSL FA14, while the i-th diagonal

entry, 1 ≤ i ≤ n, is set to max(100, 10ρi), where ρi is the number of off-diagonal entries in row i of the

matrix, thus ensuring that the generated matrix is positive definite. For all tests, the right-hand side b is

generated so that the required solution x is the vector of ones.

Unless stated otherwise, runs are performed using all 8 cores on our test machine and all control

parameters used by the solvers are given their default settings. All times are elapsed times, in seconds,

measured using the Fortran subroutine system clock.

The analyse phase of the HSL sparse direct solver MA57 [8] is used to compute the pivot sequence for

HSL MA87. MA57 automatically chooses between an approximate minimum degree and a nested dissection

ordering; in fact, for all our test problems, it selects a nested dissection ordering that is computed using

METIS NodeND [16, 17]. In Table 5.2, we include the number of millions of entries in the matrix factor

(denoted by nz(L)) when this pivot sequence is used by HSL MA87 with the node amalgamation parameter

nemin set to 16 (see Section 5.3).

5.2 Dense comparison

We can trivially represent a dense problem as a sparse one with a single node that contains all n variables.

This allows us to compare the efficiency of the dense tasks within HSL MA87 with other dense Cholesky

factorization implementations (although it should be noted that HSL MA87 accepts a different data format

and hence avoids the reordering that they may require).

In Table 5.3 comparisons are given for randomly generated dense matrices of order up to 20000. Results

for the following codes are presented:

HSL MA87(a): HSL MA87 with processor affinity enabled. Processor affinity refers to whether threads are

tied to specific processors, or whether the operating system is allowed to move them. For our cache

management techniques to reflect the actual physical circumstance, processor affinity needs to be

9



Table 5.2: Test matrices and their characteristics. n denotes the order of A in thousands; nz(A) and nz(L)

are the number of entries in the lower triangular part of A and in L, respectively, in millions; ∗ indicates

only the sparsity pattern is provided.

