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Callum Iddon

March 2017

Abstract

Two benchmarks (HPL and IMB) are run across SCARF, LOTUS and the SCD Cloud to measure
the effect of bandwidth, latency, distributing cores between nodes and using newer hardware on parallel
application performance. A common ranking between different methods of communication is shown in
the results of all benchmarks (SHM-1, SHM-2, IBV then TCP). Whilst using newer processors is found
to have the greatest impact on parallel application performance, both SCARF and LOTUS are shown
to be able to perform as effectively between cores on separate hosts as on an individual host - despite
lower bandwidth and higher latency. The Cloud performs similarly to the oldest SCARF host (scarf10)
but with a higher TCP bandwidth.
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1 Introduction

1.1 Background
The Scientific Computing Department (SCD) provides a number of compute resources. Across the different

infrastructures, the varying CPUs, interconnect bandwidth and latencies have an unquantified effect on
parallel applications. Also unmeasured is the effect of choices within each service, such as using newer
hardware or distributing cores between nodes.

1.2 In This Project
Comparison metrics are gathered for parallel application performance across three SCD services - SCARF,

LOTUS and the SCD Cloud. The aim is to provide results that can inform deployment decisions for parallel
applications using the Message Passing Interface (MPI) libraries going forward.

Two specific metrics are recorded - bandwidth and latency - using the IMB PingPong benchmark. Appli-
cation performance is then measured more generally according to the results from the HPL TOP500 test.
On SCARF and LOTUS, these are taken on cores on the same node, spanning different nodes, and on
different hardware versions. On the Cloud, they are taken from one VM and across two VMs (on different
hypervisors).

1.3 Report Layout
This report starts by introducing the benchmarks and explaining how they were set up. Detailed methods

for running them are set out to allow reproducibility. The results are analysed, first to explain small
adaptions to the method and then for comparison between different options. In the appendices, there are
example outputs from each of the benchmarks and the data in tabulated form.

2 Methods

2.1 Overview
There are two benchmarking applications to run on each system.

IMB PingPong uses MPI to send messages of increasing size both ways between two processes [Intel 2016].
Latency is the average time for the message of zero size to cross one way between the two processes.
Bandwidth is the throughput at different message sizes. The only dependency to run this benchmark
is an MPI library.

HPL TOP500 solves a large matrix problem over distributed compute and memory resources [Petitet et
al. 2016]. The time taken to solve the problem gives a measure of parallel application performance in
FLOPS (floating point operations per second). The software relies on a linear algebra library as well
as an MPI library.
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For all infrastructures, running a benchmark between cores on the same host is referred to as shared host
memory (SHM). Running a job between hosts is normally over Ethernet connection (TCP) but on SCARF
there is the additional option of running over Infiniband (IBV). In general benchmarks are repeated five
times for each setup to ensure that there is some consistency amongst results. On the Cloud, there is no
exclusive option so other users’ activity on the hypervisors can only be accounted for by averaging over more
repeats (30).

2.2 Installation
On the Cloud, the benchmarks need to be installed from scratch, alongside any dependencies. On SCARF

and LOTUS, the MPI and linear algebra libraries are pre installed alongside HPL but IMB must be compiled
from source and linked to the existing MPI libraries.

2.2.1 Cloud

An SL6 no GUI virtual machine was used. The MPI library was OpenMPI and the linear algebra library
was OpenBLAS (both from yum). A makefile was created to link to these libraries (Appendix A).

Code 1: Installing IMB and HPL on a Cloud VM

# Install IMB PingPong
sudo yum -y install openmpi-devel # install OpenMPI
wget https://software.intel.com/sites/default/files/managed/a3/53/IMB_2017.tgz
tar -xvf IMB_2017.tgz
source /etc/profile.d/modules.sh # enable environment-modules
module load openmpi-1.10-x86_64 # load the MPI module
cd imb/imb/src
make CC=mpicc # compile
cd -

# Install HPL
wget http://www.netlib.org/benchmark/hpl/hpl-2.2.tar.gz
tar -xvf hpl-2.2.tar.gz
sudo yum -y install openblas-devel openblas-static # install OpenBLAS
cd hpl-2.2/
# Copy in the makefile from the appendix now.
make arch=Linux_SL6_Intel64 # compile

To run MPI between VMs on the Cloud (without a scheduler), SSH keys must be set up. There is no
need for encryption provided the keys never leave either machine.

Code 2: Setting up SSH keys between Cloud VMs

# On both VMs
sudo chown $USER:root ~/.ssh # Cloud VMs start with root:root, allow yourself access

# On one
ssh-keygen -t rsa # create key pair
cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys # allow access to key
scp ~/.ssh/* <other VM hostname>:~/.ssh/ # copy this setup to the other machine
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2.2.2 SCARF and LOTUS

On both LOTUS and SCARF, the IMB benchmark was compiled from source.

Code 3: Installing IMB on SCARF and LOTUS

# Install IMB PingPong
wget https://software.intel.com/sites/default/files/managed/a3/53/IMB_2017.tgz
tar -xvf IMB_2017.tgz
cd imb/imb/src
gmake CC=mpicc

On LOTUS, the HPL binary is located at /apps/src/hpl/hpl-2.2/bin/Linux_Intel64/xhpl which is
installed using the Intel MKL and Platform MPI libraries.

On SCARF, HPL is optimised for each processor at /apps/procspec/hpl/2.2/bin/Linux_Intel64/xhpl,
to avoid this advantage, the scarf10 (least optimised) version was used for all processors by copying this binary
to a shared location between processors (see section 2.4.2).

2.3 Running IMB
In general, the benchmarks are submitted by shell scripts that take care of configuration parameters,

platform specific parameters (eg LSF flags) and running repeats of the benchmarks. On the systems where
there is a job scheduler (LOTUS and SCARF), these scripts submit the jobs where the benchmarks are
actually run. On the Cloud, a cronjob is setup to run the script at regular intervals.

