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Sparse direct solution on parallel computers

Iain Duff, Florent Lopez, and Stojce Nakov

ABSTRACT

We describe our recent work on designing algorithms and software for solving sparse systems using direct

methods on parallel computers. This work has been conducted within an EU Horizon 2020 Project called

NLAFET. We first discuss the solution of large sparse symmetric positive definite systems. We use a

runtime system to express and execute a DAG-based Cholesky factorization. The runtime system plays

the role of a software layer between the application and the architecture and handles the management of

task dependencies as well as task scheduling and maintaining data coherency. Although runtime systems

are widely used in dense linear algebra, this approach is challenging for sparse algorithms because of

the irregularity and variable granularity of the DAGs arising in these systems. We have implemented

our software using the OpenMP standard and the runtime systems StarPU and PaRSEC. We compare

these implementations to HSL MA87, a state-of-the-art DAG-based solver for positive definite systems. We

demonstrate comparable performance on a multicore architecture. We also consider the case when the

matrix is symmetric indefinite. For highly unsymmetric systems we use a completely different approach

based on developing a parallel version of a Markowitz threshold ordering. This work is less advanced

but we discuss some of the algorithmic challenges involved. Finally, we briefly discuss using a hybrid

direct-iterative solver that combines the best of the two approaches and enables the solution of even larger

problems in parallel.
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methods, block Cimmino
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1 Introduction

We discuss recent work on the solution of large sparse equations of parallel computers using direct methods

in the context of an EU Horizon 2020 Project called NLAFET (Parallel Numerical Linear Algebra for

Future Extreme Scale Systems)1. This is the H2020 FET-HPC Project 671633 and it involves only

four partners. The coordinator is Bo K̊agström of Ume̊a University in Sweden, and the other Principal

Investigators are Iain Duff (STFC, UK), Jack Dongarra (University of Manchester, UK) and Laura Grigori

(INRIA, Paris). The Project started on 1 November 2015 and will finish on the 31st October 2018.

A major aim of the project is to enable a radical improvement in the performance and scalability of a

wide range of real-world applications relying on linear algebra software for future extreme-scale systems.

The key goals are:

• Development of novel architecture-aware algorithms that expose as much parallelism as possible,

exploit heterogeneity, avoid communication bottlenecks, respond to escalating fault rates, and help

meet emerging power constraints.

• Exploration of advanced scheduling strategies and runtime systems, focusing on the extreme scale

and strong scalability in multi/many-core and hybrid environments.

• Design and evaluation of novel strategies and software support for both offline and online auto-tuning.

• The results will appear in an open source NLAFET software library.

1.1 NLAFET workpackage overview

WP1

WP2 WP3 WP4

WP5

WP6

WP7

Figure 1.1: Overview of NLAFET Project.

The NLAFET Project consists of seven interlocking workpackages as shown in Figure 1.1. The three

workpackages WP1, WP5, and WP7 concern administration, applications, and dissemination while the

other four workpackages define our research agenda. We list the workpackages below.

• WP1: Management and coordination.

• WP2: Dense linear systems and eigenvalue problem solvers.

• WP3: Direct solution of sparse linear systems.

• WP4: Communication-optimal algorithms for iterative methods.

• WP5: Challenging applications– a selection.

Material science, power systems, study of energy solutions, and data analysis in astrophysics.

1www.nlafet.eu
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• WP6: Cross-cutting issues.

Scheduling and runtime systems, auto-tuning, fault tolerance.

• WP7: Dissemination and community outreach.

This paper is primarily concerned with WP3 in which we have four tasks, namely

T3.1 Lower bounds on communication for sparse matrices.

T3.2 Direct methods for (near-)symmetric sparse systems.

T3.3 Direct methods for highly unsymmetric sparse systems.

T3.4 Hybrid direct-iterative methods.

We will primarily be discussing the work in tasks T3.2 and T3.3 but, before we do so, we will first

define what we mean by a direct method.

2 Direct solution of sparse equations

When solving the linear system

Ax = b,

where the sparse matrix A is of large dimension, typically 106 or greater, by direct methods we will consider

the factorization:

PrAPc = LU,

where L is a sparse lower triangular matrix and U is a sparse upper triangular matrix and the permutations

Pr and Pc are chosen to preserve sparsity and maintain stability. When A is symmetric, then Pr = PT
c

and the factorization can be written as LLT (Cholesky) or LDLT ; this latter factorization is needed when

A is not positive definite.

There are several points to note about sparse direct methods:

• Black box solvers are available.

• Routinely solving problems of order in millions.

• Complexity can be low.

• Storage requirements can be very high. Although almost linear storage in 2D.

• Target is half asymptotic speed of GEMM.

We now discuss how we implement this factorization in the case of Task 3.2.

3 Task 3.2 Direct methods for (near-)symmetric systems

Task 3.2 considers the factorizations LLT , LDLT , and LU and all the algorithms will be based on a

tree-based representation of the factorization that we describe in Section 3.1. We will follow the approach

taken by the code HSL MA87 [19] for obtaining more fine-grained parallelism by using directed acyclic

graphs (DAGs) rather than trees. The use of a DAG as opposed to a tree is illustrated in Section 4.4.

HSL MA87 is based on a low level synchronization API for handling the parallelism. The main novelty in

our approach is to use runtime systems to both express and execute the DAG. We do this working closely

with our NLAFET partners in WP6.
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A key point about sparse factorization methods is that the kernels involve operations on small dense

matrices and we design energy-efficient, low-communication dense kernels for use within our sparse

factorizations both for positive definite and indefinite systems.

Within the framework of NLAFET, we are primarily concerned with the runtime systems StarPU and

OpenMP (using task features in Version 4.0 or above) both using an STF (sequential task flow) model,

and PaRSEC using a PTG (parametrized task graph) model. In all cases, the structure supplied to the

runtime system is a DAG.

