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Quantum Field Theory

Christoph Englert1

These notes are a write-up of lectures given at the RAL school for High Energy
Physicists, which took place at Warwick in 2014. The aim is to introduce the
canonical quantisation approach to QFT, and derive the Feynman rules for a
scalar field.

1 Introduction

Quantum Field Theory is a highly important cornerstone of modern physics. It underlies, for ex-
ample, the description of elementary particles i.e. the Standard Model of particle physics is a QFT.
There is currently no observational evidence to suggest that QFT is insufficient in describing particle
behaviour, and indeed many theories for beyond the Standard Model physics (e.g. supersymmetry,
extra dimensions) are QFTs. There are some theoretical reasons, however, for believing that QFT
will not work at energies above the Planck scale, at which gravity becomes important. Aside from
particle physics, QFT is also widely used in the description of condensed matter systems, and there
has been a fruitful interplay between the fields of condensed matter and high energy physics.

We will see that the need for QFT arises when one tries to unify special relativity and quan-
tum mechanics, which explains why theories of use in high energy particle physics are quantum
field theories. Historically, Quantum Electrodynamics (QED) emerged as the prototype of modern
QFT’s. It was developed in the late 1940s and early 1950s chiefly by Feynman, Schwinger and
Tomonaga, and has the distinction of being the most accurately verified theory of all time: the
anomalous magnetic dipole moment of the electron predicted by QED agrees with experiment with
a stunning accuracy of one part in 1010! Since then, QED has been understood as forming part of
a larger theory, the Standard Model of particle physics, which also describes the weak and strong
nuclear forces. As you will learn at this school, electromagnetism and the weak interaction can
be unified into a single “electroweak” theory, and the theory of the strong force is described by
Quantum Chromodynamics (QCD). QCD has been verified in a wide range of contexts, albeit not
as accurately as QED (due to the fact that the QED force is much weaker, allowing more accurate
calculations to be carried out).

As is clear from the above discussion, QFT is a type of theory, rather than a particular theory.
In this course, our aim is to introduce what a QFT is, and how to derive scattering amplitudes in
perturbation theory (in the form of Feynman rules). For this purpose, it is sufficient to consider the
simple example of a single, real scalar field. More physically relevant examples will be dealt with

1SUPA, School of Physics and Astronomy, University of Glasgow.

Email: christoph.englert@glasgow.ac.uk
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in the other courses. Throughout, we will follow the so-called canonical quantisation approach to
QFT, rather than the path integral approach. Although the latter approach is more elegant, it is
less easily presented in such a short course.

The structure of these notes is as follows. In the rest of the introduction, we review those aspects
of classical and quantum mechanics which are relevant in discussing QFT. In particular, we go
over the Lagrangian formalism in point particle mechanics, and see how this can also be used to
describe classical fields. We then look at the quantum mechanics of non-relativistic point particles,
and recall the properties of the quantum harmonic oscillator, which will be useful in what follows.
We then briefly show how attempts to construct a relativistic analogue of the Schödinger equation
lead to inconsistencies. Next, we discuss classical field theory, deriving the equations of motion that
a relativistic scalar field theory has to satisfy, and examining the relationship between symmetries
and conservation laws. We then discuss the quantum theory of free fields, and interpret the resulting
theory in terms of particles, before showing how to describe interactions via the S-matrix and its
relation to Green’s functions. Finally, we describe how to obtain explicit results for scattering
amplitudes using perturbation theory, which leads (via Wick’s theorem) to Feynman diagrams.

1.1 Classical Mechanics

Let us begin this little review by considering the simplest possible system in classical mechanics,
a single point particle of mass m in one dimension, whose coordinate and velocity are functions
of time, x(t) and ẋ(t) = dx(t)/dt, respectively. Let the particle be exposed to a time-independent
potential V (x). It’s motion is then governed by Newton’s law

m
d2x

dt2
= −∂V

∂x
= F (x), (1)

where F (x) is the force exerted on the particle. Solving this equation of motion involves two inte-
grations, and hence two arbitrary integration constants to be fixed by initial conditions. Specifying,
e.g., the position x(t0) and velocity ẋ(t0) of the particle at some initial time t0 completely deter-
mines its motion: knowing the initial conditions and the equations of motion, we also know the
evolution of the particle at all times (provided we can solve the equations of motion).

We can also derive the equation of motion using an entirely different approach, via the Lagrangian
formalism. This is perhaps more abstract than Newton’s force-based approach, but in fact is easier
to generalise and technically more simple in complicated systems (such as field theory!), not least
because it avoids us having to think about forces at all.
First, we introduce the Lagrangian

L(x, ẋ) = T − V =
1

2
mẋ2 − V (x), (2)

which is a function of coordinates and velocities, and given by the difference between the kinetic
and potential energies of the particle. Next, we define the action

S =

∫ t1

t0

dtL(x, ẋ). (3)

6



x(t)

t

x

x’(t)

Figure 1: Variation of particle trajectory with identified initial and end points.

The equations of motion are then given by the principle of least action, which says that the tra-
jectory x(t) followed by the particle is precisely that such that S is extremised 2. To verify this in
the present case, let us rederive Newton’s Second Law.

First let us suppose that x(t) is indeed the trajectory that extremises the action, and then introduce
a small perturbation

x(t) → x(t) + δx(t), (4)

such that the end points are fixed:

x′(t1) = x(t1)
x′(t2) = x(t2)

}
⇒ δx(t1) = δx(t2) = 0. (5)

This sends S to some S + δS, where δS = 0 if S is extremised. One may Taylor expand to give

S + δS =

∫ t2

t1

L(x+ δx, ẋ+ δẋ) dt, δẋ =
d

dt
δx

=

∫ t2

t1

{
L(x, ẋ) +

∂L

∂x
δx+

∂L

∂ẋ
δẋ+ . . .

}
dt

= S +
∂L

∂ẋ
δx

∣∣∣∣
t2

t1

+

∫ t2

t1

{
∂L

∂x
− d

dt

∂L

∂ẋ

}
δx dt, (6)

where we performed an integration by parts on the last term in the second line. The second and
third term in the last line are the variation of the action, δS, under variations of the trajectory,
δx. The second term vanishes because of the boundary conditions for the variation, and we are left
with the third. Now the Principal of Least Action demands δS = 0. For the remaining integral to
vanish for arbitrary δx is only possible if the integrand vanishes, leaving us with the �Euler-Lagrange
equation:

∂L

∂x
− d

dt

∂L

∂ẋ
= 0. (7)

2The name of the principle comes from the fact that, in most cases, S is indeed minimised.
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If we insert the Lagrangian of our point particle, Eq. (2), into the Euler-Lagrange equation we
obtain

∂L

∂x
= −∂V (x)

∂x
= F

d

dt

∂L

∂ẋ
=

d

dt
mẋ = mẍ

⇒ mẍ = F = −∂V
∂x

(Newton’s law). (8)

Hence, we have derived the equation of motion (the Euler-Lagrange equation) using the Principal
of Least Action and found it to be equivalent to Newton’s Second Law. The benefit of the former
is that it can be easily generalised to other systems in any number of dimensions, multi-particle
systems, or systems with an infinite number of degrees of freedom, where the latter are needed for
field theory.

For example, a general system of point particles has a set {qi} of generalised coordinates, which
may not be simple positions but also angles etc. The equations of motion are then given by

d

dt

∂L

∂q̇i
=
∂L

∂qi
,

by analogy with the one-dimensional case. That is, each coordinate has its own Euler-Lagrange
equation (which may nevertheless depend on the other coordinates, so that the equations of motion
are coupled). Another advantage of the Lagrangian formalism is that the relationship between
symmetries and conserved quantities is readily understood - more on this later.
First, let us note that there is yet another way to think about classical mechanics (that we will
see again in quantum mechanics / field theory), namely via the Hamiltonian formalism. Given a
Lagrangian depending on generalised coordinates {qi}, we may define the conjugate momenta

pi =
∂L

∂q̇i

e.g. in the simple one-dimensional example given above, there is a single momentum p = mẋ
conjugate to x. We recognise as the familiar definition of momentum, but it is not always true that
pi = mq̇i.

We may now define the Hamiltonian

H({qi}, {pi}) =
∑

i

q̇ipi − L({qi}, {q̇i}).

As an example, consider again

L =
1

2
mẋ2 − V (x).

It is easy to show from the above definition that

H =
1

2
mẋ2 + V (x),
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which we recognise as the total energy of the system. From the definition of the Hamiltonian one
may derive (problem 1.1)

∂H

∂qi
= −ṗi,

∂H

∂pi
= ẋi,

which constitute Hamilton’s equations. These are useful in proving the relation between symme-
tries and conserved quantities. For example, one readily sees from the above equations that the
momentum pi is conserved if H does not depend explicitly on qi. That is, conservation of momen-
tum is related to invariance under spatial translations, if qi can be interpreted as a simple position
coordinate.