2.3.1 Configuration

IMB is configured by command line parameters.

-iter n ensures that n repeats of each message size are taken and averaged. 1000 was chosen because it was
the largest number of repeats that maintained a reasonable time to run on the slowest infrastructure
(Cloud, between two VMs). It was also the default for smaller message sizes.

-time t sets a maximum time t(s) for all repeats of a message size. 200 was chosen because it is significantly
high such that this maximum was never reached.

-msglog a:b sets a minimum and maximum (2a, 2b) for the message sizes.

-iter_policy sets the behaviour with large message sizes and whether to reduce the number of repeats.
Given that the number of repeats is feasible, setting this to off means that the same number of repeats
are tested for each message size.

2.3.2 SCARF

1. Create a top directory and cd into it (e.g. /home/cseg/scarf565/SCARF_IMB).

2. Install IMB inside this directory as in Code 1. This should create imb/imb/src/IMB-MPI1.

3. Submit jobs to run the benchmark for five repeats across each host group. For each host group, run
the benchmark between hosts using TCP, using Infiniband and on the same host. Use Code 4 from
inside the top directory.

#! /bin/bash
hostgroups=(scarf10 scarf11 scarf12 scarf13 scarf14 scarf15 scarf16)
# Make the outputs directory if it doesn't exist
mkdir -p $PWD/outputs
for specificHost in ${hostgroups[@]}; do # For each hostgroup
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for perTile in 1 2; do # Span one (2) node or two (1)
if [ $perTile -eq 1 ]; then

# If going between nodes, specify different interconnect flags
pFlagOptions=(-TCP -IBV)

else
# If not, there are no interconnect flags
pFlagOptions=("")

fi
for pFlag in "${pFlagOptions[@]}"; do # Step through interconnect flags

for repeat in 1 2 3 4 5; do # Repeat the benchmark

bsub << %EndOfInput%
#BSUB -x
#BSUB -n 2
#BSUB -R "span[ptile=$perTile]"
#BSUB -J PingPong
#BSUB -o $PWD/outputs/%J.out
#BSUB -e $PWD/outputs/%J.err
#BSUB -W 0:45
#BSUB -m "$specificHost"
mpirun -lsf -prot $pFlag $PWD/imb/imb/src/IMB-MPI1 -iter 1000 -time 200 -msglog

0:24 -iter_policy off PingPong↪→

%EndOfInput%

done
done

done
done

Code 4: Submitting IMB to SCARF

2.3.3 LOTUS

The method for running IMB on LOTUS is similar but there is no Infiniband available and there is a different
mpirun command.

1. Create a top directory and cd into it (e.g. /home/users/ciddon/JASMIN_IMB).

2. Install IMB inside this directory as in Code 1. This should create imb/imb/src/IMB-MPI1.

3. Submit jobs to run the benchmark for 5 repeats across each host group. For each host group, run the
benchmark between hosts and within the same host. Use Code 5 from inside the top directory.

Code 5: Submitting IMB to LOTUS

#! /bin/bash
hostgroups=(ivybridge512G ivybridge2000G haswell256G ivybridge128G broadwell256G)
# Make the outputs directory if it doesn't exist
mkdir -p $PWD/outputs
for specificHost in ${hostgroups[@]}; do # For each hostgroup

for perTile in 1 2; do # Span one (2) or two (2) nodes
for repeat in 1 2 3 4 5; do # Repeat the benchmark

bsub << %EndOfInput%
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#BSUB -x
#BSUB -q par-multi
#BSUB -n 2
#BSUB -R "span[ptile=$perTile]"
#BSUB -J PingPong
#BSUB -o $PWD/outputs/%J.out
#BSUB -e $PWD/outputs/%J.err
#BSUB -W 0:45
#BSUB -m "$specificHost"
mpirun.lotus -prot $PWD/imb/imb/src/IMB-MPI1 -iter 1000 -time 200 -msglog 0:24

-iter_policy off PingPong↪→

%EndOfInput%

done
done

done

2.3.4 Cloud

Two virtual machines are required to run IMB. The main VM (where the job is initialised from) must
have at least two cores.

Using http://mimic.gridpp.rl.ac.uk/, under Cloud -> Open Nebula, find the VMs and ensure that
they are on different hypervisors (by clicking for more information).

1. Install IMB in the home directory of both VMs and setup SSH as in section 2.2.1.

2. Create a top directory on the main VM eg /home/tan49775/Cloud_IMB.

3. Create a script (Code 6) in this top directory which will run a repeat of the benchmark each time
it is called, incrementing a count file to keep track of the number of repeats. The script ensures the
benchmark is run 30 times within the same host and then 30 times between the two VMs. Use a
different HOME_DIR, START_DIR and host address.

Code 6: The script to run IMB once on each call over cron

#! /bin/bash

# Enable the module command
source /etc/profile.d/modules.sh
# Use the module command to set the mpi env
module load openmpi-1.10-x86_64

# Set up some variables
REPEATS_FOR_EACH=30
# Set HOME_DIR and START_DIR to the top directory
HOME_DIR=/home/tan49775 # should contain imb/imb/src.. and Cloud_IMB
START_DIR=$HOME_DIR/Cloud_IMB
COUNT=$START_DIR/count

# Make the output directory if needed
mkdir -p $START_DIR/outputs

num=$(date +"%Y%m%d_%H%M%S")
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outputFile=$START_DIR/outputs/$num.out
errorFile=$START_DIR/outputs/$num.err

# If the count file does not exist then initialise it
if [ ! -s $COUNT ]; then echo "1" > $COUNT; fi

# If done enough repeats of one host and two hosts then exit
if [ $(cat $COUNT) -gt $((2 * $REPEATS_FOR_EACH)) ]; then exit 0; fi