3.1 Tree-based factorization

We feel it is useful to illustrate our approach to sparse factorization using the small 7× 7 matrix:

1 2 3 4 5 6 7

1 × × × • • × •
2 × × × • • • ×
3 × × × • • • •
4 • • • × × × •
5 • • • × × • •
6 × • • × • × ×
7 • × • • • × ×

(3.1)

where the entries marked × are nonzero and those marked • are zero. Then, if we consider eliminating

the first three rows and columns at the first step, the matrix on which we perform the eliminations is

1 2 3 6 7

1 × × × ×
2 × × × × ×
3 × × × × ×

6 × × × × ×
7 × × × ×

because the first three entries in rows and columns 4 and 5 are zero.

If we eliminate rows and columns 4 and 5 at step 2, then this can be performed within the matrix:

4 5 6

4 × × ×
5 × × ×

6 × × ×

The remaining part of the original matrix can then be factorized, but we need first to update the entries

according to the first two pivot steps. Thus step 3 can be expressed as:

6 7

6 × ×
7 × ×

+

6 7

6 × ×
7 × ×

+
6

6 × −→
6 7

6 × ×
7 × ×

where the three matrices summed on the left are from the original matrix and from the Schur complements

of the factorizations at steps 1 and 2, respectively. The resulting dense matrix on the right is then factorized

to complete the factorization of the 7× 7 matrix (3.1).

The factorization can be represented by the tree shown in Figure 3.1 where the number in each node

corresponds to the pivot step eliminating the variables shown in parenthesis and data must be passed

along the tree edges from nodes 1 and 2 to node 3. At each node, a small dense matrix, called a frontal

matrix, is partially factorized and the Schur complement is passed for assembly at the parent node of the

3



1

3

2

(1,2,3) (4,5)

(6,7)

Figure 3.1: Assembly tree for 7× 7 example.

tree. The reader is referred to [10] for a longer and more detailed discussion of the use of assembly trees

in sparse factorization.

This tree representation can be extended to any symmetric matrix and the sparse factorizations will

have similar kernels to those used in the small example. The computation at a node involves dense

factorization. Pivots are chosen from the top left block in Figure 3.2, but elimination operations are

performed on the whole frontal matrix. Rows and columns of the factors can be stored and the resulting

Schur complement (bottom right block) is passed up the tree for future assemblies.

Figure 3.2: Generic frontal matrix showing fully summed block.

4 Parallelism in sparse direct methods

There are several levels of parallelism in solving sparse systems that we discuss in this section. These levels

can all contribute to an efficient parallel solution and can result in potentially high levels of exploitation

of extreme scale computers. It is the intention of our project to investigate the combination of these

techniques to obtain good scalability.

We list the levels below and discuss each in the subsections of this section.

• Partitioning.

• Tree level parallelism.

• Node parallelism (including multi-threaded BLAS).

• Inter-node parallelism.

4.1 Partitioning

In many applications, the matrix can be reordered and partitioned so that all the nonzero entries lie in

blocks. For example, if the symmetric system is reducible then the resulting form is block diagonal and

the factorization of each block can proceed independently in parallel.

For unsymmetric matrices, reducibility corresponds to a block triangular form and a generalization of

this is a bordered block diagonal form, shown in Figure 4.1, that we exploit using the methods discussed

in Section 8.
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Figure 4.1: A singly bordered block diagonal form.

4.2 Tree level parallelism

We already showed an assembly tree for our 7× 7 example (3.1) in Figure 3.1. In the more general case,

we can represent the factorization by a similar assembly tree with many more nodes and edges. We show

an example of a larger tree in Figure 4.2.

Figure 4.2: Start of factorization. Work corresponding to leaf nodes (circled) can proceed immediately

and independently.

As we see in this figure, there is plenty of parallelism available from the tree at the start of the

factorization. As the elimination operations at a node complete, other nodes receive the Schur complement

information from their children and factorizations can proceed when the data has been received. We show

the situation part-way through the factorization in Figure 4.3.

Figure 4.3: Part-way through the factorization. When the dense factorization at a node is finished a cross

is superimposed on the circle.
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4.3 Node parallelism

Node parallelism comes from the parallel execution of kernels effecting the dense factorization at a node

of the tree. Indeed, we can potentially use any tricks developed for parallel dense factorization so that we

see immediately the much greater potential for parallelism in the sparse case.

Tree Leaf nodes Top 3 levels

Matrix Order nodes No. Av. size No. Av. size % ops

bratu3d 27 792 12 663 11 132 8 296 37 56

cont-300 180 895 90 429 74 673 6 10 846 41

cvxqp3 17 500 8 336 6 967 4 48 194 70

mario001 38 434 15 480 8 520 4 10 131 25

ncvxqp7 87 500 41 714 34 847 4 91 323 61

bmw3 2 227 362 14 095 5 758 50 11 1 919 44

Table 4.1: Statistics on front sizes in assembly tree. From Duff, Erisman, Reid [10].

We show some tree statistics in Table 4.1 for some medium sized problems from a range of applications.

Although there are many tasks near the leaf nodes, we note that the dimensions of the matrices are small

so there is little node parallelism but plenty of tree parallelism. Near the root node, there is not much tree

parallelism but the nodes are large, that is the dense matrices at these nodes are of large dimension and

so there is plenty of node parallelism. It is this balance that encourages us to believe that good levels of

scalability can be obtained and that our target of half the asymptotic speed might be achievable.

4.4 Inter-node parallelism

The bottleneck in parallel algorithms just based on the assembly tree and employing the parallelism

discussed in Sections 4.2 and 4.3 is that a node has to wait for all its children to complete before it is

available to start its own processing. We follow previous work on qr mumps [1, 2, 6] and HSL MA87 [19] to

overcome this limitation by dividing the factorization into subblocks (called tiles) as shown in Figure 4.4

and then defining the dependency of the resulting task-based approach by using a directed acyclic graph

or DAG. We illustrate such a DAG in Figure 4.5.

nb

Figure 4.4: Part of tree.
f

s s

u u

f s

f

s
s s

u
u u

f
s s

f

s s

u u u

f s u f

a

a

a

a

a a

Figure 4.5: Directed acyclic graph.