1.2 Quantum mechanics

Having set up some basic formalism for classical mechanics, let us now move on to quantum
mechanics. In doing so we shall use canonical quantisation, which is historically what was used
first and what we shall later use to quantise fields as well. We remark, however, that one can also
quantise a theory using path integrals.
Canonical quantisation consists of two steps. Firstly, the dynamical variables of a system are
replaced by operators, which we denote by a hat. Secondly, one imposes commutation relations on
these operators,

[x̂i, p̂j] = i~ δij (9)

[x̂i, x̂j] = [p̂i, p̂j ] = 0. (10)

The physical state of a quantum mechanical system is encoded in state vectors |ψ〉, which are
elements of a Hilbert space H. The hermitian conjugate state is 〈ψ| = (|ψ〉)†, and the modulus
squared of the scalar product between two states gives the probability for the system to go from
state 1 to state 2,

|〈ψ1|ψ2〉|2 = probability for |ψ1〉 → |ψ2〉. (11)

On the other hand physical observables O, i.e. measurable quantities, are given by the expectation
values of hermitian operators, Ô = Ô†,

O = 〈ψ|Ô|ψ〉, O12 = 〈ψ2|Ô|ψ1〉. (12)

Hermiticity ensures that expectation values are real, as required for measurable quantities. Due
to the probabilistic nature of quantum mechanics, expectation values correspond to statistical
averages, or mean values, with a variance

(∆O)2 = 〈ψ|(Ô −O)2|ψ〉 = 〈ψ|Ô2|ψ〉 − 〈ψ|Ô|ψ〉2. (13)

An important concept in quantum mechanics is that of eigenstates of an operator, defined by

Ô|ψ〉 = O|ψ〉. (14)

Evidently, between eigenstates we have ∆O = 0. Examples are coordinate eigenstates, x̂|x〉 = x|x〉,
and momentum eigenstates, p̂|p〉 = p|p〉, describing a particle at position x or with momentum
p, respectively. However, a state vector cannot be simultaneous eigenstate of non-commuting
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operators. This leads to the Heisenberg uncertainty relation for any two non-commuting operators
Â, B̂,

∆A∆B ≥ 1

2
|〈ψ|[Â, B̂]|ψ〉|. (15)

Finally, sets of eigenstates can be orthonormalized and we assume completeness, i.e. they span the
entire Hilbert space,

〈p′|p〉 = δ(p− p′), 1 =

∫
d3p |p〉〈p|. (16)

As a consequence, an arbitrary state vector can always be expanded in terms of a set of eigenstates.
We may then define the position space wavefunction

ψ(x) = 〈x|ψ〉,

so that

〈ψ1|ψ2〉 =
∫
d3x〈ψ1|x〉〈x|ψ2〉

=

∫
d3xψ∗1(x)ψ2(x). (17)

Acting on the wavefunction, the explicit form of the position and momentum operators is

x̂ = x, p̂ = −i~∇, (18)

so that the Hamiltonian operator is

Ĥ =
p̂2

2m
+ V (x) = −~2∇2

2m
+ V (x). (19)

Having quantised our system, we now want to describe its time evolution. This can be done in
different “pictures”, depending on whether we consider the state vectors or the operators (or both)
to depend explicitly on t, such that expectation values remain the same. Two extreme cases are
those where the operators do not depend on time (the Schrödinger picture), and when the state
vectors do not depend on time (the Heisenberg picture). We discuss these two choices in the
following sections.

1.3 The Schrödinger picture

In this approach state vectors are functions of time, |ψ(t)〉, while operators are time independent,
∂tÔ = 0. The time evolution of a system is described by the Schrödinger equation3,

i~
∂

∂t
ψ(x, t) = Ĥψ(x, t). (20)

If at some initial time t0 our system is in the state Ψ(x, t0), then the time dependent state vector

Ψ(x, t) = e−
i
~
Ĥ(t−t0)Ψ(x, t0) (21)

3Note that the Hamiltonian could itself have some time dependence in general, even in the Schrödinger picture, if

the potential of a system depends on time. Here we assume that this is not the case.
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solves the Schrödinger equation for all later times t.
The expectation value of some hermitian operator Ô at a given time t is then defined as

〈Ô〉t =
∫
d3xΨ∗(x, t)ÔΨ(x, t), (22)

and the normalisation of the wavefunction is given by

∫
d3xΨ∗(x, t)Ψ(x, t) = 〈1〉t. (23)

Since Ψ∗Ψ is positive, it is natural to interpret it as the probability density for finding a particle at
position x. Furthermore one can derive a conserved current j, as well as a continuity equation by
considering

Ψ∗ × (Schr.Eq.)−Ψ × (Schr.Eq.)∗. (24)

The continuity equation reads
∂

∂t
ρ = −∇ · j (25)

where the density ρ and the current j are given by

ρ = Ψ∗Ψ (positive), (26)

j =
~

2im
(Ψ∗∇Ψ− (∇Ψ∗)Ψ) (real). (27)

Now that we have derived the continuity equation let us discuss the probability interpretation of
Quantum Mechanics in more detail. Consider a finite volume V with boundary S. The integrated
continuity equation is

∫

V

∂ρ

∂t
d3x = −

∫

V
∇ · j d3x

= −
∫

S
j · d2o (28)

where in the last line we have used Gauss’s theorem. Using Eq. (23) the left-hand side can be
rewritten and we obtain

∂

∂t
〈1〉t = −

∫

S
j · d2o = 0. (29)

In other words, provided that j = 0 everywhere at the boundary S, we find that the time derivative
of 〈1〉t vanishes. Since 〈1〉t represents the total probability for finding the particle anywhere inside
the volume V , we conclude that this probability must be conserved: particles cannot be created or
destroyed in our theory. Non-relativistic Quantum Mechanics thus provides a consistent formalism
to describe a single particle. The quantity Ψ(x, t) is interpreted as a one-particle wave function.

1.4 The Heisenberg picture

Here the situation is the opposite to that in the Schrödinger picture, with the state vectors regarded
as constant, ∂t|ΨH〉 = 0, and operators which carry the time dependence, ÔH(t). This is the concept
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which later generalises most readily to field theory. We make use of the solution Eq. (21) to the
Schrödinger equation in order to define a Heisenberg state vector through

Ψ(x, t) = e−
i
~
Ĥ(t−t0)Ψ(x, t0) ≡ e−

i
~
Ĥ(t−t0)ΨH(x), (30)

i.e. ΨH(x) = Ψ(x, t0). In other words, the Schrödinger vector at some time t0 is defined to be
equivalent to the Heisenberg vector, and the solution to the Schrödinger equation provides the
transformation law between the two for all times. This transformation of course leaves the physics,
i.e. expectation values, invariant,

〈Ψ(t)|Ô|Ψ(t)〉 = 〈Ψ(t0)|e
i
~
Ĥ(t−t0)Ôe−

i
~
Ĥ(t−t0)|Ψ(t0)〉 = 〈ΨH |ÔH(t)|ΨH〉, (31)

with
ÔH(t) = e

i
~
Ĥ(t−t0)Ôe−

i
~
Ĥ(t−t0). (32)

From this last equation it is now easy to derive the equivalent of the Schrödinger equation for the
Heisenberg picture, the Heisenberg equation of motion for operators:

i~
dÔH(t)

dt
= [ÔH , Ĥ ]. (33)

Note that all commutation relations, like Eq. (9), with time dependent operators are now intended
to be valid for all times. Substituting x̂, p̂ for Ô into the Heisenberg equation readily leads to

dx̂i
dt

=
∂Ĥ

∂p̂i
,

dp̂i
dt

= −∂Ĥ
∂x̂i

, (34)

the quantum mechanical equivalent of the Hamilton equations of classical mechanics.

1.5 The quantum harmonic oscillator

Because of similar structures later in quantum field theory, it is instructive to also briefly recall the
harmonic oscillator in one dimension. Its Hamiltonian is given by

Ĥ(x̂, p̂) =
1

2

(
p̂2

m
+mω2x̂2

)
. (35)

Employing the canonical formalism we have just set up, we easily identify the momentum operator
to be p̂(t) = m∂tx̂(t), and from the Hamilton equations we find the equation of motion to be
∂2t x̂ = −ω2x̂, which has the well known plane wave solution x̂ ∼ exp iωt.
An alternative path useful for later field theory applications is to introduce new operators, expressed
in terms of the old ones,

â =
1√
2

(√
mω

~
x̂+ i

√
1

mω~
p̂

)
, â† =

1√
2

(√
mω

~
x̂− i

√
1

mω~
p̂

)
. (36)

Using the commutation relation for x̂, p̂, one readily derives (see the preschool problems)

[â, â†] = 1, [Ĥ, â] = −~ωâ, [Ĥ, â†] = ~ωâ†. (37)
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With the help of these the Hamiltonian can be rewritten in terms of the new operators:

Ĥ =
1

2
~ω
(
â†â+ ââ†

)
=

(
â†â+

1

2

)
~ω. (38)

With this form of the Hamiltonian it is easy to construct a complete basis of energy eigenstates
|n〉,

Ĥ|n〉 = En|n〉. (39)

Using the above commutation relations, one finds

â†Ĥ|n〉 = (Ĥâ† − ~ωâ†)|n〉 = Enâ
†|n〉, (40)

and therefore
Ĥâ†|n〉 = (En + ~ω)â†|n〉. (41)

Thus, the state â†|n〉 has energy En + ~ω, so that â† may be regarded as a “creation operator” for
a quantum with energy ~ω. Along the same lines one finds that â|n〉 has energy En − ~ω, and â is
an “annihilation operator”.
Let us introduce a vacuum state |0〉 with no quanta excited, for which â|n〉 = 0, because there
cannot be any negative energy states. Acting with the Hamiltonian on that state we find

Ĥ|0〉 = ~ω/2, (42)

i.e. the quantum mechanical vacuum has a non-zero energy, known as vacuum oscillation or zero
point energy. Acting with a creation operator onto the vacuum state one easily finds the state with
one quantum excited, and this can be repeated n times to get

|1〉 = â†|0〉 , E1 = (1 +
1

2
)~ω, . . .

|n〉 = â†√
n
|n− 1〉 = 1√

n!
(â†)n|0〉 , En = (n+

1

2
)~ω. (43)

The root of the factorial is there to normalise all eigenstates to one. Finally, the number operator
N̂ = â†â returns the number of quanta in a given energy eigenstate,

N̂ |n〉 = n|n〉. (44)

1.6 Relativistic Quantum Mechanics

So far we have only considered non-relativistic particles. In this section, we see what happens when
we try to formulate a relativistic analogue of the Schrödinger equation. First, note that we can
derive the non-relativistic equation starting from the energy relation

E =
p2

2m
+ V (x) (45)

and replacing variables by their appropriate operators acting on a position space wavefunction
ψ(x, t)

E → i~
∂

∂t
, p → −i~∇, x → x (46)
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to give [
− ~2

2m
∇2 + V (x)

]
ψ(x, t) = i~

∂ψ(x, t)

∂t
. (47)

As we have already seen, there is a corresponding positive definite probability density

ρ = |ψ(x, t)|2 ≥ 0, (48)

with corresponding current

j =
~

2im
(ψ∗∇ψ − (∇ψ∗)ψ) . (49)

Can we also make a relativistic equation? By analogy with the above, we may start with the
relativistic energy relation

E2 = c2p2 +m2c4, (50)

and making the appropriate operator replacements leads to the equation

(
1

c2
∂2

∂t2
−∇2 +

m2c2

~2

)
φ(x, t) (51)

for some wavefunction φ(x, t). This is the Klein-Gordon equation, and one may try to form a
probability density and current, as in the non-relativistic case. Firstly, one notes that to satisfy
relativistic invariance, the probability density should be the zeroth component of a 4-vector jµ =
(ρ, j) satisfying

∂µj
µ = 0. (52)

In fact, one finds

ρ =
i~

2m

(
φ∗
∂φ

∂t
− φ

∂φ∗

∂t

)
, (53)

with j given as before. This is not positive definite! That is, this may (and will) become negative
in general, so we cannot interpret this as the probability density of a single particle.