Identifier n nz(A) nz(L) Application/description

1. DNVS/thread 29.7 2.2 24.8 Threaded connector/contact

2. DNVS/m t1 97.6 4.9 32.4 Tubular joint

3. Chen/pkustk13∗ 94.9 3.4 32.7 Machine element, 21 noded solid

4. DNVS/shipsec8 114.9 3.4 38.9 Ship section

5. GHS psdef/crankseg 1 52.8 5.3 40.0 Linear static analysis

6. Rothberg/gearbox∗ 153.7 4.6 40.5 Aircraft flap actuator

7. Rothberg/cfd2 123.4 1.6 41.6 CFD pressure matrix

8. DNVS/shipsec1 140.9 4.0 42.1 Ship section

9. CEMW/tmt sym 726.7 2.9 43.9 Electromagnetics problem

10. DNVS/fcondp2∗ 201.8 5.7 55.2 Oil production platform

11. Um/2cubes sphere 101.5 0.9 56.6 Electromagnetics, 2 cubes in a sphere

12. GHS psdef/crankseg 2 63.8 7.1 59.8 Linear static analysis

13. DNVS/ship 003 121.7 4.1 63.9 Ship structure—production

14. Boeing/pwtk 217.9 5.9 64.7 Pressurised wind tunnel

15. DNVS/troll∗ 213.5 6.1 68.6 Structural analysis

16. DNVS/halfb∗ 224.6 6.3 70.2 Half-breadth barge

17. GHS psdef/bmwcra 1 148.8 5.4 74.0 Automotive crankshaft model

18. Schmid/thermal2 1228.0 4.9 74.5 Unstructured thermal FEM

19. DNVS/fullb∗ 199.2 6.0 78.7 Full-breadth barge

20. Schenk AFE/af shell3 504.9 17.6 104.8 Sheet metal forming matrix

21. JGD Trefethen/Trefethen 20000 20.0 0.3 102.5 Integer matrix

22. Chen/pkustk14∗ 151.9 7.5 111.9 Civil engineering. Tall building

23. ND/nd12k 36.0 14.2 117.8 3D mesh problem

24. GHS psdef/apache2 715.2 2.8 159.1 3D structural problem

25. GHS psdef/ldoor 952.2 23.7 164.0 Large door

26. GHS psdef/inline 1 503.7 18.7 185.4 Inline skater

27. Koutsovasilis/F1 343.8 13.4 210.7 AUDI engine crankshaft

28. AMD/G3 circuit 1585.5 4.6 232.7 Circuit simulation

29. Oberwolfach/boneS10 914.9 28.2 302.1 Bone micro-finite element model

30. ND/nd24k 72.0 28.7 322.9 3D mesh problem

Table 5.3: A comparison of dense Cholesky implementations. Speeds in Gflop/s are reported.

n HSL MA87(a) HSL MA87(b) HSL MP54 dpotrf

100 0.71 0.74 1.63 3.25

500 15.3 15.0 17.7 20.7

1000 31.3 30.3 29.3 35.1

1500 40.8 40.0 35.7 42.6

2000 48.8 47.2 40.8 47.3

2500 51.8 50.9 44.3 51.4

5000 62.2 61.9 55.8 57.3

10000 66.3 65.1 63.7 64.4

20000 69.6 68.9 67.9 67.1

10



enabled. On our test machine with the Intel compiler we do this by setting the environment variable

KMP AFFINITY to compact.

HSL MA87(b): HSL MA87 without processor affinity enabled.

HSL MP54: dense DAG code described in [13]. It is designed to perform both partial and complete Cholesky

factorizations.

dpotrf: LAPACK Cholesky factorization subroutine supplied by Intel MKL 10.1, which we believe uses

a DAG-based algorithm.

The test results were averaged over ten runs. For each run, the factorization times for different problems

of the same size were accumulated until the total elapsed time was at least one second; the average speed

in Gflop/s was then calculated.

As can be seen from Table 5.3, processor affinity marginally enhances the performance of HSL MA87

unless n is small, and so we use this in all further tests reported on in this paper. Comparing HSL MA87

with HSL MP54 and dpotrf, we see that HSL MA87 is competitive for sufficiently large n (n greater than

about 2000) and its advantage over the other codes increases with n. However, its performance compares

less favourably for small problems. This is due to workstealing with the relatively small blocks used for

optimal performance on these problems causing an excessive number of blocks to be switched between

caches. In the sparse case, we do not anticipate this will cause problems since there are many more tasks

and more than one initial task — workstealing should only play a real role near the start and end of the

factorization.

5.3 Effect of node amalgamation

The HSL MA87 strategy of amalgamating nodes of the tree is taken from HSL MA77 and explained in [19]. A

child is amalgamated with its parent if both involve less than a given number, nemin, of eliminations. We

show in Table 5.4 a few results for HSL MA87 for a subset of our problems that were selected to illustrate

the effects of varying nemin.

Table 5.4: Comparison of the number of entries in L (in millions) and the factorize and solve times for

values of the node amalgamation parameter nemin in the range 1 to 64. The fastest factorize times (and

those within 3 per cent of the fastest) are in bold.

nz(L) Factorize times Solve times

1 8 16 32 64 1 8 16 32 64 1 8 16 32 64

7. 38.3 40.0 41.6 44.2 49.8 1.27 1.01 1.09 1.05 1.09 0.46 0.36 0.35 0.36 0.38

13. 60.2 61.6 63.9 69.1 77.0 2.43 2.26 2.37 2.33 2.31 0.55 0.52 0.53 0.53 0.57

17. 69.7 71.6 74.0 77.6 83.9 2.18 1.91 1.94 1.74 1.88 0.67 0.61 0.60 0.60 0.63

19. 74.5 76.1 78.8 85.5 100.5 2.92 2.90 2.86 2.89 3.05 0.70 0.67 0.66 0.67 0.77

25. 144.6 154.7 164.0 182.7 223.6 4.95 3.87 3.39 3.10 3.42 1.65 1.59 1.63 1.65 1.84