# If done enough repeats for one host then use two hosts
if [ $(cat $COUNT) -gt $REPEATS_FOR_EACH ]; then

echo "#HOSTS=2" > $outputFile
# Edit the two host addresses here as necessary
multiHostFlags="--prefix /usr/lib64/openmpi-1.10/ --map-by node --rank-by node

--host vm275.nubes.stfc.ac.uk,vm15.nubes.stfc.ac.uk"↪→

else # Otherwise only use this host
echo "#HOSTS=1" > $outputFile
multiHostFlags=""

fi

# Run the benchmark
mpirun -np 2 $multiHostFlags $HOME_DIR/imb/imb/src/IMB-MPI1 -iter 1000 -msglog 0:24

-iter_policy off -time 200 PingPong 2> $errorFile >> $outputFile↪→

# Increment the count file
echo $(($(cat $COUNT) + 1)) > $COUNT

4. Setup a crontab to run the script at 20 minute intervals.

05,25,45 * * * * /home/tan49775/Cloud_IMB/run_IMB_Cloud.sh

2.3.5 Interpreting Results

The standard output from IMB is shown in Appendix B. As explained in Section 2.1, latency is recorded
from the first entry in the t[usec] column - where the message size is zero. Bandwidth is recorded from the
Mbytes/sec column. The message sizes 1024B, 8192B and 32768B are focused on to give a range of results.
Additionally, the maximum bandwidth achieved over all message sizes was recorded.

2.4 Running HPL
Similarly to running IMB, shell scripts are used with cron or LSF for each setup to submit the necessary

repeats and apply platform parameters.

2.4.1 Configuration

HPL uses a configuration file to specify the problem size and the computational parameters (how to split
the matrix and what functions to use). On execution, it looks in the working directory and reads from
HPL.dat. The same configuration (Appendix C) was used in all tests so that the results can be compared.

The first parameter is the number of cores to use when running the benchmark. The Cloud has a limit of
5 cores per user (split across as many VMs) which specifies an upper bound. The parameters P and Q should
be approximately equal and P multiplied by Q is the number of processors. To avoid P or Q being 1, 2 was
chosen for both values giving a total of 4 cores. To balance across hosts, measurements were taken with four
cores from the same node and with two cores on each node.
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Some initial tests were done across the infrastructures to choose a value of NB (the block size) that was
reasonably well performing with respect to other values in the default interval [32, 256]. However, care was
taken to avoid tuning this value to a particular system and these initial tests were only to confirm that it
was not a poor choice for any setup. 180 was used.

The main parameter is ’problem size’ (N) which is the side length of the matrix to be solved. According
to [Petitet et al. 2016], the largest size that will fit in memory is recommended. The Cloud limits users to
20GB of memory and each element in the matrix is a double precision float (8 bytes). This means that a
total of 2.5 × 109 elements can be used. Using the recommend 80% figure (to leave room for the OS), this
gives a side length of around 44721. It is also beneficial to have a multiple of NB so 44640 was used.

Provided the same file is used for each test (to an extent) the content of this file is insignificant - it will still
provide a comparison of parallel application performance. Where possible, advice in the ’FAQ’ and ’tuning’
sections of [Petitet et al. 2016] was followed, using default or suggested values to attempt to remain neutral.
Of course, it would be possible to tune this configuration for each setup and achieve some faster speeds but
this would likely be at the expense of other setups and introduce a bias. Any case where there was no default
value given is justified above.

2.4.2 SCARF

1. Create a top directory (e.g. /home/cseg/scarf656/SCARF_HPL) and cd into it.

2. Run bsub -m scarf10 "cp /apps/procspec/hpl/2.2/bin/Linux_Intel64/xhpl ." to copy the
SCARF10 precompiled HPL binary into this directory.

3. Copy in HPL.dat from Appendix C.

4. Submit jobs to run the benchmark for five repeats across each host group. For each host group, run
the benchmark between two hosts using TCP and Infiniband, and on the same host. Use Code 7 from
inside the top directory.

Code 7: Submitting HPL to SCARF

#! /bin/bash
hostgroups=(scarf10 scarf11 scarf12 scarf13 scarf14 scarf15 scarf16)
# Make the outputs directory if it doesn't exist
mkdir -p $PWD/outputs
for specificHost in ${hostgroups[@]}; do # For each hostgroup

for perTile in 2 4; do # Span one (2) node or two (4)
if [ $perTile -eq 2 ]; then

# If going between nodes, specify different interconnect flags
pFlagOptions=(-TCP -IBV)

else
# If not, there are no interconnect flags
pFlagOptions=("")

fi
for pFlag in "${pFlagOptions[@]}"; do # Step through interconnect flags
for repeat in 1 2 3 4 5; do # repeat the benchmark

bsub << %EndOfInput%
#BSUB -x
#BSUB -n 4
#BSUB -R "span[ptile=$perTile]"
#BSUB -J HPL
#BSUB -o $PWD/outputs/%J.out
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#BSUB -e $PWD/outputs/%J.err
#BSUB -W 1:00
#BSUB -m "$specificHost"
module load intel/15.3
module load intel/mkl/11.3.1.150
mpirun -lsf -prot $pFlag $PWD/xhpl
%EndOfInput%

done
done

done
done

2.4.3 LOTUS

HPL requires a linear algebra library to run. On SCARF and LOTUS, this in Intel’s MKL. The environ-
ment for this is set up using the module load command and on SCARF, this is passed to the other processes
using system daemons. On LOTUS, MPI is configured to run over SSH meaning that each new process has
a different environment. For this reason, it is necessary to pass the LD_LIBRARY_PATH environment variable
in the mpirun.lotus command (see Code 8).