In the DAG shown in Figure 4.5 the letters in the circles correspond to kernels involved in the

factorization of the nodes of the tree. These kernels are:

• the tasks f correspond to the Cholesky factorization of a block corresponding to a tile on the diagonal,
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• the tasks s represent a triangular solve on a subdiagonal block using a factor computed by a task f,

• the tasks u perform an update of a block within the node using the blocks created by the kernels s,

and

• the tasks a represent an update between nodes with factorizations at one node updating a block in

an ancestor node.

5 Experiments on symmetric positive definite systems

We run our experiments on a multicore Haswell machine equipped with two Intel(R) Xeon(R) E5-2695

v3 CPUs with fourteen cores each (twenty eight cores in total). Each core is clocked at 2.3 GHz. The

asymptotic performance of DGEMM using PLASMA was 768 Gflop/s. We have implemented a sparse

factorization routine, SpLLT, exploiting the parallelism described in Sections 4.2 to 4.4 and have used

both OpenMP and the StarPU runtime system [12] using the STF model. We compare runs of this code

with HSL MA87 on a range of test problems whose characteristics are given in Table A.1 in the Appendix.

We see, in Figure 5.1, that the performance is generally comparable to the hand-coded HSL code although

rather poor performance is seen in a few matrices, for example matrices 15, 19, and 24. A problem with

using the runtime systems is that when the tasks are small, the overhead in setting them up in the runtime

system predominates and the overhead is particularly high for StarPU. Another reason why the STF model

can show poor performance is that the DAG is traversed sequentially and so some parallelism is missed.

To avoid this issue with STF models, we also implemented our algorithm using the PaRSEC runtime

 0
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Factorization GFlop/s - 28 cores
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SpLLT-STF (StarPU)

Figure 5.1: Performance of sparse Cholesky code SpLLT using STF runtime systems.

system [13] that implements a PTG model. We see in Figure 5.2 that PaRSEC performs much better

than the STF models on the matrices that we just identified, but the cost of using a runtime system still
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penalizes cases where there are many small tasks. We can avoid some of this by grouping together into a

single task nodes near the leaves of the tree. We call this tree pruning and discuss this in the next section.
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SpLLT-PTG (PaRSEC)
SpLLT-STF (OpenMP)

Figure 5.2: Performance of sparse Cholesky code SpLLT using PaRSEC.

5.1 Tree pruning strategy

What we mean by tree pruning is that we do not pursue full tree parallelism by allocating tasks right

down to the level of the leaves but we combine the operations in a subtree as a single task so that the

granularity of work in that task is increased. This is illustrated in Figure 5.3 where instead of processing

the tree right down to the six leaf nodes, we only exploit tree parallelism down to the level of the four

heavily shaded nodes and the subtree, for which each is a root, is processed as a single task. This strategy

is commonly used when performing a static distribution of work in a multiprocessor environment, for

example by MUMPS [3] and, in a shared memory environment, by qr mumps [6].

Figure 5.3: An illustration of tree pruning.
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We see the effect of doing this pruning in Figure 5.4 where the performance on matrices 15, 19, and

24 is clearly much better. We note that the version with pruning is not always better because of the

aforementioned loss of parallelism.
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Figure 5.4: Effect of tree pruning on OpenMP version.

6 Symmetric indefinite matrices

If the matrix is indefinite then numerical pivoting is needed. A simple example is the matrix[
0 ×
× 0

]
where it is clear that, whatever, the value of the entries ×, a Cholesky factorization will fail because of the

zeros on the diagonal. We note that, if × is nonzero, the matrix is nonsingular. The good news is that we

can stably factorize an indefinite matrix using only 1× 1 and 2× 2 pivots [4, 5].

As is standard in sparse factorization, we use threshold rather than partial pivoting so we want

‖Pivot‖ ≥ u× ‖Largest entry in column‖ (6.1)

where u is the threshold parameter (0 < u ≤ 1) so that a value of 1.0 for the threshold parameter would

be equivalent to partial pivoting while relaxing this value gives us more scope to choose pivots on sparsity

grounds while still retaining some control over the stability of the factorization. This trade-off is described

in detail by [10].

For the symmetric indefinite case, where 2×2 pivots may be needed to preserve stability and symmetry,

Duff and Reid [15] recommend, for each 2× 2 pivot, the test∣∣∣∣∣∣
[
a
(k)
kk a

(k)
k,k+1

a
(k)
k+1,k a

(k)
k+1,k+1

]−1∣∣∣∣∣∣
 max

j 6=k,k+1
|akj |

max
j 6=k,k+1

|ak+1,j |

 ≤ [ u−1

u−1

]
, (6.2)
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where |A| is the matrix with each entry the modulus of the corresponding entry of A and u ≤ 0.5. This

corresponds to

|a(k)kk |
−1 max

i
|a(k)ik | ≤ u−1 (6.3)

for the 1× 1 case.

21
A

A
11

Figure 6.1: Frontal matrix showing fully summed columns.

If we look at the frontal matrix shown in Figure 6.1 then pivots can only be chosen from A11. Various

pivoting strategies can be adopted, some of which we now discuss.

6.1 Threshold partial pivoting

We can use the threshold partial pivoting (TPP) algorithm defined by equations (6.1) to (6.3). The

problem is that, in Figure 6.1, entries in A21 may be large enough to prevent a potential pivot from A11

satisfying the threshold test (6.1). In a normal dense matrix factorization such large entries could be used

as the off-diagonal entry in a 2×2 block pivot but that is not possible in this context since we do not have

available all the entries in the rows of the matrix corresponding to rows in A21 as they need contributions

from further up the tree. Pivots (with associated row and column) that cannot be used and are passed to

ancestors in the tree are called delayed pivots.