There is another problem with the Klein-Gordon equation as it stands, that is perhaps less abstract
to appreciate. The relativistic energy relation gives

E = ±
√
c2p2 +m2c4, (54)

and thus one has positive and negative energy solutions. For a free particle, one could restrict to
having positive energy states only. However, an interacting particle may exchange energy with its
environment, and there is nothing to stop it cascading down to energy states of more and more
negative energy, thus emitting infinite amounts of energy.

We conclude that the Klein-Gordon equation does not make sense as a consistent quantum theory
of a single particle. We thus need a different approach in unifying special relativity and quantum
mechanics. This, as we will see, is QFT, in which we will be able to reinterpret the Klein-Gordon
function as a field φ(x, t) describing many particles.
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Figure 2: System of masses m joined by springs (of constant k), whose longitudinal displacements
are {fi}, and whose separation at rest is δx.

From now on, it will be extremely convenient to work in natural units, in which one sets ~ = c = 1.
The correct factors can always be reinstated by dimensional analysis. In these units, the Klein-
Gordon equation becomes

(�+m2)φ(x, t) = 0, (55)

where

� = ∂µ∂µ =
∂

∂t2
−∇2. (56)

2 Classical Field Theory

In the previous section, we have seen how to describe point particles, both classically and quantum
mechanically. In this section, we discuss classical field theory, as a precursor to considering quan-
tum fields. A field associates a mathematical object (e.g. scalar, vector, tensor, spinor...) with
every point in spacetime. Examples are the temperature distribution in a room (a scalar field), or
the E and B fields in electromagnetism (vector fields). Just as point particles can be described by
Lagrangians, so can fields, although it is more natural to think in terms of Lagrangian densities.

2.1 Example: Model of an Elastic Rod

Let us consider a particular example, namely a set of point masses connected together by springs, as
shown in figure 2. Assume the masses m are equal, as also are the force constants of the springs k.
Furthermore, we assume that the masses may move only longitudinally, where the ith displacement
is fi, and that the separation of adjacent masses is δx when all fi are zero. This system is an
approximation to an elastic rod, with a displacement field f(x, t). To see what this field theory
looks like, we may first write the total kinetic and potential energies as

T =
∑

i

1

2
mḟ2i , V =

∑

i

1

2
k(fi+1 − fi)

2 (57)

respectively, where we have used Hooke’s Law for the potential energy. Thus, the Lagrangian is

L = T − V =
∑

i

[
1

2
mḟ2i − 1

2
k(fi+1 − fi)

2

]
. (58)
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Clearly this system becomes a better approximation to an elastic rod as the continuum limit is
approached, in which the number of masses N → ∞ and the separation δx → 0. We can then
rewrite the Lagrangian as

L =
∑

i

δx

[
1

2

(m
δx

)
ḟ2i − 1

2
(kδx)

(
fi+1 − fi

δx

)2
]
. (59)

We may recognise
lim
δx→0

m/δx = ρ (60)

as the density of the rod, and also define the tension

κ = lim
δx→0

kδx. (61)

Furthermore, the position index i gets replaced by the continuous variable x, and one has

lim
δx→0

fi+1 − fi
δx

=
∂f(x, t)

∂x
. (62)

Finally, the sum over i becomes an integral so that the continuum Lagrangian is

L =

∫
dx

[
1

2
ρḟ(x, t)2 − 1

2
κ

(
∂f

∂x

)2
]
. (63)

This is the Lagrangian for the displacement field f(x, t). It depends on a function of f and ḟ which
is integrated over all space coordinates (in this case there is only one, the position along the rod).
We may therefore write the Lagrangian manifestly as

L =

∫
dxL[f(x, t), ḟ(x, t)], (64)

where L is the Lagrangian density

L[f(x, t), ḟ(x, t)] = 1

2
ρḟ2(x, t)− 1

2
κ

(
∂f

∂x

)2

. (65)

It is perhaps clear from the above example that for any field, there will always be an integration
over all space dimensions, and thus it is more natural to think about the Lagrangian density rather
than the Lagrangian itself. Indeed, we may construct the following dictionary between quantities
in point particle mechanics, and corresponding field theory quantities (which may or may not be
helpful to you in remembering the differences between particles and fields...!).

Classical Mechanics: Classical Field Theory:

x(t) −→ φ(x, t) (66)

ẋ(t) −→ φ̇(x, t)

Index i −→ Coordinate x (67)

L(x, ẋ) −→ L[φ, φ̇] (68)

Note that the action for the above field theory is given, as usual, by the time integral of the
Lagrangian:

S =

∫
dtL =

∫
dt

∫
dxL[f, ḟ ]. (69)

16



2.2 Relativistic Fields

In the previous section we saw how fields can be described using Lagrangian densities, and illus-
trated this with a non-relativistic example. Rather than derive the field equations for this case, we
do this explicitly here for relativistic theories, which we will be concerned with for the rest of the
course (and, indeed, the school).
In special relativity, coordinates are combined into four-vectors, xµ = (t, xi) or x = (t,x), whose
length x2 = t2 − x2 is invariant under Lorentz transformations

x′µ = Λµ
ν x

ν . (70)

A general function transforms as f(x) → f ′(x′), i.e. both the function and its argument transform.
A Lorentz scalar is a function φ(x) which at any given point in space-time will have the same
amplitude, regardless of which inertial frame it is observed in. Consider a space-time point given
by x in the unprimed frame, and x′(x) in the primed frame, where the function x′(x) can be derived
from eq. (70). Observers in both the primed and unprimed frames will see the same amplitude
φ(x), although an observer in the primed frame will prefer to express this in terms of his or her
own coordinate system x′, hence will see

φ(x) = φ(x(x′)) = φ′(x′), (71)

where the latter equality defines φ′.
Equation (71) defines the transformation law for a Lorentz scalar. A vector function transforms as

V
′µ(x′) = Λµ

ν V
ν(x). (72)

We will work in particular with ∂µφ(x), where x ≡ xµ denotes the 4-position. Note in particular
that

(∂µφ)(∂
µφ) =

(
∂φ

∂t

)2

−∇φ · ∇φ

∂µ∂
µφ =

∂2φ

∂t2
−∇2φ.

In general, a relativistically invariant scalar field theory has action

S =

∫
d4xL[φ, ∂µφ], (73)

where ∫
d4x ≡

∫
dt d3x, (74)

and L is the appropriate Lagrangian density. We can find the equations of motion satisfied by the
field φ using, as in point particle mechanics, the principle of least action. The field theory form of
this is that the field φ(x) is such that the action of eq. (73) is extremised. Assuming φ(x) is indeed
such a field, we may introduce a small perturbation

φ(x) → φ(x) + δφ(x), (75)
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which correspondingly perturbs the action according to

S → S + δS =

∫
d4x

[
L(φ, ∂µφ) +

∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ)

]
. (76)

Recognising the first term as the unperturbed action, one thus finds

δS =

∫
d4x

[
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ)

]

=

[
∂L

∂(∂µφ)
δφ

]

boundary

+

∫
d4x

[
∂L
∂φ

− ∂µ

(
∂L

∂(∂µφ)

)]
δφ,

where we have integrated by parts in the second line. Assuming the fields die away at infinity so
that δφ = 0 at the boundary of spacetime, the principle of least action δS = 0 implies

∂µ

(
∂L

∂(∂µφ)

)
=
∂L
∂φ

. (77)

This is the Euler-Lagrange field equation. It tells us, given a particular Lagrangian density (which
defines a particular field theory) the classical equation of motion which must be satisfied by the
field φ. As a specific example, let us consider the Lagrangian density

L =
1

2
(∂µφ)(∂

µφ)− 1

2
m2φ2, (78)

from which one finds
∂L

∂(∂µφ)
= ∂µφ,

∂L
∂φ

= −m2φ, (79)

so that the Euler-Lagrange equation gives

∂µ∂
µφ+m2φ = (�+m2)φ(x) = 0. (80)

This is the Klein-Gordon equation! The above Lagrangian density thus corresponds to the classical
field theory of a Klein-Gordon field. We see in particular that the coefficient of the quadratic term
in the Lagrangian can be interpreted as the mass.