Looking at the factorize times, we see that for most problems there are worthwhile savings if nemin

is chosen to be greater than 1, but no one value of nemin consistently gives the best times. For some

problems, nz(L) grows rapidly with nemin and this leads to slower solve times (for example, for problems

19 and 25 the solve times for nemin = 64 are significantly greater than for nemin = 32). Based on our

results, in HSL MA87 we have chosen the default value to be 32. However, if the number of entries in L

increases slowly with nemin, it can be advantageous to use an even larger value of nemin. For instance, we

ran problem 23 (ND/nd24k) with larger nemin and found the factorization time reduced from 54 seconds

with nemin = 32 to 47 seconds with nemin = 96, while the number of entries in L increased only slightly

from 326 × 106 to 336 × 106 (so that there was almost no increase in the solve time).

11



5.4 Block size

The block size nb, discussed in Section 4.1, is a parameter under the user’s control. In Table 5.5, we report

the factorize time for a range of block sizes on a single core and on 8 cores. The fastest times (and those

within 3 per cent of the fastest) are in bold. We see that, on a single core, the best times are obtained

using a larger block size than on 8 cores, but in our tests the reductions in time using nb > 256 are less

than 3 per cent. Based on our experiments, the default block size used by HSL MA87 is 256.

Table 5.5: Comparison of the factorize times for different block sizes.The fastest times (and those within

3 per cent of the fastest) are in bold.

Single core. Block size nb 8 cores. Block size nb

128 192 256 320 384 448 128 192 256 320 384

1. 5.75 5.34 5.24 5.22 5.17 5.12 1.00 0.97 0.92 0.91 1.03

5. 7.94 7.48 7.32 7.21 7.16 7.14 1.34 1.28 1.28 1.39 1.53

11. 13.2 12.6 12.3 12.1 12.0 12.0 2.42 2.11 2.10 2.00 2.11

17. 11.5 11.0 10.7 10.6 10.6 10.5 1.88 1.86 1.74 1.86 2.00

23. 95.3 87.5 86.4 84.6 85.3 85.4 16.1 15.2 14.2 14.2 15.2

29. 52.9 50.1 48.9 48.8 48.4 48.4 8.64 8.34 7.69 7.66 7.72

5.5 Local task stack size

In Section 4.3, we discussed the use of local task stacks. In Table 5.6, we report the factorization times

for a range of local task stack sizes and also for no local task stack. We see that the gains on our 8 core

machine achieved using a local task stack are generally modest (for some problems, the time saving is less

than 10 per cent but for others, including problem 13, the savings are more significant). Based on our

experiments, HSL MA87 uses a local task stack of size 100. Note we anticipate that on a machine with a

larger number of cores, the gains resulting from the use of local task stacks will be greater.

With the local stacks in place, we found that the priorities used for the global task pool had little effect

on our machine for the problems we tried. However, it is our belief that they would be important on a

machine with more cores so that task starvation is a serious risk.

Table 5.6: Comparison of the factorize times for different local task stack sizes. The fastest times (and

those within 3 per cent of the fastest) are in bold.

No local Stack size

stack 10 50 100 200

4. 1.28 1.19 1.18 1.01 1.09

10. 1.56 1.44 1.44 1.38 1.49

13. 2.98 2.33 2.38 2.17 2.17

19. 2.97 2.97 2.89 2.79 2.73

25. 3.49 3.45 3.13 3.11 3.16

5.6 Speedups and speed for HSL MA87

One of our concerns is the speedup achieved by HSL MA87 as the number of cores increases. In Figure 5.1,

we plot the speedups in the factorize times when 2, 4, and 8 cores are used. We see that the speedup on 2

cores is close to 2, on 4 cores it is generally more than 3 and for the largest problems (in terms of nz(L))

12



it exceeds 3.3. On 8 cores, HSL MA87 achieves speedups of more than 6 for many of the largest problems

and for all our test problems, the speedup exceeds 5.