We are thus faced with a choice of just restricting pivoting to A11 and hoping that large entries in A21

do not cause us problems. This results in an unstable algorithm so normally some precaution is taken to

guard against that. Thus it is common to do some steps of iterative refinement that will either give an

accurate answer or will alert the user to the fact that there are problems with the factorization. This is

the approach adopted by PARDISO [23].

The alternative is to conduct the elimination column by column and, if a column has too large an entry

in the part of the column in A21, to avoid pivoting on that column and to leave it in the uneliminated

Schur complement or contribution block for passing to the ancestors in the tree. This does not compromise

our threshold pivoting algorithm since the said column will eventually be available for pivoting, certainly

at the root node if not before. The problem with this approach is that it does not lend itself to good

exploitation of parallelism. We are working a column at a time and need to update later columns before we

can test them for pivoting. We must search for the maximum entry in the column that requires access to

memory and potentially memory on different processors in a distributed memory environment. However,

this is usually the algorithm of choice for serial codes and we can obtain some degree of parallelism by

careful implementation. This is the approach adopted by the HSL code HSL MA97 [20].

In fact, for many indefinite systems, if the matrix is scaled well beforehand and the threshold parameter

is not set too high, there are few instances when a large entry in A21 prevents a pivot being chosen [21].

We discuss an algorithm that exploits this in the next section.

6.2 A posteriori threshold pivoting

The intention of a posteriori threshold pivoting (APTP) [18] is to concentrate on obtaining good parallelism

in the case when no pivots are delayed but to be able to continue with a stable factorization when there

are delayed pivots albeit with a slight loss in efficiency.

10
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Figure 6.2: Performance of SSIDS factorization for easy indefinite matrices on the 28-node Haswell

machine.

In this approach we first tile the frontal matrix and compute the factors for a block of columns in

A11 working only within this block. We then use these factors to update in parallel tiles in A21 within

this block of columns. When doing this, we monitor the size of the entries of L that we are creating and

check that their absolute value is less than u−1. If that is so then we use the blocks to update the rest of

the frontal matrix. If it is not, then we do not trust any columns in the block to the right of the failed

entry and we backtrack to the situation at that time, flag the column as being non-pivotal and try to

continue the factorization. The main penalty here is that we must also store the unmodified data so that

a backtrack can be performed. At worst, the failed columns will correspond to delayed pivots in the TPP

algorithm and will be passed with the Schur complement to ancestor nodes.

This algorithm is used in the SSIDS code [18] and the kernel that implements it is used in the NLAFET

code SpLDLT. We illustrate its performance on a set of matrices of increasing size in Figure 6.2 on our

28-node Haswell machine. The attributes of the test matrices are shown in Table A.2 in the Appendix

and they are called easy indefinite because they do not have any delayed pivots if the matrices are scaled

beforehand. On the Haswell machine, the GEMM kernel runs at 768 Gflop/s so that, even with pivoting, we

are close to achieving our target of half the asymptotic speed.

6.3 Numerical pivoting in the indefinite case

We have discussed three numerical pivoting options for symmetric indefinite factorizations and have

identified codes that implement each of these. In this section we run some tests on some highly indefinite

systems to see how these strategies compare in practice. Some of the results are from the technical report

by Hogg [18]. The codes that we are comparing are: SSIDS using APTP, HSL MA97 that uses TPP, and

PARDISO as implemented in MKL 11.0.3 that factorizes the block A11 without any test against the

entries in A21. For these tests we use the set of indefinite matrices from Hogg and Scott [21] that require

substantial numerical pivoting identified by having a large number of delayed pivots. Many of these hard

indefinite cases are saddle-point matrices. We list these matrices in Table A.3 in the Appendix. We show

the comparison in Figure 6.3. We see in this figure that both SSIDS and PARDISO obtain much better

speedups than the TPP code HSL MA97 and they are roughly comparable, with PARDISO having a slight

edge over SSIDS.

However, as we mentioned when discussing the different numerical pivoting strategies, the one used

by PARDISO is unstable and iterative refinement is needed. We examine, in more detail in Table 6.1,

the performance of the three codes on some matrices from the earlier runs. Here we see that while both

SSIDS and PARDISO are significantly faster than HSL MA97, SSIDS has a far better backward error than

PARDISO, even though iterative refinement is used with PARDISO. Indeed SSIDS is comparable with

the numerical performance of the TPP code as it should be.
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Figure 6.3: Comparison of codes on hard indefinite matrices on the 28-core Haswell machine.

Matrix stokes128 cvxqp3 ncvxqp7

Order ×103 49.7 17.5 87.5

Entries ×106 0.30 0.07 0.31

Factor time

HSL MA97 0.15 1.52 8.18

PARDISO 0.12 0.33 1.50

SSIDS V2 0.11 0.29 1.67

Backward error

HSL MA97 1.6 10−15 3.1 10−11 4.4 10−9

PARDISO 3.9 10−3 1.1 10−6 1.4 10−7

SSIDS V2 1.4 10−15 2.0 10−11 7.3 10−9

Table 6.1: Hard indefinite systems on the 28-core Haswell machine.

In our talks on these approaches, we parodize these codes as: with HSL MA97 we have to pay, with

PARDISO we have to pray, while with SSIDS we can play.
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7 Task 3.3 Direct methods for highly unsymmetric systems

The algorithms that we will study for highly unsymmetric systems are radically different from those of

the previous sections. They are not based on an assembly tree but rather on a right-looking factorization

method that uses a Markowitz threshold strategy. Parallelism is obtained largely through the use of

extensive blocking.