By analogy with point particle mechanics, one can define a canonical momentum field conjugate to
φ:

π(x) =
∂L
∂φ̇

. (81)

Then one can define the Hamiltonian density

H[φ, π] = πφ̇−L, (82)

such that

H =

∫
d3xH(π, φ) (83)

is the Hamiltonian (total energy carried by the field). For example, the Klein-Gordon field has
conjugate momentum π = φ̇, and Hamiltonian density

H =
1

2

[
π2(x) + (∇φ)2 +m2φ2

]
. (84)
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2.3 Plane wave solutions to the Klein-Gordon equation

Let us consider real solutions to Eq. (80), characterised by φ∗(x) = φ(x). To find them we try an
ansatz of plane waves

φ(x) ∝ ei(k
0t−k·x). (85)

The Klein-Gordon equation is satisfied if (k0)2 − k2 = m2 so that

k0 = ±
√
k2 +m2. (86)

Defining the energy as

E(k) =
√

k2 +m2 > 0, (87)

we obtain two types of solution which read

φ+(x) ∝ ei(E(k)t−k·x), φ−(x) ∝ e−i(E(k)t−k·x). (88)

We may interpret these as positive and negative energy solutions, such that it does not matter
which branch of the square root we take in eq. (87) (it is conventional, however, to define energy
as a positive quantity). The general solution is a superposition of φ+ and φ−. Using

E(k)t − k · x = kµkµ = kµk
µ = k · x (89)

this solution reads

φ(x) =

∫
d3k

(2π)3 2E(k)

(
eik·xα∗(k) + e−ik·xα(k)

)
, (90)

where α(k) is an arbitrary complex coefficient. Note that the coefficients of the positive and negative
exponentials are related by complex conjugation. This ensures that the field φ(x) is real (as can
be easily verified from eq. (90)), consistent with the Lagrangian we wrote down. Such a field has
applications in e.g. the description of neutral mesons. We can also write down a Klein-Gordon
Lagrangian for a complex field φ. This is really two independent fields (i.e. φ and φ∗), and thus can
be used to describe a system of two particles (e.g. charged meson pairs). To simplify the discussion
in this course, we will explicitly consider the real Klein-Gordon field. Note that the factors of 2
and π in eq. (90) are conventional, and the inverse power of the energy is such that the measure of
integration is Lorentz invariant (problem 2.1), so that the whole solution is written in a manifestly
Lorentz invariant way.

2.4 Symmetries and Conservation Laws

As was the case in point particle mechanics, one may relate symmetries of the Lagrangian density
to conserved quantities in field theory. For example, consider the invariance of L under space-time
translations

xµ → xµ + εµ, (91)

where εµ is constant. Under such a transformation one has

L(xµ + εµ) = L(xµ) + εµ∂µL(xµ) + . . . (92)

φ(xµ + εµ) = φ(xµ) + εµ∂µφ(x
µ) + . . . (93)

∂νφ(x
µ + εµ) = ∂νφ(x

µ) + εµ∂µ∂νφ(x
µ) + . . . , (94)

(95)
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where we have used Taylor’s theorem. But if L does not explicitly depend on xµ (i.e. only through
φ and ∂µφ) then one has

L(xµ + εµ) = L[φ(xµ + εµ), ∂νφ(x
µ + εµ)]

= L+
∂L
∂φ

δφ +
∂L

∂(∂νφ)
δ(∂νφ) + . . . (96)

= L+
∂L
∂φ

εµ∂µφ+
∂L

∂(∂νφ)
εµ∂µ∂νφ+ . . . , (97)

where we have used the fact that δφ = εµ∂µφ in the third line, and all functions on the right-hand
side are evaluated at xµ. One may replace ∂L/∂φ by the LHS of the Euler-Lagrange equation to
get

L(xµ + εµ) = L+ ∂ν
∂L

∂(∂νφ)
εµ∂µφ+

∂L
∂(∂νφ)

εµ∂µ∂νφ+ . . .

= L+ ∂ν

[
∂L

∂(∂νφ)
∂µφ

]
εµ, (98)

and equating this with the alternative expression above, one finds

∂ν

[
∂L

∂(∂νφ)
∂µφ

]
εµ = εµ∂µL. (99)

If this is true for all εµ, then one has
∂νΘνµ = 0, (100)

where

Θνµ =
∂L

∂(∂νφ)
∂µφ− gµνL (101)

is the energy-momentum tensor. We can see how this name arises by considering the components
explicitly, for the case of the Klein Gordon field. One then finds

Θ00 =
∂L
∂φ̇

φ̇− g00L = πφ̇−L = H, (102)

Θ0j =
∂L
∂φ̇

∂jφ− g0jL = π∂jφ (j = 1 . . . 3). (103)

One then sees that Θ00 is the energy density carried by the field. Its conservation can then be
shown by considering

∂

∂t

∫

V
d3xΘ00 =

∫

V
d3x ∂0Θ00

=

∫

V
d3x ∂jΘj0 =

∫

S
dSj ·Θ0j = 0, (104)

where we have used Eq. (100) in the second line. The Hamiltonian density is a conserved quantity,
provided that there is no energy flow through the surface S which encloses the volume V . In a
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similar manner one can show that the 3-momentum pj, which is related to Θ0j , is conserved as
well. It is then useful to define a conserved energy-momentum four-vector

Pµ =

∫
d3x Θ0µ. (105)

In analogy to point particle mechanics, we thus see that invariances of the Lagrangian density
correspond to conservation laws. An entirely analogous procedure leads to conserved quantities like
angular mometum and spin. Furthermore one can study so-called internal symmetries, i.e. ones
which are not related to coordinate but other transformations. Examples are conservation of all
kinds of charges, isospin, etc.
We have thus established the Lagrange-Hamilton formalism for classical field theory: we derived
the equation of motion (Euler-Lagrange equation) from the Lagrangian and introduced the conju-
gate momentum. We then defined the Hamiltonian (density) and considered conservation laws by
studying the energy-momentum tensor Θµν .

3 Quantum Field Theory: Free Fields

3.1 Canonical Field Quantisation

In the previous sections we have reviewed the classical and quantum mechanics of point parti-
cles, and also classical field theory. We used the canonical quantisation procedure in discussing
quantum mechanics, whereby classical variables are replaced by operators, which have non-trivial
commutation relations. In this section, we see how to apply this procedure to fields, taking the
explicit example of the Klein-Gordon field discussed previously. This is, as yet, a non-interacting
field theory, and we will discuss how to deal with interactions later on in the course.

The Klein-Gordon Lagrangian density has the form

L = 1
2∂

µφ∂µφ− 1
2m

2φ2. (106)

We have seen that in field theory the field φ(x) plays the role of the coordinates in ordinary point
particle mechanics, and we defined a canonically conjugate momentum, π(x) = ∂L/∂ φ̇ = φ̇(x). We
then continue the analogy to point mechanics through the quantisation procedure, i.e. we now take
our canonical variables to be operators,

φ(x) → φ̂(x), π(x) → π̂(x). (107)

Next we impose equal-time commutation relations on them,

[
φ̂(x, t), π̂(y, t)

]
= iδ3(x− y), (108)

[
φ̂(x, t), φ̂(y, t)

]
= [π̂(x, t), π̂(y, t)] = 0. (109)

As in the case of quantum mechanics, the canonical variables commute among themselves, but not
the canonical coordinate and momentum with each other. Note that the commutation relation is
entirely analogous to the quantum mechanical case. There would be an ~, if it hadn’t been set to
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y

space

time

(x− y)2 < 0, space-like

(x− y)2 > 0, time-like

(x− y)2 = 0, light-like

Figure 3: The light cone about y. Events occurring at points x and y are said to be time-like
(space-like) if x is inside (outside) the light cone about y.

one earlier, and the delta-function accounts for the fact that we are dealing with fields. It is zero
if the fields are evaluated at different space-time points.
After quantisation, our fields have turned into field operators. Note that within the relativistic
formulation they depend on time, and hence they are Heisenberg operators.
In the previous paragraph we have formulated commutation relations for fields evaluated at equal
time, which is clearly a special case when considering fields at general x, y. The reason has to do
with maintaining causality in a relativistic theory. Let us recall the light cone about an event at y,
as in Fig. 3. One important postulate of special relativity states that no signal and no interaction
can travel faster than the speed of light. This has important consequences about the way in which
different events can affect each other. For instance, two events which are characterised by space-
time points xµ and yµ are said to be causal if the distance (x− y)2 is time-like, i.e. (x − y)2 > 0.
By contrast, two events characterised by a space-like separation, i.e. (x − y)2 < 0, cannot affect
each other, since the point x is not contained inside the light cone about y.
In non-relativistic QuantumMechanics the commutation relations among operators indicate whether
precise and independent measurements of the corresponding observables can be made. If the com-
mutator does not vanish, then a measurement of one observable affects that of the other. From
the above it is then clear that the issue of causality must be incorporated into the commutation
relations of the relativistic version of our quantum theory: whether or not independent and precise
measurements of two observables can be made depends also on the separation of the 4-vectors char-
acterising the points at which these measurements occur. Clearly, events with space-like separations
cannot affect each other, and hence all fields must commute,

[
φ̂(x), φ̂(y)

]
= [π̂(x), π̂(y)] =

[
φ̂(x), π̂(y)

]
= 0 for (x− y)2 < 0. (110)

This condition is sometimes called micro-causality. Writing out the four-components of the time
interval, we see that as long as |t′ − t| < |x− y|, the commutator vanishes in a finite interval |t′ − t|.
It also vanishes for t′ = t, as long as x 6= y. Only if the fields are evaluated at an equal space-time
point can they affect each other, which leads to the equal-time commutation relations above. They
can also affect each other everywhere within the light cone, i.e. for time-like intervals. It is not
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hard to show that in this case (e.g. problem 3.1)

[
φ̂(x), φ̂(y)

]
= [π̂(x), π̂(y)] = 0, for (x− y)2 > 0 (111)

[
φ̂(x), π̂(y)

]
=

i

2

∫
d3p

(2π)3

(
eip·(x−y) + e−ip·(x−y)

)
. (112)

n.b. since the 4-vector dot product p · (x − y) depends on p0 =
√
p2 +m2, one cannot trivially

carry out the integrals over d3p here.