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

Problem Index

sin
gle

 co
re

 tim
e/

 tim
e 

 

 
2 cores
4 cores
8 cores

Figure 5.1: The ratios of the factorize times on 2, 4 and 8 cores to the factorize time on a single core.

Of course, our primary concern is the actual speed achieved. We show the speeds in Gflop/s on 8 cores

in Figure 5.2. Here we compute the flop count from a run with the node amalgamation parameter nemin

having the value 1. We note that for 11 of our 30 test problems, the speed exceeds 36.4 Gflop/s, which is

half the maximum dgemm speed, see Table 5.1. Furthermore, on all but two of the problems, it is greater

than 24.3 Gflop/s, which is a third of the dgemm maximum.

0 5 10 15 20 25 30
0

20

40

Problem Index

Gf
lop

/s

Figure 5.2: The speeds in Gflop/s on 8 cores.

13



6 Comparisons with other solvers

We wish to compare the performance of HSL MA87 with some of the other readily available solvers. In this

section, we first briefly introduce the state-of-the-art solvers we use in our comparisons.

6.1 MA57

MA57 [8] is a multifrontal sparse direct solver that has been an important part of the HSL mathematical

software library since it was first released in 2000. The code is a serial code, written in Fortran 77 (a Fortran

95 interface is also available). MA57 offers a range of options, including several sparsity orderings, solving

for multiple right-hand sides, partial solutions, error analysis, scaling, a matrix modification facility, and a

stop and restart facility. Although primarily designed for indefinite problems, it can also be used to solve

positive-definite linear systems. We use Version 3.2.0 in our tests and, since our problems are all positive

definite, the pivoting control is set so that pivoting is switched off; the scaling option is also disabled.

Although MA57 is a serial code, it is included in this study since it is a widely used and well known

package so that comparing its performance with that of our new code HSL MA87 on a single core is of

interest.

6.1.1 MUMPS

MUMPS (MUltifrontal Massively Parallel Solver) [2] is a well known package for solving sparse linear

systems Ax = b, where A can be non-symmetric, symmetric positive definite, or general symmetric.

MUMPS uses a multifrontal approach and exploits both parallelism arising from sparsity in A and from

dense factorization kernels. Important features of the MUMPS package include the input of the matrix

in assembled or elemental format, error analysis, iterative refinement, scaling of the original matrix,

detection of null pivots, basic estimate of rank deficiency and null space basis, and computation of a

Schur complement matrix. In addition, MUMPS offers limited out-of-core facilities, allowing the factors

to be stored on disk. MUMPS incorporates several built-in ordering algorithms, a tight interface to a

number of external ordering packages (including MeTiS), and allows the user to input a given ordering.

The software is written in Fortran 90 and a C interface is available. The parallel version of MUMPS uses

MPI for message passing and makes use of the BLAS, BLACS, and ScaLAPACK libraries. Full details of

the MUMPS package are available at http://graal.ens-lyon.fr/MUMPS/

We employ Version 4.8.3 in our tests.

6.1.2 PARDISO

PARDISO [20] is a thread-safe software package for solving large sparse symmetric and non-symmetric

linear systems of equations on shared memory multiprocessors. During the factorize phase, PARDISO

exploits pipelining parallelism and memory hierarchies with a combination of left- and right-looking

techniques using Level-3 BLAS. The code employs OpenMP directives. Further details are available

at http://www.pardiso-project.org/

Originally developed at the University of Basel, PARDISO is now included in the Intel MKL library.

We use the Intel MKL Version 10.1.