We define a highly unsymmetric matrix as a matrix whose structure is not well approximated by the

structure of |A|+ |A|T . Various authors have defined a measure of the asymmetry of a matrix and here we

use that defined in [17] which is the proportion of off-diagonal entries for which there is a corresponding

entry in the transpose, viz.

si(A) =
numberi 6=j{aij ∗ aji 6= 0}

nz{A}
,

where si is called the symmetry index and nz{A} is the number of off-diagonal entries in the matrix A.

A symmetric matrix will thus have a symmetry index of 1.0. Matrices with symmetry indices of less than

0.9 can be considered highly unsymmetric and these are the main target of this work in Task 3.3. Such

matrices are encountered in applications such as: chemical engineering, linear programming, economic

modelling, power systems, and circuit modelling.

Both code and matrices implementing these algorithms can be very unstructured and complicated. We

illustrate this in Figure 7.1 with a matrix from an econometric model of SE Asia. It is matrix ORANI 678,

from the Harwell-Boeing test set and available from the SuiteSparse matrix collection [9].

Figure 7.1: Matrix from econometric model of SE Asia.

As an example of how convoluted the coding can be we reproduce the inner-loop from an 1993 HSL

code, MA28. For many years this was best code available for this type of matrix and was the code available

in netlib. The innermost loop in the Fortran 77 version of the HSL code MA48 [14] that replaced this was

only marginally less ugly.

7.1 Markowitz threshold pivoting

Clearly, for any pivot in Gaussian elimination the maximum fill-in2 that can occur is the product of the

number of other entries in the pivot row with the number of other entries in the pivot column. Thus if

there are cj entries in column j and ri entries in row i, then we define the Markowitz cost for a potential

pivot in row i, column j as

Markij = (ri − 1)× (cj − 1). (7.1)

We choose candidate entries with low or minimum Markowitz count to reduce the amount of fill-in. Of

course, such a candidate would be unacceptable if its value was zero or very small relative to other entries.

2An entry that is zero in A but is nonzero in the corresponding entry of the factors is termed fill-in.
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DO 590 JJ = J1, J2

J = ICN (JJ)

IF (IQ(J). GT.0) GO TO 590

IOP = IOP + 1

PIVROW = IJPOS - IQ (J)

A(JJ) = A(JJ) + AU x A (PIVROW)

IF (LBIG) BIG = DMAXI (DABS(A(JJ)), BIG)

IF (DABS(A(JJ)). LT. TOL) IDROP = IDROP + 1

ICN (PIVROW) = ICN (PIVROW)

590 CONTINUE

Figure 7.2: Innermost loop of MA28.

We therefore introduce a pivot threshold and, analogously to the case for symmetric matrices in equation

(6.1), only consider entries aij that satisfy

|aij | ≥ u ∗max
k
|akj |, k = 1, . . . ,m (7.2)

where u is a threshold parameter 0 < u ≤ 1.0. That is to say we only consider entries that are at least

u times as large as the largest entry in modulus of all entries in the column. We call such entries eligible

entries. If u were equal to 1.0 then we would be using partial pivoting that is the most common algorithm

for dense matrices.

To continue with the factorization we must first update the remaining matrix using the outer product of

the pivot row and column, updating the numerical entries and normally introducing fill-in. This is clearly

a right-looking algorithm. For selecting the next pivot we perform the threshold Markowitz algorithm on

this remaining updated matrix of order one less than the previous one, and we continue in this way until

all min(m,n) pivots have been chosen although it is advantageous to switch to a dense code when the

Schur complement becomes denser [14]. The algorithm is simple but the data structures to implement it

efficiently, even in serial mode, are not.

7.2 Parallel implementation of threshold Markowitz pivoting

For our parallel implementation, we essentially use the same algorithm, that is a threshold Markowitz

algorithm using the same terminology as the previous section. In this implementation, we find a set of

independent pivots that can be used and then use these as a block pivot to update the remaining matrix

in parallel. We illustrate this in Figure 7.3.

0

X
X

X
X

X
X

X

0

Figure 7.3: Block of independent pivots.

When choosing the set of pivots in parallel, we note that the threshold test only needs information

from one column and this is our first observation for obtaining significant parallelism. We thus launch

our algorithm by scanning columns of the matrix independently. For each column we compute the largest
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entry in modulus and choose as a potential pivot in that column an entry that satisfies the threshold test,

that is an entry at least u times the maximum just calculated, and is in a row with the least number of

entries over all eligible entries in the column. It is possible that all eligible entries are in rows of high count

so, although we still flag the entry as a possible pivot, we will not use it unless there are no other suitable

pivots.

Having done this, we then want to construct a set of independent pivots in parallel. We do this by a

binary combination illustrated in Figure 7.4. We use a parameter to define a block size and then select

. . . . .

A

Figure 7.4: Combining pivots to get block pivot.

at random a set of columns of the matrix whose cardinality is the block size. We choose the columns

at random because often the structure of the matrix militates against choosing consecutive columns. We

then do a cheap scan of columns in the block to identify an independent set. Each block is independent

and can be scanned in parallel. If we assume that the column we are seeking to combine with the current

block pivot is j1 and the block pivot is in the set of rows I2 and columns J2 and that the potential pivot

in column j1 is in row i1 then the column is combined with the current block if there are no entries

in positions (I2, j1) and (i1, J2). For checking whether a column yields an independent pivot we use an

integer array of length n that flags whether a row has no entries in all the previously chosen columns. A

similar flag is set for the columns so that the test comprises just two lookups followed by an update of the

flags. This can be done without having to reset the flag array by incrementing flags at each step and only

resetting if integer overflow occurs. We show experiments on the effect of the influence of the block size in

the next section.

Having done this pass on all the blocks, we have sets of independent pivots of size up to the block

size. We then combine these to get larger sets, continuing to do so in a binary tree fashion as shown in

Figure 7.4 until we have a single set of independent pivots.