3.2 Creation and annihilation operators

After quantisation, the Klein-Gordon equation we derived earlier turns into an equation for oper-
ators. For its solution we simply promote the classical plane wave solution, Eq. (90), to operator
status,

φ̂(x) =

∫
d3k

(2π)3 2E(k)

(
eik·xâ†(k) + e−ik·xâ(k)

)
. (113)

Note that the complex conjugation of the Fourier coefficient turned into hermitian conjugation for
an operator.
Let us now solve for the operator coefficients of the positive and negative energy solutions. In order
to do so, we invert the Fourier integrals for the field and its time derivative,

∫
d3x φ̂(x, t)eikx =

1

2E

[
â(k) + â†(k)e2ik0x0

]
, (114)

∫
d3x

˙̂
φ(x, t)eikx = − i

2

[
â(k)− â†(k)e2ik0x0

]
, (115)

and then build the linear combination iE(k)(114)−(115) to find

∫
d3x

[
iE(k)φ̂(x, t)− ˙̂

φ(x, t)
]
eikx = iâ(k), (116)

Following a similar procedure for â†(k), and using π̂(x) =
˙̂
φ(x) we find

â(k) =

∫
d3x

[
E(k)φ̂(x, t) + iπ̂(x, t)

]
eikx, (117)

â†(k) =

∫
d3x

[
E(k)φ̂(x, t)− iπ̂(x, t)

]
e−ikx. (118)

Note that, as Fourier coefficients, these operators do not depend on time, even though the right
hand side does contain time variables. Having expressions in terms of the canonical field variables
φ̂(x), π̂(x), we can now evaluate the commutators for the Fourier coefficients. Expanding everything
out and using the commutation relations Eq. (109), we find

[
â†(k1), â

†(k2)
]

= 0 (119)

[â(k1), â(k2)] = 0 (120)[
â(k1), â

†(k2)
]

= (2π)3 2E(k1)δ
3(k1 − k2) (121)
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We easily recognise these for every k to correspond to the commutation relations for the harmonic
oscillator, Eq. (37). This motivates us to also express the Hamiltonian and the energy momentum
four-vector of our quantum field theory in terms of these operators. To do this, first note that the
Hamiltonian is given by the integral of the Hamiltonian density (eq. (84)) over all space. One may
then substitute eq. (113) to yield (see the problem sheet)

Ĥ =
1

2

∫
d3k

(2π)32E(k)
E(k)

(
â†(k)â(k) + â(k)â†(k)

)
, (122)

P̂ =
1

2

∫
d3k

(2π)32E(k)
k
(
â†(k)â(k) + â(k)â†(k)

)
. (123)

We thus find that the Hamiltonian and the momentum operator are nothing but a continuous
sum of excitation energies/momenta of one-dimensional harmonic oscillators! After a minute of
thought this is not so surprising. We expanded the solution of the Klein-Gordon equation into a
superposition of plane waves with momenta k. But of course a plane wave solution with energy
E(k) is also the solution to a one-dimensional harmonic oscillator with the same energy. Hence,
our free scalar field is simply a collection of infinitely many harmonic oscillators distributed over
the whole energy/momentum range. These energies sum up to that of the entire system. We have
thus reduced the problem of handling our field theory to oscillator algebra. From the harmonic
oscillator we know already how to construct a complete basis of energy eigenstates, and thanks to
the analogy of the previous section we can take this over to our quantum field theory.

3.3 Energy of the vacuum state and renormalisation

In complete analogy we begin again with the postulate of a vacuum state |0〉 with norm one, which
is annihilated by the action of the operator a,

〈0|0〉 = 1, â(k)|0〉 = 0 for all k. (124)

Let us next evaluate the energy of this vacuum state, by taking the expectation value of the
Hamiltonian,

E0 = 〈0|Ĥ |0〉 = 1

2

∫
d3k

(2π)3 2E(k)
E(k)

{
〈0|â†(k)â(k)|0〉 + 〈0|â(k)â†(k)|0〉

}
. (125)

The first term in curly brackets vanishes, since a annihilates the vacuum. The second can be
rewritten as

â(k)â†(k)|0〉 =
{[
â(k), â†(k)

]
+ â†(k)â(k)

}
|0〉. (126)

It is now the second term which vanishes, whereas the first can be replaced by the value of the
commutator. Thus we obtain

E0 = 〈0|Ĥ |0〉 = δ3(0)
1

2

∫
d3k E(k) = δ3(0)

1

2

∫
d3k

√
k2 +m2 = ∞, (127)

which means that the energy of the ground state is infinite! This result seems rather paradoxical,
but it can be understood again in terms of the harmonic oscillator. Recall that the simple quantum
mechanical oscillator has a finite zero-point energy. As we have seen above, our field theory corre-
sponds to an infinite collection of harmonic oscillators, i.e. the vacuum receives an infinite number
of zero point contributions, and its energy thus diverges.
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This is the first of frequent occurrences of infinities in quantum field theory. Fortunately, it is not
too hard to work around this particular one. Firstly, we note that nowhere in nature can we observe
absolute values of energy, all we can measure are energy differences relative to some reference scale,
at best the one of the vacuum state, |0〉. In this case it does not really matter what the energy of
the vacuum is. This then allows us to redefine the energy scale, by always subtracting the (infinite)
vacuum energy from any energy we compute. This process is called “renormalisation”.
We then define the renormalised vacuum energy to be zero, and take it to be the expectation value
of a renormalised Hamiltonian,

ER
0 ≡ 〈0|ĤR|0〉 = 0. (128)

According to this recipe, the renormalised Hamiltonian is our original one, minus the (unrenor-
malised) vacuum energy,

ĤR = Ĥ −E0 (129)

=
1

2

∫
d3k

(2π)3 2E(k)
E(k)

{
â†(k)â(k) + â(k)â†(k)− 〈0|â†(k)â(k) + â(k)â†(k)|0〉

}

=
1

2

∫
d3k

(2π)3 2E(k)
E(k)

{
2â†(k)â(k) +

[
â(k), â†(k)

]
− 〈0|

[
â(k), â†(k)

]
|0〉
}
. (130)

Here the subtraction of the vacuum energy is shown explicitly, and we can rewrite is as

ĤR =

∫
d3p

(2π)3 2E(p)
E(p)â†(p)â(p)

+
1

2

∫
d3p

(2π)3 2E(p)
E(p)

{[
â(p), â†(p)

]
− 〈0|

[
â(p), â†(p)

]
|0〉
}
.

=

∫
d3p

(2π)3 2E(p)
E(p) â†(p)â(p) + Ĥvac (131)

The operator Ĥvac ensures that the vacuum energy is properly subtracted: if |ψ〉 and |ψ ′〉 denote
arbitrary N -particle states, then one can convince oneself that 〈ψ ′|Ĥvac|ψ〉 = 0. In particular we
now find that

〈0|ĤR|0〉 = 0, (132)

as we wanted. A simple way to automatise the removal of the vacuum contribution is to introduce
normal ordering. Normal ordering means that all annihilation operators appear to the right of any
creation operator. The notation is

: ââ† : = â†â, (133)

i.e. the normal-ordered operators are enclosed within colons. For instance

: 1
2

(
â†(p)â(p) + â(p)â†(p)

)
: = â†(p)â(p). (134)

It is important to keep in mind that â and â† always commute inside : · · · :. This is true for an
arbitrary string of â and â†. With this definition we can write the normal-ordered Hamiltonian as

: Ĥ : = :
1

2

∫
d3p

(2π)3 2E(p)
E(p)

(
â†(p)â(p) + â(p)â†(p)

)
:

=

∫
d3p

(2π)3 2E(p)
E(p) â†(p)â(p), (135)
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and thus have the relation
ĤR =: Ĥ : +Ĥvac. (136)

Hence, we find that
〈ψ′| : Ĥ : |ψ〉 = 〈ψ′|ĤR|ψ〉, (137)

and, in particular, 〈0| : Ĥ : |0〉 = 0. The normal ordered Hamiltonian thus produces a renormalised,
sensible result for the vacuum energy.

3.4 Fock space and Particles

After this lengthy grappling with the vacuum state, we can continue to construct our basis of states
in analogy to the harmonic oscillator, making use of the commutation relations for the operators
â, â†. In particular, we define the state |k〉 to be the one obtained by acting with the operator a†(k)
on the vacuum,

|k〉 = â†(k)|0〉. (138)

Using the commutator, its norm is found to be

〈k|k′〉 = 〈0|â(k)â†(k′)|0〉 = 〈0|[â(k), â†(k′)]|0〉 + 〈0|â†(k′)a(k)|0〉 (139)

= (2π)32E(k)δ3(k− k′), (140)

since the last term in the first line vanishes (â(k) acting on the vacuum). Next we compute the
energy of this state, making use of the normal ordered Hamiltonian,

: Ĥ : |k〉 =

∫
d3k′

(2π)3 2E(k′)
E(k′)â†(k′)â(k′)â†(k)|0〉 (141)

=

∫
d3k′

(2π)3 2E(k′)
E(k′)(2π)32E(k)δ(k − k′)â†(k)|0〉 (142)

= E(k)â†(k)|0〉 = E(k)|k〉, (143)

and similarly one finds
: P̂ : |k〉 = k|k〉. (144)

Observing that the normal ordering did its job and we obtain renormalised, finite results, we may
now interpret the state |k〉. It is a one-particle state for a relativistic particle of mass m and
momentum k, since acting on it with the energy-momentum operator returns the relativistic one
particle energy-momentum dispersion relation, E(k) =

√
k2 +m2. The a†(k), a(k) are creation

and annihilation operators for particles of momentum k.
In analogy to the harmonic oscillator, the procedure can be continued to higher states. One easily
checks that (problem 3.4)

: P̂ µ : â†(k2)â
†(k1)|0〉 = (kµ1 + kµ2 )â

†(k2)â
†(k1)|0〉, (145)

and so the state

|k2,k1〉 =
1√
2!
â†(k2)â

†(k1)|0〉 (146)

is a two-particle state (the factorial is there to have it normalised in the same way as the one-
particle state), and so on for higher states. These are called Fock states in the textbooks (formally
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speaking, a Fock space is a tensor product of Hilbert spaces, where the latter occur in ordinary
Quantum Mechanics).
At long last we can now see how the field in our free quantum field theory is related to particles.
A particle of momentum k corresponds to an excited Fourier mode of a field. Since the field is a
superpositon of all possible Fourier modes, one field is enough to describe all possible configurations
representing one or many particles of the same kind in any desired momentum state.
There are some rather profound ideas here about how nature works at fundamental scales. In
classical physics we have matter particles, and forces which act on those particles. These forces
can be represented by fields, such that fields and particles are distinct concepts. In non-relativistic
quantum mechanics, one unifies the concept of waves and particles (particles can have wave-like
characteristics), but fields are still distinct (e.g. one may quantise a particle in an electromagnetic
field in QM, provided the latter is treated classically). Taking into account the effects of relativity
for both particles and fields, one finds in QFT that all particles are excitation quanta of fields. That
is, the concepts of field and particle are no longer distinct, but actually manifestations of the same
thing, namely quantum fields. In this sense, QFT is more fundamental than either of its preceding
theories. Each force field and each matter field have particles associated with it.
Returning to our theory for the free Klein-Gordon field, let us investigate what happens under
interchange of the two particles. Since [â†(k1), â