1. Create a top directory (e.g. /home/users/ciddon/JASMIN_HPL) and cd into it.

2. Copy in HPL.dat from Appendix C.

3. Submit jobs to run the benchmark for five repeats across each host group. For each host group, run
the benchmark between two hosts and on the same host. Use Code 8 from inside the top directory.

Code 8: Submitting HPL to LOTUS

#! /bin/bash
hostgroups=(ivybridge512G ivybridge2000G haswell256G ivybridge128G broadwell256G)
# Make the outputs directory if it doesn't exist
mkdir -p $PWD/outputs
for specificHost in ${hostgroups[@]}; do # For each hostgroup

for perTile in 2 4; do # Span one (4) or two (2) nodes
for repeat in 1 2 3 4 5; do # Repeat the benchmark

bsub << %EndOfInput%
#BSUB -x
#BSUB -q par-multi
#BSUB -n 4
#BSUB -R "span[ptile=$perTile]"
#BSUB -J HPL
#BSUB -o $PWD/outputs/%J.out
#BSUB -e $PWD/outputs/%J.err
#BSUB -W 1:00
#BSUB -m "$specificHost"
. /etc/profile.modules
module load intel/15.1
module load intel/mkl/11.3.1.150
mpirun.lotus -e LD_LIBRARY_PATH=\$LD_LIBRARY_PATH -prot

/apps/src/hpl/hpl-2.2/bin/Linux_Intel64/xhpl↪→

%EndOfInput%
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done
done

done

2.4.4 Cloud

The Cloud limits total memory per user to 20GB. All this is required for each test so run them over two
VMs (2CPUs and 10GB RAM each) and then install a single VM (4 CPUs and 20GB RAM) to run the
individual tests.

Use http://mimic.gridpp.rl.ac.uk/ (like when running IMB) to check that then VMs are on different
hypervisors.

1. Install HPL in the home direction of both VMs using Code 1

2. Create a top directory under the main VM eg /home/tan49775/Cloud_HPL.

3. Copy in the HPL.dat from Appendix C.

4. Create a script (Code 9) in the top directory which will run a repeat of the benchmark each time it is
called for 30 repeats. Code 9 runs the benchmark over two nodes (see step 7 for how to adapt for one
node). Use different HOME_DIR, START_DIR and host addresses.

Code 9: The script to run HPL over two nodes once on each call by cron

#! /bin/bash

source /etc/profile.d/modules.sh
module load openmpi-1.10-x86_64

REPEATS=30
HOME_DIR=/home/tan49775 # should contain hpl-2.2 and Cloud_HPL
START_DIR=$HOME_DIR/Cloud_HPL
COUNT=$START_DIR/count

# Make the output directory if needed
mkdir -p $START_DIR/outputs
cd $START_DIR

num=$(date +"%Y%m%d_%H%M%S")
outputFile=$START_DIR/outputs/$num.out
errorFile=$START_DIR/outputs/$num.err

# If the count file does not exist then initialise it
if [ ! -s $COUNT ]; then echo "1" > $COUNT; fi

# If done enough repeats then exit
if [ $(cat $COUNT) -gt $REPEATS ]; then exit 0; fi

# Run the benchmark
mpirun -np 4 --prefix /usr/lib64/openmpi-1.10/ --map-by node --rank-by node --host

vm275.nubes.stfc.ac.uk,vm15.nubes.stfc.ac.uk
$HOME_DIR/hpl-2.2/bin/Linux_SL6_Intel64/xhpl 2> $errorFile >> $outputFile

↪→

↪→
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# Increment the count file
echo $(($(cat $COUNT) + 1)) > $COUNT

5. Setup a crontab to run the script at 50 minute intervals.

50 * * * * /home/tan49775/Cloud_HPL/run_HPL_Cloud_2Nodes.sh

6. Copy the output files off the machine and install a new single VM with 4CPUs and 20GB of RAM.

7. Repeat steps 1 to 5 above, removing the flags causing it to run over two nodes.

--prefix /usr/lib64/openmpi-1.10/ --map-by node --rank-by node --host
vm275.nubes.stfc.ac.uk,vm15.nubes.stfc.ac.uk↪→

2.4.5 Interpreting Results

Appendix D contains an example output from one run of HPL. The result of this benchmark is the final
value for ’Gflops’ (3.297e+01 in this case).

3 Results
The data was parsed from the raw output files. This section presents the results and explains any adaptions

to the method after the initial results.

Note that some LOTUS benchmarks were submitted to LSF differently. For all jobs on ’ivybridge2000G’
and three HPL runs on ’ivybridge512G’ over two hosts, the jobs were waiting for weeks without being run.
Instead, a host reservation was used - removing the -m parameter and adding a -U . The different bsub
parameters should have had no effect on the results as they only define how the job is submitted - all
benchmarks were run exclusively.

3.1 IMB
3.1.1 SHM first look and adaptions to method

After looking at the results, SHM was further divided by CPU mapping where possible (SCARF and
LOTUS).

Figure 1 shows the initial results for IMB over SCARF and LOTUS using SHM. Each colour represents
a different host group and each line an individual repeat. For each host group, there are two distinct paths
rather than one. For example, scarf11 has a bandwidth of roughly 8300MB s−1 for two repeats but roughly
5200MB s−1 for the other three at 218B. Occasionally (as seen in scarf14 at 217B) a repeat will begin on
the higher path and drop down to the lower. A likely explanation is the multiple physical CPUs included in
each host. The allocation is not set, allowing an SHM job to run with two processes on one CPU or with
one process on each. It may be possible for a job to move from one CPU to two CPUs or vice versa which
would lead to the switching behavior in Figure 1.
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(a) SCARF (b) LOTUS

Figure 1: Before specifying CPUs

To eliminate this variation and to test if this is actually the cause, the tests were repeated over SHM for
SCARF and LOTUS, specifically mapping to one or two CPUs. For one CPU, numactl --cpunodebind=0 --

was passed to mpirun and -cpu_bind=MAP_CPU:0,15 for two. Figure 2 shows the new results. The dis-
tinct paths in Figure 1 are grouped by the CPU mapping and there is no longer a switch from one path to
another.