In sequential codes like MA48 [14], we select the eligible pivot that has the minimum Markowitz count,

as defined in equation (7.1). Because we want to get large blocks of independent pivots, we relax this by

accepting eligible pivots within a factor of the minimum, that is an entry (i, j) can be chosen as a pivot if

its Markowitz cost satisfies the condition

Markij ≤ αMark ×BestMark (7.3)

where the Markowitz factor αMark is greater than or equal to one and BestMark is the lowest Markowitz

count.

Our next step is to perform all the pivot operations for the block of independent pivots in parallel. In

effect what we have to do is a parallel sparse matrix by sparse matrix multiply to update the Schur

complement. Having done this, we then repeat the parallel pivot selection on the reduced matrix

corresponding to the Schur complement that we have just computed.

We terminate the algorithm when either the last few steps of our algorithm (“few” is a parameter that

we have set to 5 in our experiments) have failed to obtain a number of independent pivots greater than
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a preset threshold or the Schur complement reaches a preset density. At that stage, in the present code,

we switch to using the PLASMA [7] code GETRF for parallel dense LU factorization on the remaining Schur

complement. We plan in later versions of the code to have a transitional stage where we use a parallel

sparse direct code designed for relatively dense sparse matrices, such as the parallel LU factorization that

will be developed in Task 3.2.

Because of these various stages, we use four different data structures. The L and U factors continuously

grow with the execution of our algorithm without changing the already computed part. For this reason,

we use standard CSC storage for the L and U factors. The values in the diagonal matrix D of the LDU

factorization are stored in a separate array. On the other hand, the structure of the Schur complement

changes because of the update operations. Additionally, at each step we must be able to determine if a

set of pivots are mutually independent. For these reasons, we use a flexible CSC/CSR based structure.

The numerical values are stored in the CSC fashion, while the CSR part stores only the nonzero structure

of the matrix. In total, three large arrays are used, one index and one value array for the CSC part and

one index array for the CSR part. Having the matrix structure stored by rows and columns provides an

efficient way of updating the structures during pivot selection and Schur update. In order to cope with

the dynamic nature of the Schur complement, within the CSR/CSC structure extra space is allocated at

the end of each row and each column. Each row and column is represented by an offset from the start of

the corresponding array, by the number of entries each contains, with the amount of available free space.

Additional memory is allocated at the end of each array which is managed by a garbage collector. For

each block of free memory, the garbage collector stores the offset from the beginning of the array and its

size. When fill-in to a row or a column consumes its available space, it is moved to the next available space

provided by the garbage collector. Its old memory is marked as free memory and added to the garbage

collector for future reuse. Similarly, space freed when a row or column becomes pivotal is likewise given

to the garbage collector.

7.3 Preliminary results

In this section we present results of some experiments with our solver. The tests were performed on the

same multicore Haswell machine that we used for the experiments in Section 5. All the results presented

are sequential (mono-threaded execution). The main attributes of the matrices used in this study are given

in Table 7.1. The matrix twotone is from the SparseSuite set of test matrices and the other two are from

a Power Systems application supplied by Bernd Klöss of DigSILENT GmbH.

Matrix Order Entries si

×103 ×106

twotone 120 1.22 0.26

LoadFlow Newton 0 4 197 3.70 0.46

Jacobian unbalancedLdf 203 2.76 0.80

Table 7.1: Some highly unsymmetric matrices.

As discussed in the previous section, at some point in our algorithm we switch to a dense solver. The

reason for this is that once the Schur complement becomes too dense, we get only a few pivots at a time

and in addition the operations become more and more expensive. At some point, we get sets of size one

only and the execution of each step takes a lot of time. This is considerably improved by switching to the

dense solver and we show the number of pivots selected and the time in Figure 7.5.

At the beginning of each step, we need to set up the initial sets of pivots that will be merged later.

The impact of the number of candidates per initial pivot set (the block size) on the average number

of pivots found per step is given in Figure 7.6. We can see that for all the values of this parameter,

our algorithm is able to create large enough sets. One interesting thing to notice is that when the

LoadFlow Newton 0 4 matrix is used, the optimal value is 10. That points to the fact that the largest
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Figure 7.5: The number of pivots (left) and the time spent (right) for each step when the matrix twotone is

used. Additionally, the number of pivots handled by the dense solver and the time spent in the dense

solver are given at the end.

pivot sets are obtained when we start with a large number of small pivot sets. Since the merge is done

using a binary tree and, at each level of the tree, all the merging can be done in parallel, it indicates that

our algorithm could potentially be extremely parallel.
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Figure 7.6: Impact of the number of candidates per initial pivot set on the average number of pivots per

step.

Each pivot candidate must satisfy the Markowitz test in Equation (7.3). When we relax the constraint

on the Markowitz cost, we accept pivots with higher Markowitz cost which will usually introduce more

fill-in in the factors. The impact of the Markowitz factor αMark on the number of entries in the L and

U factors is presented in Figure 7.7. In this figure the total number of entries in the L and U factors

are shown and include the dense part for each of them. Thus as expected when the Markowitz factor is

relaxed, the amount of fill-in increases.
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Figure 7.7: The impact of the Markowitz factor on the total number of entries in the L and U factors.

8 Task 3.4 Hybrid direct-iterative methods

We have only just commenced work on Task 3.4. Here we consider the use of a hybrid method to solve

the system of equations. This enables us to extend the range of direct solvers to larger matrices and to

obtain another level of parallelism. The system we want to solve is

Ax = b, (8.1)

where A is an m×n sparse matrix, x is an n-vector and b is an m-vector. In the following, we assume the

system is consistent and for simplicity we suppose that A has full rank.

We will study the solution of the system (8.1) using the block Cimmino method, an iterative method

using block-row projections. In this method, the system (8.1) is subdivided into strips of rows as in the

following: 
A1

A2

...