†(k2)] = 0 for all k1,k2, we see that

|k2,k1〉 = |k1,k2〉, (147)

and hence the state is symmetric under interchange of the two particles. Thus, the particles
described by the scalar field are bosons.
Finally we complete the analogy to the harmonic oscillator by introducing a number operator

N̂(k) = â†(k)â(k), N̂ =

∫
d3k â†(k)â(k), (148)

which gives us the number of bosons described by a particular Fock state,

N̂ |0〉 = 0, N̂ |k〉 = |k〉, N̂ |k1 . . .kn〉 = n|k1 . . . kn〉. (149)

Of course the normal-ordered Hamiltonian can now simply be given in terms of this operator,

: Ĥ :=

∫
d3k

(2π)3 2E(k)
E(k)N̂ (k), (150)

i.e. when acting on a Fock state it simply sums up the energies of the individual particles to give

: Ĥ : |k1 . . .kn〉 = (E(k1) + . . . E(kn)) |k1 . . .kn〉. (151)

This concludes the quantisation of our free scalar field theory. We have followed the canonical
quantisation procedure familiar from quantum mechanics. Due to the infinite number of degrees
of freedom, we encountered a divergent vacuum energy, which we had to renormalise. The renor-
malised Hamiltonian and the Fock states that we constructed describe free relativistic, uncharged
spin zero particles of mass m, such as neutral pions, for example.

If we want to describe charged pions as well, we need to introduce complex scalar fields, the real
and imaginary parts being necessary to describe opposite charges. For particles with spin we need
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still more degrees of freedom and use vector or spinor fields, which have the appropriate rotation
and Lorentz transformation properties. For fermion fields (which satisfy the Dirac equation rather
than the Klein-Gordon equation), one finds that the condition of a positive-definite energy density
requires that one impose anti-commutation relations rather than commutation relations. This in
turn implies that multiparticle states are antisymmetric under interchange of identical fermions,
which we recognise as the Pauli exclusion principle. Thus, not only does QFT provide a consistent
theory of relativistic multiparticle systems; it also allows us to “derive” the Pauli principle, which
is put in by hand in non-relativistic quantum mechanics.

More details on vector and spinor fields can be found in the other courses at this school. Here,
we continue to restrict our attention to scalar fields, so as to more clearly illustrate what happens
when interactions are present.

4 Quantum Field Theory: Interacting Fields

So far we have seen how to quantise the Klein-Gordon Lagrangian, and seen that this describes free
scalar particles. For interesting physics, however, we need to know how to describe interactions,
which lead to nontrivial scattering processes. This is the subject of this section.

From now on we shall always discuss quantised real scalar fields. It is then convenient to drop
the “hats” on the operators that we have considered up to now. Interactions can be described by
adding a term Lint to the Lagrangian density, so that the full result L is given by

L = L0 + Lint (152)

where
L0 =

1
2∂µφ∂

µφ− 1
2m

2φ2 (153)

is the free Lagrangian density discussed before. The Hamiltonian density of the interaction is
related to Lint simply by

Hint = H−H0, (154)

where H0 is the free Hamiltonian. If the interaction Lagrangian only depends on φ (we will consider
such a case later in the course), one has

Hint = −Lint, (155)

as can be easily shown from the definition above. We shall leave the details of Lint unspecified for
the moment. What we will be concerned with mostly are scattering processes, in which two initial
particles with momenta p1 and p2 scatter, thereby producing a number of particles in the final
state, characterised by momenta k1, . . . ,kn. This is schematically shown in Fig. 4. Our task is to
find a description of such a scattering process in terms of the underlying quantum field theory.

4.1 The S-matrix

The timescales over which interactions happen are extremely short. The scattering (interaction)
process takes place during a short interval around some particular time t with −∞ � t � ∞.
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p1

p2

k1

k2

kn

Figure 4: Scattering of two initial particles with momenta p1 and p2 into n particles with momenta
k1, . . . ,kn in the final state.

Long before t, the incoming particles evolve independently and freely. They are described by a field
operator φin defined through

lim
t→−∞

φ(x) = φin(x), (156)

which acts on a corresponding basis of |in〉 states. Long after the collision the particles in the final
state evolve again like in the free theory, and the corresponding operator is

lim
t→+∞

φ(x) = φout(x), (157)

acting on states |out〉. The fields φin, φout are the asymptotic limits of the Heisenberg operator φ.
They both satisfy the free Klein-Gordon equation, i.e.

(�+m2)φin(x) = 0, (�+m2)φout(x) = 0. (158)

Operators describing free fields can be expressed as a superposition of plane waves (see Eq. (113)).
Thus, for φin we have

φin(x) =

∫
d3k

(2π)3 2E(k)

(
eik·xa†in(k) + e−ik·xain(k)

)
, (159)

with an entirely analogous expression for φout(x). Note that the operators a† and a also carry
subscripts “in” and “out”.

The above discussion assumes that the interaction is such that we can talk about free particles at
asymptotic times t → ±∞ i.e. that the interaction is only present at intermediate times. This is
not always a reasonable assumption e.g. it does not encompass the phenomenon of bound states,
in which incident particles form a composite object at late times, which no longer consists of free
particles. Nevertheless, the assumption will indeed allow us to discuss scattering processes, which
is the aim of this course. Note that we can only talk about well-defined particle states at t→ ±∞
(the states labelled by “in” and “out” above), as only at these times do we have a free theory, and
thus know what the spectrum of states is (using the methods of section 3). At general times t, the
interaction is present, and it is not possible in general to solve for the states of the quantum field
theory. Remarkably, we will end up seeing that we can ignore all the complicated stuff at interme-
diate times, and solve for scattering probabilities purely using the properties of the asymptotic fields.
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At the asymptotic times t = ±∞, we can use the creation operators a†in and a†out to build up Fock
states from the vacuum. For instance

a†in(p1) a
†
in(p2)|0〉 = |p1,p2; in〉, (160)

a†out(k1) · · · a†out(kn)|0〉 = |k1, . . . ,kn; out〉. (161)

We must now distinguish between Fock states generated by a†in and a†out, and therefore we have
labelled the Fock states accordingly. In eqs. (160) and (161) we have assumed that there is a stable
and unique vacuum state of the free theory (the vacuum at general times t will be that of the full
interacting theory, and thus differ from this in general):

|0〉 = |0; in〉 = |0; out〉. (162)

Mathematically speaking, the a†in’s and a
†
out’s generate two different bases of the Fock space. Since

the physics that we want to describe must be independent of the choice of basis, expectation values
expressed in terms of “in” and “out” operators and states must satisfy

〈in|φin(x) |in〉 = 〈out|φout(x) |out〉 . (163)

Here |in〉 and |out〉 denote generic “in” and “out” states. We can relate the two bases by introducing
a unitary operator S such that

φin(x) = S φout(x)S
† (164)

|in〉 = S |out〉 , |out〉 = S† |in〉 , S†S = 1. (165)

S is called the S-matrix or S-operator. Note that the plane wave solutions of φin and φout also
imply that

a†in = S a†out S
†, âin = S âout S

†. (166)

By comparing “in” with “out” states one can extract information about the interaction – this is
the very essence of detector experiments, where one tries to infer the nature of the interaction by
studying the products of the scattering of particles that have been collided with known energies.
As we will see below, this information is contained in the elements of the S-matrix.
By contrast, in the absence of any interaction, i.e. for Lint = 0 the distinction between φin and φout
is not necessary. They can thus be identified, and then the relation between different bases of the
Fock space becomes trivial, S = 1, as one would expect.
What we are ultimately interested in are transition amplitudes between an initial state i of, say,
two particles of momenta p1,p2, and a final state f , for instance n particles of unequal momenta.
The transition amplitude is then given by

〈f, out| i, in〉 = 〈f, out|S |i, out〉 = 〈f, in|S |i, in〉 ≡ Sfi. (167)

The S-matrix element Sfi therefore describes the transition amplitude for the scattering process
in question. The scattering cross section, which is a measurable quantity, is then proportional to
|Sfi|2. All information about the scattering is thus encoded in the S-matrix, which must therefore
be closely related to the interaction Hamiltonian density Hint. However, before we try to derive
the relation between S and Hint we have to take a slight detour.
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4.2 More on time evolution: Dirac picture

The operators φ(x, t) and π(x, t) which we have encountered are Heisenberg fields and thus time-
dependent. The state vectors are time-independent in the sense that they do not satisfy a non-trivial
equation of motion. Nevertheless, state vectors in the Heisenberg picture can carry a time label.
For instance, the “in”-states of the previous subsection are defined at t = −∞. The relation of the
Heisenberg operator φH(x) with its counterpart φS in the Schrödinger picture is given by

φH(x, t) = eiHt φS e−iHt, H = H0 +Hint, (168)

Note that this relation involves the full Hamiltonian H = H0 +Hint in the interacting theory. We
have so far found solutions to the Klein-Gordon equation in the free theory, and so we know how
to handle time evolution in this case. However, in the interacting case the Klein-Gordon equation
has an extra term,

(�+m2)φ(x) +
∂Vint(φ)