(a) SCARF (b) LOTUS

Figure 2: After specifying CPU mapping (given after the host group).

On the Cloud (Figure 3) there is also a potential split between using one or two CPUs; the 11:25 and
13:05 runs on 2017-03-22 are considerably slower than the other runs. Unlike SCARF and LOTUS, there is
no way to specify CPU mapping so this can’t be tested further. The larger number of repeats should ensure
results representative of normal Cloud usage.
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Figure 3: Cloud - unable to specify CPU mapping

3.1.2 Comparison of Latency

The results are compared by method of communication and then by improvements in hardware. The data
(Appendix E) is presented as a log plot in Figure 4.

Figure 4: Comparison of latencies over different infrastructures and interconnects. The mean of the repeats
for each combination is shown along with error bars for the range of repeats. After the adaptions in Section
3.1.1, SHM is split into SHM-1 and SHM-2 by the number of CPUs used. On the Cloud, there is no difference
between these as the CPU mapping could not be specified and is unknown.

Latency is mainly affected by the method of communication. Even ignoring the impact of host group,
there is a clear ranking: SHM-1, SHM-2, IBV then TCP. As the processes span more interfaces - between
nodes rather than within nodes - latency rises. SHM-1 has the lowest latency, perhaps taking advantage of
a shared L3 cache and RAM - allowing each process to directly access the MPI shared buffer. With SHM-2,
the distinct CPUs have separate L3 caches and rely on ’QuickPath Interconnect’ to access memory allocated
to the other processor [Intel 2009]. Establishing the buffer over this additional protocol will add an extra
overhead, explaining the greater latency. Similarly, inter-node communication over TCP/IBV adds another
layer of protocols and hardware (e.g. switches, network cards), increasing the time to establish a connection.
On SCARF (where direct comparison is possible) IBV is lower latency than TCP. This is also the case when
comparing with LOTUS; SCARF’s highest average latency for a host group over IBV (scarf13 at 6.55 µs) is
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smaller than LOTUS’s lowest over TCP (broadwell256G at 7.17µs).

The effect of newer hardware is less clear. Over TCP, SCARF latencies broadly reduce as hardware
improves from scarf10 to scarf16. Certainly scarf15’s 9.70 µs is better than 89.49 µs for scarf10. While
there was a move from 1Gb to 10Gb Ethernet between scarf14 and scarf15, this can only be part of the
explanation because scarf13 and scarf14 also show significantly lower latency than scarf10 with the same
Ethernet hardware. The latency results for LOTUS do not depend as significantly on host group with
all performing similarly although the newer Broadwell host group (7.17 µs) is lower than the Haswell and
Ivybridge host groups (11.05, 11.99 and 10.89 µs respectively).

Despite improvements in hardware, the latency results for IBV and SHM remain mainly constant. Most
IBV results are around 2 µs with scarf10 (4.38 µs) slightly higher. This is perhaps due to older DDR Infiniband
(although the similar upgrade from QDR to FDR after scarf14 did not have a noticeable effect). The results
show better hardware having minimal effect on latency inside the node with all SCARF/LOTUS host groups
at roughly 0.15 µs for SHM-1 and 0.32µs for SHM-2.

The scarf13 IBV results are significantly higher than the others. To check for an error, the tests were
additionally repeated ten times to check a wider variety of hosts but the new results agreed (mean latency
6.36 µs).

The Cloud manages to compete with some of the older SCARF hosts (10, 11, 12) over TCP. Without
knowing the CPU mapping, it has similar results to the other systems (0.31 µs) between two CPUs.

3.1.3 Comparison of Bandwidth

The results for bandwidth are compared by method of communication and hardware. They are presented
for three set message sizes and the maximum in Figure 5 (data in Appendix F). As the message size increases,
the bandwidth increases because the constant setup time accounts for a smaller proportion of the total time
taken.

Across these message sizes, the ranking is mainly the same as latency: SHM-1, SHM-2, IBV and then
TCP. The reason is probably similar; the fastest data rates are achieved at close proximity to the CPU where
data can be accessed over many lanes in parallel.

The benefit of improvements in hardware is clearer here than with latency. The TCP results for 10Gb
Ethernet (scarf15, scarf16 and all of LOTUS) have roughly ten times the throughput as those with only
1Gb Ethernet. At max bandwidth, they both approach their specification (1250MB s−1 / 125MB s−1),
indicating that they are a bottleneck. Over IBV, DDR on scarf10 is consistently the slowest. The benefit
of FDR (used after scarf14) over QDR is clear when looking at the max bandwidth achieved (FDR greater
than 5500MB s−1 with QDR less than 3500MB s−1).

Across all message sizes, the SHM values are similar regardless of host group, suggesting that the newer
hardware has not improved bandwidth for intra-node communication.

On scarf15/16, the max bandwidth results place IBV and SHM-2 slightly faster than SHM-1. For example,
scarf15 had 5145.80MB s−1, 5876.91MB s−1 and 5670.07MB s−1 for SHM-1, SHM-2, and IBV respectively.
Comparing with the similar haswell256G hosts, it is SHM-1 (7683.80MB s−1) which stands out as the outlier.
The explanation for this is an open question - the range of values over the repeats was small (51.39MB s−1

for scarf15) and at least three different hosts were used suggesting that there is an underlying cause of this
rather than a single error.
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The Cloud outperforms the 1Gb Ethernet but cannot compete with 10Gb Ethernet or IBV. Ignoring scarf14
for the 1024B messages (where it came close), the Cloud had a significantly higher bandwidth than the 1Gb
Ethernet hosts. For 32 768B messages, 184.26MB s−1 is over three times as fast scarf14’s 56.77MB s−1 but
still slower than 311.79MB s−1 (the lowest result accross IBV and 10Gb Ethernet).