Ap

x =


b1
b2
...

bp

 . (8.2)

Let PR(AT
i ) be the projector onto the range of AT

i and Ai
+ be the Moore-Penrose pseudo-inverse of the

partition Ai. The block Cimmino algorithm then computes a solution iteratively from an initial estimate

x(0) according to:

ui = A+
i

(
bi −Aix

(k)
)

i = 1, ...., p (8.3)

x(k+1) = x(k) + ω

p∑
i=1

ui, (8.4)

where ω is a real parameter whose value we will shortly show to be immaterial. We note the independence

of the set of p equations, which is why the method is so attractive in a parallel environment. The block

Cimmino method is described in more detail by Ruiz [22].

Although the matrix in equation (8.1) can be rectangular and the Cimmino method can work on such

systems [16], for our main discussion we will assume that A is square and of order n.
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With the above notations, the iteration equations are thus:

x(k+1) = x(k) + ω

p∑
i=1

A+
i

(
bi −Aix

(k)
)

=

(
I − ω

p∑
i=1

A+
i Ai

)
x(k) + ω

p∑
i=1

A+
i bi

= Qx(k) + ω

p∑
i=1

A+
i bi.

The iteration matrix for block Cimmino H = I −Q is then a sum of projectors H = ω
∑p

i=1 PR(AT
i ). It is

thus symmetric and positive definite and so we can solve

Hx = ξ, (8.5)

where ξ = ω
∑p

i=1A
+
i bi, using conjugate gradient or block conjugate gradient methods. As ω appears on

both sides of equation (8.5), we can set it to one.

The starting point for our work on this is the thesis and code of Mohammed Zenadi [24]. We have been

porting his code that uses MPI and multi-threading to our machines and have been resolving a few issues.

We have been studying the resulting code and have obtained good parallelism for some problems. We show

the performance of the code on matrix cage12 from the SuiteSparse test set in Figure 8.1. The machine

used for these runs is a local heterogeneous machine called scarf. It has a number of Intel nodes (including

some E5-2650, E2660, X5675, X5530, and E5530 nodes)3. The actual configuration is determined by the

batch scheduler at runtime.

Figure 8.1: The speedup of block Cimmino for cage12 on the scarf machine at RAL.

The default partitioning method used in the code is PaToH [8]. In the NLAFET project we are now

testing various partitioning approaches since the number of block Cimmino iterations is strongly related to

the number of columns in the border of the bordered block diagonal form that we illustrated in Figure 4.1.

For the matrix cage12, we see in Figure 8.2(left) that the number of iterations is not affected by the

number of processes and that it does not vary significantly when the number of partitions increases (see

Figure 8.2(right)) although, as expected, the number of iterations increases with the number of partitions.

3See http://www.scarf.rl.ac.uk/hardware
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Figure 8.2: The effect of the number of processes (left) and number of partitions (right) on the convergence

of block Cimmino on a system with matrix cage12.

We note that in the code of Zenadi and in the earlier research [11] we have developed an algorithm

ABCD (Augmented Block Cimmino Distributed) that totally avoids the interaction between blocks by

augmenting them so that they are mutually orthogonal. This yields a pseudo-direct method that should

converge in one iteration. We will also be developing this approach further in the NLAFET project.

9 Concluding remarks

In conclusion, we emphasize that this work is very much still ongoing and we are only just past the half-way

point in the project.

What we can say already is that there is lots of parallelism in sparse direct solvers but programming

this, while interesting and fun, is extremely tough.

Much of the work that we have described has been done to provide a solid platform for future work in

the NLAFET project. We are currently examining in detail the two main approaches for using assembly

trees in sparse factorization, namely the supernodal and the multifrontal method. While the data handling

is much simpler in multifrontal schemes and exploitation of parallelism should thus be easier, the storage

requirements are often higher. Our future work will quantify these issues and give recommendations

concerning these two approaches.

One of the reasons why we have used runtime systems is so that our codes can be more easily ported to

different architectures and we plan to illustrate this by porting our codes to GPUs and to a heterogeneous

system with multicore nodes and GPUs. The authors of the runtime systems are developing versions for

distributed memory environments that we look forward to testing.

One approach for solving systems with highly unsymmetric matrices is to permute them to make them

less unsymmetric and this will be used with the LU codes that we will develop as an extension to the

tree-based methods for symmetric systems. This approach will then be compared with our threshold

Markowitz approach. Finally, the current block Cimmino code uses MUMPS for the direct solution of

subproblems. The MUMPS code is arguably one of the best parallel direct solvers, but it is based on

MPI. In the context of our hierarchical approach to exploiting parallelism in this hybrid method, we will

be targeting a multicore environment at the direct solver level for which our new codes being developed

in Task 3.2 might be better suited.
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11 Appendix. Test problems

# Problem n nz(A) nz(L) Flops Application/Description

(103) (106) (106) (109)