∂φ
= 0, (169)

due to the potential of the interactions. Apart from very special cases of this potential, the equation
cannot be solved anymore in closed form, and thus we no longer know the time evolution. It is
therefore useful to introduce a new quantum picture for the interacting theory, in which the time
dependence is governed by H0 only. This is the so-called Dirac or Interaction picture. The relation
between fields in the Interaction picture, φI , and in the Schrödinger picture, φS , is given by

φI(x, t) = eiH0t φS e−iH0t. (170)

At t = −∞ the interaction vanishes, i.e. Hint = 0, and hence the fields in the Interaction and
Heisenberg pictures are identical, i.e. φH(x, t) = φI(x, t) for t → −∞. The relation between φH

and φI can be worked out easily:

φH(x, t) = eiHt φS e−iHt

= eiHt e−iH0t eiH0tφS e−iH0t

︸ ︷︷ ︸
φI(x,t)

eiH0t e−iHt

= U−1(t)φI(x, t)U(t), (171)

where we have introduced the unitary operator U(t)

U(t) = eiH0t e−iHt, U †U = 1. (172)

The field φH(x, t) contains the information about the interaction, since it evolves over time with
the full Hamiltonian. In order to describe the “in” and “out” field operators, we can now make the
following identifications:

t→ −∞ : φin(x, t) = φI(x, t) = φH(x, t), (173)

t→ +∞ : φout(x, t) = φH(x, t). (174)

Furthermore, since the fields φI evolve over time with the free Hamiltonian H0, they always act in
the basis of “in” vectors, such that

φin(x, t) = φI(x, t), −∞ < t <∞. (175)
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The relation between φI and φH at any time t is given by

φI(x, t) = U(t)φH (x, t)U−1(t). (176)

As t→ ∞ the identifications of eqs. (174) and (175) yield

φin = U(∞)φout U
†(∞). (177)

From the definition of the S-matrix, Eq. (164) we then read off that

lim
t→∞

U(t) = S. (178)

We have thus derived a formal expression for the S-matrix in terms of the operator U(t), which
tells us how operators and state vectors deviate from the free theory at time t, measured relative
to t0 = −∞, i.e. long before the interaction process.
An important boundary condition for U(t) is

lim
t→−∞

U(t) = 1. (179)

What we mean here is the following: the operator U actually describes the evolution relative to
some initial time t0, which we will normally suppress, i.e. we write U(t) instead of U(t, t0). We
regard t0 merely as a time label and fix it at −∞, where the interaction vanishes. Equation (179)
then simply states that U becomes unity as t → t0, which means that in this limit there is no
distinction between Heisenberg and Dirac fields.
Using the definition of U(t), Eq. (172), it is an easy exercise to derive the equation of motion for
U(t):

i
d

dt
U(t) = Hint(t)U(t), Hint(t) = eiH0tHint e

−iH0t. (180)

The time-dependent operator Hint(t) is defined in the interaction picture, and depends on the fields
φin, πin in the “in” basis. Let us now solve the equation of motion for U(t) with the boundary
condition lim

t→−∞
U(t) = 1. Integrating Eq. (180) gives

∫ t

−∞

d

dt1
U(t1) dt1 = −i

∫ t

−∞

Hint(t1)U(t1) dt1

U(t)− U(−∞) = −i
∫ t

−∞

Hint(t1)U(t1) dt1

⇒ U(t) = 1− i

∫ t

−∞

Hint(t1)U(t1) dt1. (181)

The right-hand side still depends on U , but we can substitute our new expression for U(t) into the
integrand, which gives

U(t) = 1− i

∫ t

−∞

Hint(t1)

{
1− i

∫ t1

−∞

Hint(t2)U(t2) dt2

}
dt1

= 1− i

∫ t

−∞

Hint(t1)dt1 −
∫ t

−∞

dt1Hint(t1)

∫ t1

−∞

dt2Hint(t2)U(t2), (182)
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where t2 < t1 < t. This procedure can be iterated further, so that the nth term in the sum is

(−i)n
∫ t

−∞

dt1

∫ t1

−∞

dt2 · · ·
∫ tn−1

−∞

dtnHint(t1)Hint(t2) · · ·Hint(tn). (183)

This iterative solution could be written in much more compact form, were it not for the fact that
the upper integration bounds were all different, and that the ordering tn < tn−1 < . . . < t1 < t had
to be obeyed. Time ordering is an important issue, since one has to ensure that the interaction
Hamiltonians act at the proper time, thereby ensuring the causality of the theory. By introducing
the time-ordered product of operators, one can use a compact notation, such that the resulting
expressions still obey causality. The time-ordered product of two fields φ(t1) and φ(t2) is defined
as

T {φ(t1)φ(t2)} =

{
φ(t1)φ(t2) t1 > t2
φ(t2)φ(t1) t1 < t2

≡ θ(t1 − t2)φ(t1)φ(t2) + θ(t2 − t1)φ(t2)φ(t1), (184)

where θ denotes the step function. The generalisation to products of n operators is obvious. Using
time ordering for the nth term of Eq. (183) we obtain

(−i)n
n!

n∏

i=1

∫ t

−∞

dti T {Hint(t1)Hint(t2) · · ·Hint(tn)} . (185)

Here we have replaced each upper limit of integration with t. Each specific ordering in the time-
ordered product gives a term identical to eq. (183), where applying the T operator corresponds
to setting the upper limit of integration to the relevant ti in each integral. However, we have
overcounted by a factor n!, corresponding to the number of ways of ordering the fields in the time
ordered product. Thus one must divide by n! as shown. We may recognise eq. (185) as the nth
term in the series expansion of an exponential, and thus can finally rewrite the solution for U(t) in
compact form as

U(t) = T exp

{
−i
∫ t

−∞

Hint(t
′) dt′

}
, (186)

where the “T” in front ensures the correct time ordering.

4.3 S-matrix and Green’s functions

The S-matrix, which relates the “in” and “out” fields before and after the scattering process, can
be written as

S = 1 + iT, (187)

where T is commonly called the T -matrix. The fact that S contains the unit operator means that
also the case where none of the particles scatter is encoded in S. On the other hand, the non-trivial
case is described by the T -matrix, and this is what we are interested in. So far we have derived
an expression for the S-matrix in terms of the interaction Hamiltonian, and we could use this in
principle to calculate scattering processes. However, there is a slight complication owing to the
fact that the vacuum of the free theory is not the same as the true vacuum of the full, interacting
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theory. Instead, we will follow the approach of Lehmann, Symanzik and Zimmerman, which relates
the S-matrix to n-point Green’s functions

Gn(x1, . . . xn) = 〈0|T (φ(x1) . . . φ(xn))|0〉 (188)

i.e. vacuum expectation values of Heisenberg fields. We will see later how to calculate these in
terms of vacuum expectation values of “in” fields (i.e. in the free theory).
In order to relate S-matrix elements to Green’s functions, we have to express the “in/out”-states

in terms of creation operators a†in/out and the vacuum, then express the creation operators by the
fields φin/out, and finally use the time evolution to connect those with the fields φ in our Lagrangian.
Let us consider again the scattering process depicted in Fig. 4. The S-matrix element in this case
is

Sfi =
〈
k1,k2, . . . ,kn; out

∣∣∣p1,p2; in
〉

=
〈
k1,k2, . . . ,kn; out

∣∣∣a†in(p1)
∣∣∣p2; in

〉
, (189)

where a†in is the creation operator pertaining to the “in” field φin. Our task is now to express a†in
in terms of φin, and repeat this procedure for all other momenta labelling our Fock states.
The following identities will prove useful

a†(p) = i

∫
d3x

{(
∂0 e

−iq·x
)
φ(x)− e−iq·x (∂0φ(x))

}

≡ −i
∫
d3x e−iq·x

←→

∂0 φ(x), (190)

â(p) = −i
∫
d3x

{(
∂0 e

iq·x
)
φ(x)− eiq·x (∂0φ(x))

}

≡ i

∫
d3x eiq·x

←→

∂0 φ(x). (191)

The S-matrix element can then be rewritten as

Sfi = −i
∫
d3x1 e

−ip1·x1

←→

∂0

〈
k1, . . . ,kn; out

∣∣∣φin(x1)
∣∣∣p2; in

〉

= −i lim
t1→−∞

∫
d3x1 e

−ip1·x1

←→

∂0

〈
k1, . . . ,kn; out

∣∣∣φ(x1)
∣∣∣p2; in

〉
, (192)

where in the last line we have used Eq. (156) to replace φin by φ. We can now rewrite limt1→−∞

using the following identity, which holds for an arbitrary, differentiable function f(t), whose limit
t→ ±∞ exists:

lim
t→−∞

f(t) = lim
t→+∞

f(t)−
∫ +∞

−∞

df

dt
dt. (193)

The S-matrix element then reads

Sfi = −i lim
t1→+∞

∫
d3x1 e

−ip1·x1

←→

∂0

〈
k1, . . . ,kn; out

∣∣∣φ(x1)
∣∣∣p2; in

〉

+i

∫ +∞

−∞

dt1
∂

∂t1

{∫
d3x1 e

−ip1·x1

←→

∂0

〈
k1, . . . ,kn; out

∣∣∣φ(x1)
∣∣∣p2; in

〉}
. (194)

34



The first term in this expression involves limt1→+∞ φ = φout, which gives rise to a contribution

∝
〈
k1, . . . ,kn; out

∣∣∣a†out(p1)
∣∣∣p2; in

〉
. (195)

This is non-zero only if p1 is equal to one of k1, . . . ,kn. This, however, means that the particle
with momentum p1 does not scatter, and hence the first term does not contribute to the T -matrix
of Eq. (187). We are then left with the following expression for Sfi:

Sfi = −i
∫
d4x1

〈
k1, . . . ,kn; out

∣∣∣∂0
{(
∂0e
−ip1·x1

)
φ(x1)− e−ip1·x1 (∂0φ(x1))

} ∣∣∣p2; in
〉
. (196)

The time derivatives in the integrand can be worked out:

∂0
{(
∂0e
−ip1·x1

)
φ(x1)− e−ip1·x1 (∂0φ(x1))

}

= − [E(p1)]
2 e−ip1·x1 φ(x1)− e−ip1·x1 ∂20φ(x1)