(a) 1024B messages

(b) 8192B messages
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(c) 32768B messages

(d) Max bandwidth over all message sizes

Figure 5: Comparison of bandwidths between host groups and protocols at different message sizes. Each bar
shows the mean over the repeats with the range bars showing the range of repeats.

3.2 HPL
The results for the HPL benchmarks are compared for the same choices. They are displayed in Figure 6

from the data in Appendix G.

As with latency and bandwidth, the same ranking broadly applies for application performance: SHM,
IBV then TCP. Although the results are much closer, TCP is 4% lower than SHM on average while IBV is
0.2%. TCP performs much better on LOTUS than SCARF where results are comparable to SHM on all but
the niche ivybridge2000G. The slightly lower FLOPS for inter-host communication is likely due to TCP and
IBV’s lower bandwidth and higher latency relative to SHM. Causing communications to take longer, this
would have stalled the benchmark while it was waiting to transfer matrix elements.
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Figure 6: Comparison of the application performance for different options as measured by HPL. The range
over the repeats was small so after the initial IMB results, the experiment was not repeated splitting SHM-1
and SHM-2. The units are GFLOPS which refer to billion floating point operations per second.

Despite the interconnect ranking, Figure 6 shows that to maximise application performance, choosing
a faster CPU (e.g. Broadwell rather than Haswell) should be prioritised over interconnect as every TCP
result is greater than the SHM results for the previous generations. There is a greater than linear increase
in performance as the SCARF hardware iterates from 2010 to 2015/16 (roughly 35 to 130 GFLOPS). The
results for LOTUS’s Ivybridge and Haswell agree with their SCARF equivalents (scarf14 and scarf15/16
respectively) and the Broadwell host group achieves the highest results at over 185 GFLOPS for both TCP
and SHM.

Although the results suggest that the Broadwell host group performed better over TCP than SHM, it is
possible that the five SHM repeats were under representative. This could be the result of an external factor,
perhaps interference from a busy host operating system. Given that the ranges do overlap, this is not a large
cause for concern.

The Cloud was the worst performing in this test. With 33.01 GFLOPS over SHM, it was over 2 behind the
next host group. As the other results have shown, this benchmark depends largely on CPU. One reason could
be the virtualisation of CPUs which adds an additional overhead that is likely to slow the application down.
Although the cloud allocates two virtual CPUs to a physical CPU, this would only throttle the application
if more than half of the allocated virtual CPUs were active at a given time and there was competition for
execution. From looking at monitoring, for at least some of the tests, there was not a high load on the
hypervisor. Given that the range of results for SHM is low, I would suggest that this wasn’t an issue for
SHM. However, coupled with network interference from other users, this could be a reason for the large range
of results for the Cloud over TCP.

4 Conclusion
Two benchmarks (IMB and HPL) were run over different options for SCARF, LOTUS and the Cloud to

measure latency, bandwidth and parallel application performance. Both benchmarks were run between cores
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on the same host (initially over SHM) and between cores on separate hosts (using TCP and IBV on SCARF).
The IMB results for SHM were later split into SHM-1 and SHM-2 spanning either one or two CPUs.

The results for all three benchmarks established the expected ranking between the methods of communi-
cation: SHM-1, SHM-2, IBV then TCP. This is in order of increasing latency or decreasing bandwidth and
application performance. The difference in latency was orders of magnitude but particularly for larger mes-
sage sizes and the latest version, IBV was comparable to SHM for bandwidth and application performance.
Although the bandwidth for 10Gb Ethernet was reasonably far from SHM, it was also competitive when
measuring application performance.

The impact of newer hardware on latency and bandwidth was varied. The move from 1Gb Ethernet
to 10Gb Ethernet on SCARF reduced latency and increased bandwidth, especially on large message sizes.
Similarly the move from DDR through QDR to FDR over IBV increased bandwidth. However this change
didn’t have a clear impact on latency. Also, newer processors did not seem to have a significant impact on
latency or bandwidth over SHM-1 or SHM-2.

For application performance, newer processors were the key factor determining the results. However, it
was notable that the inter-node communication (TCP on LOTUS and IBV on SCARF) achieved results
similar to SHM which is promising for large scale parallel applications.

For bandwidth and latency, the Cloud performed close to SCARF and LOTUS over SHM (although closer
to SHM-2 than SHM-1 without a CPU maping). Over TCP, it was competitive against SCARF’s 1Gb
Ethernet but was far behind TCP on LOTUS and IBV on SCARF. The parallel application performance
was the lowest of all host groups, perhaps due to the virtualised CPUs.

Sources
Intel (2009). An Introduction to the Intel Quick Path Interconnect. url: https://www.intel.com/content/

dam/doc/white-paper/quick-path-interconnect-introduction-paper.pdf.
— (2016). PingPong, PingPongSpecificSource, PingPongAnySource. url: https://software.intel.com/

en-us/node/561902.
Petitet, Antoine et al. (2016). HPL - A Portable Implementation of the High-Performance Linpack Bench-

mark for Distributed-Memory Computers. url: http://www.netlib.org/benchmark/hpl/.
Iddon, Callum (2017). The Repository for this Project. url: https://github.com/cal-id/SCD-Benchmark.
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Appendices

A HPL SL6 Makefile
The comments are removed but the format follows the example in the hpl-2.2.tar archive

hpl-2.2/setup/Make.Linux_Intel64. It should be saved as hpl-2.2/Make.Linux_SL6_Intel64.