6.1.3 Comparisons on one and eight cores

We first compare the performance of the above packages with that of HSL MA87 when run on a single

core of our test machine. The ratios of the factorize times for each package to the factorize time for

HSL MA87 are given in Figure 6.1. For all the test problems except 9 and 18, MA57 is significantly slower

than HSL MA87. This is probably because MA57 is not primarily designed for positive-definite systems and

the current version does not exploit recently developed dense linear algebra kernels (see, for example,

[3, 18, 19]). There are five problems for which MUMPS is more than 10 per cent faster than HSL MA87 and

14



twelve for which HSL MA87 is more than 10 per cent faster than MUMPS; for the remaining problems, the

performance of the two codes is comparable. In general, there is little to choose between the HSL MA87 and

PARDISO factorize times, but there are a number of problems for which one significantly outperforms the

other. It is not clear why this should be the case and we are not able to predict when one solver will be

the faster.

0 5 10 15 20 25 30

0.25

0.5

1

2

4

Problem Index

Ti
m

e 
/ (

M
A8

7)

 

 

MUMPS

PARDISO

MA57

Figure 6.1: The ratios of the MUMPS, PARDISO and MA57 factorize times to the HSL MA87 factorize

time (single core).

In Figure 6.2 the ratios of the factorize times for MUMPS and PARDISO to the factorize time for

HSL MA87 on 8 cores are given. Ratios for problem 21 are omitted as they are outside the plotted range (in

this case, the HSL MA87, MUMPS and PARDISO factorize times were 17, 120 and 96 seconds, respectively).

We see that HSL MA87 generally achieves much better speeds than MUMPS and, with the exception of a

small number of problems, the performance of HSL MA87 is either comparable to or better than that of the

Intel version of PARDISO.

7 Future work

Having demonstrated that the sparse DAG approach is promising for use on multicore chips, we must

consider how it can be improved. Ideally, we would like to match the capabilities of the serial HSL code

HSL MA77, but with improved performance. This means adding an out-of-core capability and the ability

to efficiently and reliably solve indefinite problems. Further, we would like to improve the performance of

the sparse DAG approach so that it obtains speedups (and flop rates) in the same range as the dense case.

We believe that our cache-aware scheduler can be improved to more accurately model the caching

arrangements of whatever machine we are using, rather than just the shared level-2 caches on our current

system. A recursive layer based approach would even allow us to model MPI and out-of-core storage as

further levels of cache. Having a queue containing the next few tasks would allow data to be prefetched

before it is required, thus enabling the latency to be effectively hidden. A good heuristic for selecting tasks

may be able to match current approaches in minimising communication volume.

Buttari et. al. [5] discuss a version of their dense DAG code for LU factorization that incorporates a

pairwise partial pivoting strategy. It may be possible to build on this approach in the sparse symmetric

indefinite case. We plan to follow the work of Reid and Scott [19] and delay columns corresponding to

15



0 5 10 15 20 25 30

0.25

0.5

1

2

4

Problem Index

Ti
m

e 
/ (

M
A8

7)

 

 

MUMPS

PARDISO

Figure 6.2: The ratios of the MUMPS and PARDISO factorize times to the HSL MA87 factorize time (8

cores).

pivots that are rejected at a node because of stability considerations. We will prepend delayed columns to

the parent nodal matrix and if necessary increase the task counts for the blocks that are affected.

8 Code availability

Our new sparse parallel Cholesky solver HSL MA87 discussed in this paper has been developed for inclusion

in the mathematical software library HSL. All use of HSL requires a licence. Individual HSL packages

(together with their dependencies and accompanying documentation) are available without charge to

individual academic users for their personal (non-commercial) research and for teaching; licences for other

uses involve a fee. Details of the packages and how to obtain a licence plus conditions of use are available

at www.cse.scitech.ac.uk/nag/hsl/.

9 Acknowledgement

We would like to thank our colleague Iain Duff for carefully reading a draft of this paper and making

helpful suggestions for improving the presentation.

References

[1] P. Amestoy, T. Davis, and I. Duff, Algorithm 837: AMD, an approximate minimum degree

ordering algorithm, ACM Transactions on Mathematical Software, 30 (2004), pp. 381–388.