1 Schmid/thermal2 1228 4.9 51.6 14.6 Unstructured thermal FEM

2 Rothberg/gearbox 154 4.6 37.1 20.6 Aircraft flap actuator

3 DNVS/m t1 97.6 4.9 34.2 21.9 Tubular joint

4 Boeing/pwtk 218 5.9 48.6 22.4 Pressurised wind tunnel

5 Chen/pkustk13 94.9 3.4 30.4 25.9 Machine element

6 GHS psdef/crankseg 1 52.8 5.3 33.4 32.3 Linear static analysis

7 Rothberg/cfd2 123 1.6 38.3 32.7 CFD pressure matrix

8 DNVS/thread 29.7 2.2 24.1 34.9 Threaded connector

9 DNVS/shipsec8 115 3.4 35.9 38.1 Ship section

10 DNVS/shipsec1 141 4.0 39.4 38.1 Ship section

11 GHS psdef/crankseg 2 63.8 7.1 43.8 46.7 Linear static analysis

12 DNVS/fcondp2 202 5.7 52.0 48.2 Oil production platform

13 Schenk AFE/af shell3 505 9.0 93.6 52.2 Sheet metal forming

14 DNVS/troll 214 6.1 64.2 55.9 Structural analysis

15 AMD/G3 circuit 1586 4.6 97.8 57.0 Circuit simulation

16 GHS psdef/bmwcra 1 149 5.4 69.8 60.8 Automotive crankshaft

17 DNVS/halfb 225 6.3 65.9 70.4 Half-breadth barge

18 Um/2cubes sphere 102 0.9 45.0 74.9 Electromagnetics

19 GHS psdef/ldoor 952 23.7 144.6 78.3 Large door

20 DNVS/ship 003 122 4.1 60.2 81.0 Ship structure

21 DNVS/fullb 199 6.0 74.5 100.2 Full-breadth barge

22 GHS psdef/inline 1 504 18.7 172.9 144.4 Inline skater

23 Chen/pkustk14 152 7.5 106.8 146.4 Tall building

24 GHS psdef/apache2 715 2.8 134.7 174.3 3D structural problem

25 Koutsovasilis/F1 344 13.6 173.7 218.8 AUDI engine crankshaft

26 Oberwolfach/boneS10 915 28.2 278.0 281.6 Bone micro-FEM

27 ND/nd12k 36.0 7.1 116.5 505.0 3D mesh problem

28 ND/nd24k 72.0 14.4 321.6 2054.4 3D mesh problem

29 Janna/Flan 1565 1565 59.5 1477.9 3859.8 3D mechanical problem

30 Oberwolfach/bone010 987 36.3 1076.4 3876.2 Bone micro-FEM

31 Janna/StocF-1465 1465 11.2 1126.1 4386.6 Underground aquifer

32 GHS psdef/audikw 1 944 39.3 1242.3 5804.1 Automotive crankshaft

33 Janna/Fault 639 639 14.6 1144.7 8283.9 Gas reservoir

34 Janna/Hook 1498 1498 31.2 1532.9 8891.3 Steel hook

35 Janna/Emilia 923 923 21.0 1729.9 13661.1 Gas reservoir

36 Janna/Geo 1438 1438 32.3 2467.4 18058.1 Underground deformation

37 Janna/Serena 1391 33.0 2761.7 30048.9 Gas reservoir

Table A.1: Test matrices and their characteristics. n is the matrix order, nz(A) the number entries in the

matrix A, nz(L) the number of entries in the factor L, and Flops corresponds to the operation count for

the matrix factorization.
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Problem n nz(A) nz(L) flops

×103 ×106 ×106 ×109

Oberwolfach/t2dal 4.26 0.02 0.28 0.02

GHS indef/dixmaanl 60.00 0.18 1.58 0.05

Oberwolfach/rail 79841 79.84 0.32 4.43 0.33

GHS indef/dawson5 51.54 0.53 5.69 0.90

Boeing/bcsstk39 46.77 1.07 9.61 2.66

Boeing/pct20stif 52.33 1.38 12.60 5.63

GHS indef/copter2 55.48 0.41 12.70 6.10

GHS indef/helm2d03 392.26 1.57 33.00 6.16

Boeing/crystk03 24.70 0.89 10.90 6.26

Oberwolfach/filter3D 106.44 1.41 23.80 8.71

Koutsovasilis/F2 71.50 2.68 23.70 11.30

McRae/ecology1 1000.00 3.00 72.30 18.20

Cunningham/qa8fk 66.13 0.86 26.70 22.10

Oberwolfach/gas sensor 66.92 0.89 27.00 22.10

Oberwolfach/t3dh 79.17 2.22 50.60 70.10

Lin/Lin 256.00 1.01 126.00 285.00

GHS indef/sparsine 50.00 0.80 207.00 1390.00

PaRSEC/Ge99H100 112.98 4.28 669.00 7070.00

PaRSEC/Ga10As10H30 113.08 3.11 690.00 7280.00

PaRSEC/Ga19As19H42 133.12 4.51 823.00 9100.00

Table A.2: Easy Indefinite. Statistics as reported by the analyse phase of SSIDS with default settings,

assuming no delayed pivots.
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Problem n nz(A) nz(L) flops

×103 ×106 ×106 ×109

TSOPF/TSOPF FS b39 c7 28.22 0.37 2.61 0.26

TSOPF/TSOPF FS b162 c1 10.80 0.31 1.89 0.36

QY/case39 40.22 0.53 3.87 0.40

TSOPF/TSOPF FS b39 c19 76.22 1.00 7.28 0.75

TSOPF/TSOPF FS b39 c30 120.22 1.58 11.10 1.10

GHS indef/cont-201 80.59 0.24 7.12 1.11

GHS indef/stokes128 49.67 0.30 6.35 1.16

TSOPF/TSOPF FS b162 c3 30.80 0.90 6.37 1.41

TSOPF/TSOPF FS b162 c4 40.80 1.20 7.32 1.43

GHS indef/ncvxqp1 12.11 0.04 3.56 2.52

GHS indef/darcy003 389.87 1.17 23.20 3.01

GHS indef/cont-300 180.90 0.54 17.20 3.58

GHS indef/bratu3d 27.79 0.09 7.49 4.72

GHS indef/cvxqp3 17.50 0.07 6.33 5.27

TSOPF/TSOPF FS b300 29.21 2.20 13.40 6.92

TSOPF/TSOPF FS b300 c1 29.21 2.20 13.50 7.01

GHS indef/d pretok 182.73 0.89 24.80 7.42

GHS indef/turon m 189.92 0.91 24.70 7.60

TSOPF/TSOPF FS b300 c2 56.81 4.39 27.00 14.10

TSOPF/TSOPF FS b300 c3 84.41 6.58 40.50 21.40

GHS indef/ncvxqp5 62.50 0.24 22.90 24.30

GHS indef/ncvxqp3 75.00 0.27 39.30 63.70

GHS indef/ncvxqp7 87.50 0.31 51.00 101.00

Table A.3: Hard Indefinite. Statistics as reported by the analyse phase of SSIDS with default settings,

using matching-based ordering, assuming no delayed pivots.
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