Code 10: The HPL SL6 Makefile

SHELL = /bin/sh
CD = cd
CP = cp
LN_S = ln -fs
MKDIR = mkdir -p
RM = /bin/rm -f
TOUCH = touch
ARCH = Linux_SL6_Intel64
TOPdir = $(HOME)/hpl-2.2
INCdir = $(TOPdir)/include
BINdir = $(TOPdir)/bin/$(ARCH)
LIBdir = $(TOPdir)/lib/$(ARCH)
HPLlib = $(LIBdir)/libhpl.a
MPdir = /usr
MPinc = -I$(MPdir)/include/openmpi-1.10-x86_64
MPlib = $(MPdir)/lib64/openmpi-1.10/lib/libmpi.so
LAinc = /usr/include/openblas/
LAlib = /usr/lib64/libopenblas.so
F2CDEFS = -DAdd__ -DF77_INTEGER=int -DStringSunStyle
HPL_INCLUDES = -I$(INCdir) -I$(INCdir)/$(ARCH) -I$(LAinc) $(MPinc)
HPL_LIBS = $(HPLlib) $(LAlib) $(MPlib)
HPL_OPTS = -DHPL_DETAILED_TIMING -DHPL_PROGRESS_REPORT
HPL_DEFS = $(F2CDEFS) $(HPL_OPTS) $(HPL_INCLUDES)
CC = mpicc
CCNOOPT = $(HPL_DEFS)
OMP_DEFS = -openmp
CCFLAGS = $(HPL_DEFS) -O3 -w -z noexecstack -z relro -z now -Wall
LINKER = $(CC)
LINKFLAGS = $(CCFLAGS) $(OMP_DEFS) -mt_mpi
ARCHIVER = ar
ARFLAGS = r
RANLIB = echo
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B IMB Example Output

#---------------------------------------------------
# Benchmarking PingPong
# #processes = 2
#---------------------------------------------------

#bytes #repetitions t[usec] Mbytes/sec
0 1000 0.24 0.00
1 1000 0.31 3.03
2 1000 0.33 5.73
4 1000 0.32 12.02
8 1000 0.33 23.29

16 1000 0.36 42.87
32 1000 0.32 95.24
64 1000 0.34 177.65

128 1000 0.38 322.93
256 1000 0.47 524.46
512 1000 0.57 853.69

1024 1000 0.73 1334.20
2048 1000 1.02 1916.71
4096 1000 2.00 1957.00
8192 1000 2.97 2629.12

16384 1000 5.06 3086.37
32768 1000 8.39 3723.58
65536 1000 13.45 4648.40

131072 1000 23.42 5338.11
262144 1000 40.61 6155.58
524288 1000 72.47 6899.88

1048576 1000 134.10 7456.95
2097152 1000 262.16 7628.87
4194304 1000 614.76 6506.58
8388608 1000 1714.74 4665.43

16777216 1000 3617.98 4422.35
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C HPL Configuration File

The HPL Configuration File for comparing LOTUS, SCARF
and the Cloud in SCD.
not_used output file name (if any)
6 device out (6=stdout,7=stderr,file)
1 # of problems sizes (N)
44640 Ns
1 # of NBs
180 NBs
0 PMAP process mapping (0=Row-,1=Column-major)
1 # of process grids (P x Q)
2 Ps
2 Qs
16.0 threshold
1 # of panel fact
1 PFACTs (0=left, 1=Crout, 2=Right)
1 # of recursive stopping criterium
4 NBMINs (>= 1)
1 # of panels in recursion
2 NDIVs
1 # of recursive panel fact.
2 RFACTs (0=left, 1=Crout, 2=Right)
1 # of broadcast
1 BCASTs (0=1rg,1=1rM,2=2rg,3=2rM,4=Lng,5=LnM)
1 # of lookahead depth
1 DEPTHs (>=0)
2 SWAP (0=bin-exch,1=long,2=mix)
180 swapping threshold
0 L1 in (0=transposed,1=no-transposed) form
0 U in (0=transposed,1=no-transposed) form
1 Equilibration (0=no,1=yes)
8 memory alignment in double (> 0)
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D HPL Example Output

================================================================================
HPLinpack 2.2 -- High-Performance Linpack benchmark -- February 24, 2016
Written by A. Petitet and R. Clint Whaley, Innovative Computing Laboratory, UTK
Modified by Piotr Luszczek, Innovative Computing Laboratory, UTK
Modified by Julien Langou, University of Colorado Denver
================================================================================
...
--------------------------------------------------------------------------------

- The matrix A is randomly generated for each test.
- The following scaled residual check will be computed:

||Ax-b||_oo / ( eps * ( || x ||_oo * || A ||_oo + || b ||_oo ) * N )
- The relative machine precision (eps) is taken to be 1.110223e-16
- Computational tests pass if scaled residuals are less than 16.0

Column=000000180 Fraction= 0.4% Gflops=5.839e+03
Column=000000360 Fraction= 0.8% Gflops=6.953e+01
Column=000000540 Fraction= 1.2% Gflops=5.027e+01
...
Column=000044460 Fraction=99.6% Gflops=3.297e+01
================================================================================
T/V N NB P Q Time Gflops
--------------------------------------------------------------------------------
WR11R2C4 44640 180 2 2 1799.04 3.297e+01
HPL_pdgesv() start time Sun Mar 26 23:50:20 2017

HPL_pdgesv() end time Mon Mar 27 00:20:19 2017

--VVV--VVV--VVV--VVV--VVV--VVV--VVV--VVV--VVV--VVV--VVV--VVV--VVV--VVV--VVV-
Max aggregated wall time rfact . . . : 6.76
+ Max aggregated wall time pfact . . : 1.22
+ Max aggregated wall time mxswp . . : 0.62
Max aggregated wall time update . . : 1792.06
+ Max aggregated wall time laswp . . : 49.64
Max aggregated wall time up tr sv . : 0.36
--------------------------------------------------------------------------------
||Ax-b||_oo/(eps*(||A||_oo*||x||_oo+||b||_oo)*N)= 0.0006845 ...... PASSED
================================================================================

Finished 1 tests with the following results:
1 tests completed and passed residual checks,
0 tests completed and failed residual checks,
0 tests skipped because of illegal input values.