[2] P. Amestoy, I. Duff, J.-Y. L’Excellent, and J. Koster, A fully asynchronous multifrontal

solver using distributed dynamic scheduling, SIAM J. Matrix Analysis and Applications, 23 (2001),

pp. 15–41.

[3] B. Andersen, J. Gunnels, F. Gustavson, J. Reid, and J. Wasniewski, A fully portable high

performance minimal storage hybrid format cholesky algorithm, ACM Transactions on Mathematical

Software, 31 (2005), pp. 201–207.

16



[4] A. Buttari, J. Dongarra, J. Kurzak, J. Langou, P. Luszczek, and S. Tomov, The impact of

multicore on math software, in Proceedings of Workshop on State-of-the-art in Scientific and Parallel

Computing (Para06), 2006.

[5] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, A class of parallel tiled linear algebra

algorithms for multicore architectures, Technical Report UT-CS-07-600, ICL, 2007. Also LAPACK

Working Note 191.

[6] Y. Chen, T. Davis, W. Hager, and S. Rajamanickam, Algorithm 887: CHOLMOD, supernodal

sparse cholesky factorization and update/downdate, ACM Transactions on Mathematical Software, 35

(2008). Article 22 (14 pages).

[7] T. Davis, The University of Florida sparse matrix collection, Technical Report, University of Florida,

2007. http://www.cise.ufl.edu/∼davis/techreports/matrices.pdf.

[8] I. Duff, MA57– a new code for the solution of sparse symmetric definite and indefinite systems,

ACM Transactions on Mathematical Software, 30 (2004), pp. 118–154.

[9] A. George, Nested dissection of a regular finite-element mesh, SIAM J. Numerical Analysis, 10

(1973), pp. 345–363.

[10] N. Gould, J. Scott, and Y. Hu, A numerical evaluation of sparse direct solvers for the solution of

large, sparse, symmetric linear systems of equations, ACM Transactions on Mathematical Software,

33 (2007). Article 10, 32 pages.

[11] A. Gupta, M. Joshi, and V. Kumar, WSMP: A high-performance serial and parallel sparse

linear solver, Technical Report RC 22038 (98932), IBM T.J. Watson Reserach Center, 2001.

www.cs.umn.edu/˜agupta/doc/wssmp-paper.ps.

[12] P. Hénon, P. Ramet, and J. Roman, PaStiX: A High-Performance Parallel Direct Solver for

Sparse Symmetric Definite Systems, Parallel Computing, 28 (2002), pp. 301–321.

[13] J. Hogg, A DAG-based parallel Cholesky factorization for multicore systems, Technical Report RAL-

TR-2008-029, Rutherford Appleton Laboratory, 2008.

[14] J. Hogg, J. Reid, and J. Scott, A sparse symmetric out-of-core linear solver for multicore

architectures, Technical Report RAL-TR-2009-005, Rutherford Appleton Laboratory, 2009. To

appear.

[15] HSL, A collection of Fortran codes for large-scale scientific computation, 2007. See

http://www.cse.clrc.ac.uk/nag/hsl/.

[16] G. Karypis and V. Kumar, METIS - family of multilevel partitioning algorithms, 1998. See

http://glaros.dtc.umn.edu/gkhome/views/metis.

[17] , A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Scientific

Computing, 20 (1999), pp. 359–392.

[18] J. Reid and J. Scott, An efficient out-of-core sparse symmetric indefinite direct solver, Technical

Report RAL-TR-2008-024, Rutherford Appleton Laboratory, 2008. Submitted to ACM Transactions

on Mathematical Software.

[19] , An out-of-core sparse Cholesky solver, ACM Transactions on Mathematical Software, 36 (2009).

To appear.

[20] O. Schenk and K. Gartner, Solving unsymmetric sparse systems of linear equations with

PARDISO, Journal of Future Generation Computer Systems, 20 (2004), pp. 475–487.

17