--------------------------------------------------------------------------------

End of Tests.
================================================================================
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E Latency Data

Table 1: The mean latency over all repeats, split by host group as shown in Figure 4

Host group Mean latency / µs
SHM-1 SHM-2 TCP IBV

Cloud 0.31 54.74 n/a
scarf10 0.16 0.32 89.49 4.38
scarf11 0.12 0.24 77.21 1.83
scarf12 0.11 0.23 83.53 1.71
scarf13 0.16 0.31 35.22 6.55
scarf14 0.13 0.32 26.93 2.22
scarf15 0.21 0.34 9.70 2.02
scarf16 0.22 0.34 16.44 1.47

broadwell256G 0.14 0.30 7.17 n/a
haswell256G 0.19 0.37 11.05 n/a
ivybridge128G 0.13 0.32 11.99 n/a
ivybridge2000G 0.16 0.39 15.90 n/a
ivybridge512G 0.13 0.40 10.89 n/a

F Bandwidth Data
The following data is for the four charts in Figure 5.

Table 2: The mean bandwidth for the 1024B messages split by host group

Host group Mean bandwidth of 1024B messages / MBs−1

SHM-1 SHM-2 TCP IBV
Cloud 1086.01 15.58 n/a
scarf10 2035.05 1132.61 8.90 109.43
scarf11 2443.99 1318.35 9.63 225.26
scarf12 2694.70 1355.99 9.30 234.97
scarf13 1739.76 995.17 16.31 123.09
scarf14 2103.48 1058.89 17.76 154.32
scarf15 1659.08 927.46 83.44 243.07
scarf16 1644.23 942.36 53.18 278.32

broadwell256G 2547.62 1263.69 102.12 n/a
haswell256G 1724.22 975.50 73.79 n/a
ivybridge128G 2121.81 1127.32 60.85 n/a
ivybridge2000G 1695.40 775.68 44.79 n/a
ivybridge512G 2065.02 1167.25 69.32 n/a
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Table 3: The mean bandwidth for the 8192B messages split by host group

Host group Mean bandwidth of 8192B messages / MBs−1

SHM-1 SHM-2 TCP IBV
Cloud 2331.78 70.82 n/a
scarf10 3786.75 2269.98 39.92 468.49
scarf11 4266.71 2559.63 45.96 913.84
scarf12 4399.96 2601.34 45.63 935.66
scarf13 3153.47 1891.89 32.81 579.11
scarf14 3735.09 2005.55 33.34 822.42
scarf15 2513.02 2563.46 318.38 988.26
scarf16 2566.26 2568.84 233.96 1122.51

broadwell256G 4615.70 2204.37 352.73 n/a
haswell256G 3248.41 1752.09 289.13 n/a
ivybridge128G 3794.90 2106.11 235.51 n/a
ivybridge2000G 3479.32 1514.62 188.94 n/a
ivybridge512G 3785.00 1983.11 295.25 n/a

Table 4: The mean bandwidth for the 32768B messages split by host group

Host group Mean bandwidth of 32768B messages/ MBs−1

SHM-1 SHM-2 TCP IBV
Cloud 3164.26 184.26 n/a
scarf10 5432.64 3478.14 34.99 654.38
scarf11 6071.52 3879.78 48.05 1699.70
scarf12 6503.35 3952.47 40.03 1743.98
scarf13 4855.00 2841.63 55.67 747.12
scarf14 5775.77 2931.54 56.77 1796.93
scarf15 3486.68 3905.40 463.96 2308.61
scarf16 3473.62 3881.20 342.79 2702.85

broadwell256G 7150.79 3160.15 502.72 n/a
haswell256G 4872.27 2633.92 409.64 n/a
ivybridge128G 6045.88 3041.11 371.36 n/a
ivybridge2000G 5605.09 1968.71 311.79 n/a
ivybridge512G 6033.94 2946.58 429.37 n/a

Table 5: The mean of the max bandwidth over all message sizes for each host group

Host group Mean of max bandwidths / MBs−1

SHM-1 SHM-2 TCP IBV
Cloud 6504.27 456.42 n/a
scarf10 7419.95 5048.19 101.54 1270.66
scarf11 8877.11 6974.27 103.09 3215.99
scarf12 9121.70 5787.32 102.91 3207.53
scarf13 7504.84 3927.28 110.51 2940.26
scarf14 9153.45 3973.65 111.81 3267.56
scarf15 5145.80 5876.91 825.88 5670.07
scarf16 5140.57 5905.49 934.16 5975.28

broadwell256G 11468.01 5920.18 1174.91 n/a
haswell256G 7683.80 5006.57 1171.09 n/a
ivybridge128G 9115.23 4299.59 1172.70 n/a
ivybridge2000G 7808.32 2417.75 1163.62 n/a
ivybridge512G 9082.18 4167.02 1172.76 n/a
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G HPL Results

Table 6: The application performance as measured by HPL for the different options

Host group Application Performance / GFLOPS
SHM TCP IBV

Cloud 33.01 29.66 n/a
scarf10 35.62 34.07 35.42
scarf11 41.31 39.37 41.14
scarf12 45.06 42.79 44.94
scarf13 64.09 59.77 63.77
scarf14 75.64 70.10 75.98
scarf15 132.06 124.66 131.66
scarf16 131.64 125.24 131.60

broadwell256G 185.32 187.62 n/a
haswell256G 130.50 127.54 n/a
ivybridge128G 73.98 74.72 n/a
ivybridge2000G 72.57 69.81 n/a
ivybridge512G 74.96 74.61 n/a
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