= −
{((

−∇2 +m2
)
e−ip1·x1

)
φ(x1) + e−ip1·x1 ∂20 φ(x1)

}
, (197)

where we have used that −∇2e−ip1·x1 = p2
1 e
−ip1·x1 . For the S-matrix element one obtains

Sfi = i

∫
d4x1 e

−ip1·x1

〈
k1, . . . ,kn; out

∣∣∣
(
∂20 −∇2 +m2

)
φ(x1)

∣∣∣p2; in
〉

= i

∫
d4x1 e

−ip1·x1

(
�x1

+m2
) 〈

k1, . . . ,kn; out
∣∣∣φ(x1)

∣∣∣p2; in
〉
, (198)

where we have used integration by parts twice so that ∇2 acts on φ(x1) rather than on e−ip1·x1 .
What we have obtained after this rather lengthy step of algebra is an expression in which the
(Heisenberg) field operator is sandwiched between Fock states, one of which has been reduced to
a one-particle state. We can now successively eliminate all momentum variables from the Fock
states, by repeating the procedure for the momentum p2, as well as the n momenta of the “out”
state. The final expression for Sfi is

Sfi = (i)n+2

∫
d4x1

∫
d4x2

∫
d4y1 · · ·

∫
d4yn e(−ip1·x1−ip2·x2+ik1·y1+···+ikn·yn)

×
(
�x1

+m2
) (

�x2
+m2

) (
�y1 +m2

)
· · ·
(
�yn +m2

)

×
〈
0; out

∣∣∣T{φ(y1) · · · φ(yn)φ(x1)φ(x2)}
∣∣∣0; in

〉
, (199)

where the time-ordering inside the vacuum expectation value (VEV) ensures that causality is
obeyed. The above expression is known as the Lehmann-Symanzik-Zimmermann (LSZ) reduc-
tion formula. It relates the formal definition of the scattering amplitude to a vacuum expectation
value of time-ordered fields. Since the vacuum is uniquely the same for “in/out”, the VEV in the
LSZ formula for the scattering of two initial particles into n particles in the final state is recognised
as the (n+ 2)-point Green’s function:

Gn+2(y1, y2, . . . , yn, x1, x2) =
〈
0
∣∣∣T{φ(y1) · · ·φ(yn)φ(x1)φ(x2)}

∣∣∣0
〉
. (200)

You will note that we still have not calculated or evaluated anything, but merely rewritten the
expression for the scattering matrix elements. Nevertheless, the LSZ formula is of tremendous
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importance and a central piece of QFT. It provides the link between fields in the Lagrangian and
the scattering amplitude S2

fi, which yields the cross section, measurable in an experiment. Up to
here no assumptions or approximations have been made, so this connection between physics and
formalism is rather tight. It also illustrates a profound phenomenon of QFT and particle physics:
the scattering properties of particles, in other words their interactions, are encoded in the vacuum
structure, i.e. the vacuum is non-trivial!

4.4 How to compute Green’s functions

Of course, in order to calculate cross sections, we need to compute the Green’s functions. Alas,
for any physically interesting and interacting theory this cannot be done exactly, contrary to the
free theory discussed earlier. Instead, approximation methods have to be used in order to simplify
the calculation, while hopefully still giving reliable results. Or one reformulates the entire QFT
as a lattice field theory, which in principle allows to compute Green’s functions without any ap-
proximations (in practice this still turns out to be a difficult task for physically relevant systems).
This is what many theorists do for a living. But the formalism stands, and if there are discrep-
ancies between theory and experiments, one “only” needs to check the accuracy with which the
Green’s functions have been calculated or measured, before approving or discarding a particular
Lagrangian.
In the next section we shall discuss how to compute the Green’s function of scalar field theory in
perturbation theory. Before we can tackle the actual computation, we must take a further step.
Let us consider the n-point Green’s function

Gn(x1, . . . , xn) = 〈0 |T{φ(x1) · · ·φ(xn)}| 0〉 . (201)

The fields φ which appear in this expression are Heisenberg fields, whose time evolution is governed
by the full Hamiltonian H0 + Hint. In particular, the φ’s are not the φin’s. We know how to
handle the latter, because they correspond to a free field theory, but not the former, whose time
evolution is governed by the interacting theory, whose solutions we do not know. Let us thus start
to isolate the dependence of the fields on the interaction Hamiltonian. Recall the relation between
the Heisenberg fields φ(t) and the “in”-fields4

φ(t) = U−1(t)φin(t)U(t). (202)

We now assume that the fields are properly time-ordered, i.e. t1 > t2 > . . . > tn, so that we can
forget about writing T (· · · ) everywhere. After inserting Eq. (202) into the definition of Gn one
obtains

Gn =
〈
0
∣∣U−1(t1)φin(t1)U(t1)U

−1(t2)φin(t2)U(t2) · · ·
× U−1(tn)φin(tn)U(tn)

∣∣0
〉
. (203)

Now we introduce another time label t such that t� t1 and −t� t1. For the n-point function we
now obtain

Gn =
〈
0
∣∣∣U−1(t)

{
U(t)U−1(t1)φin(t1)U(t1)U

−1(t2)φin(t2)U(t2) · · ·

× U−1(tn)φin(tn)U(tn)U
−1(−t)

}
U(−t)

∣∣∣0
〉
. (204)

4Here and in the following we suppress the spatial argument of the fields for the sake of brevity.
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The expression in curly braces is now time-ordered by construction. An important observation at
this point is that it involves pairs of U and its inverse, for instance

U(t)U−1(t1) ≡ U(t, t1). (205)

One can easily convince oneself that U(t, t1) provides the net time evolution from t1 to t. We can
now write Gn as

Gn =
〈
0
∣∣∣U−1(t)T

{
φin(t1) · · ·φin(tn)U(t, t1)U(t1, t2) · · ·U(tn,−t)︸ ︷︷ ︸

U(t,−t)

}
U(−t)

∣∣∣0
〉
, (206)

where we have used the fact that we may commute the U operators within the time-ordered product.
Let us now take t → ∞. The relation between U(t) and the S-matrix Eq. (178), as well as the
boundary condition Eq. (179) tell us that

lim
t→∞

U(−t) = 1, lim
t→∞

U(t,−t) = S, (207)

which can be inserted into the above expression. We still have to work out the meaning of 〈0|U −1(∞)
in the expression for Gn. In a paper by Gell-Mann and Low it was argued that the time evolution
operator must leave the vacuum invariant (up to a phase), which justifies the ansatz

〈0|U−1(∞) = K〈0|, (208)

with K being the phase5. Multiplying this relation with |0〉 from the right gives

〈0|U−1(∞)|0〉 = K〈0|0〉 = K. (209)

Furthermore, Gell-Mann and Low showed that

〈0|U−1(∞)|0〉 = 1

〈0|U(∞)|0〉 , (210)

which implies

K =
1

〈0|S|0〉 . (211)

After inserting all these relations into the expression for Gn we obtain

Gn(x1, . . . , xn) =
〈0|T {φin(x1) · · · φin(xn)S} |0〉

〈0|S|0〉 . (212)

The S-matrix is given by

S = T exp

{
−i
∫ +∞

−∞

Hint(t) dt

}
, Hint = Hint(φin, πin), (213)

and thus we have finally succeeded in expressing the n-point Green’s function exclusively in terms
of the “in”-fields. This completes the derivation of a relation between the general definition of
the scattering amplitude Sfi and the VEV of time-ordered “in”-fields. This has been a long and

5As hinted at earlier, K relates the vacuum of the free theory to the true vacuum of the interacting theory.
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technical discussion, but the main points are the following:

Scattering probabilities are related to S-matrix elements. To calculate S-matrix elements for an
n particle scattering process, one must first calculate the n particle Green’s function (eq. (212)).
Then one plugs this into the LSZ formula (eq. (199)).

In fact, the Green’s functions cannot be calculated exactly using eq. (212). Instead, one can only
obtain answers in the limit in which the interaction strength λ is small. This is the subject of the
following sections.

5 Perturbation Theory

In this section we are going to calculate the Green’s functions of scalar quantum field theory
explicitly. We will specify the interaction Lagrangian in detail and use an approximation known
as perturbation theory. At the end we will derive a set of rules, which represent a systematic
prescription for the calculation of Green’s functions, and can be easily generalised to apply to
other, more complicated field theories. These are the famous Feynman rules.
We start by making a definite choice for the interaction Lagrangian Lint. Although one may think
of many different expressions for Lint, one has to obey some basic principles: firstly, Lint must
be chosen such that the potential it generates is bounded from below – otherwise the system
has no ground state. Secondly, our interacting theory should be renormalisable. Despite being
of great importance, the second issue will not be addressed in these lectures. The requirement
of renormalisability arises because the non-trivial vacuum, much like a medium, interacts with
particles to modify their properties. Moreover, if one computes quantities like the energy or charge
of a particle, one typically obtains a divergent result6. There are classes of quantum field theories,
called renormalisable, in which these divergences can be removed by suitable redefinitions of the
fields and the parameters (masses and coupling constants).
For our theory of a real scalar field in four space-time dimensions, it turns out that the only
interaction term which leads to a renormalisable theory must be quartic in the fields. Thus we
choose

Lint = − λ

4!
φ4(x), (214)

where the coupling constant λ describes the strength of the interaction between the scalar fields,
much like, say, the electric charge describing the strength of the interaction between photons and
electrons. The factor 4! is for later convenience. The full Lagrangian of the theory then reads

L = L0 + Lint =
1

2
(∂µφ)

2 − 1

2
m2φ2 − λ

4!
φ4, (215)

and the explicit expressions for the interaction Hamiltonian and the S-matrix are

Hint = −Lint, Hint =
λ

4!

∫
d3xφ4in(x, t)

S = T exp

{
−i λ

4!

∫
d4xφ4in(x)

}
. (216)

6This is despite the subtraction of the vacuum energy discussed earlier.
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The n-point Green’s function is

Gn(x1, . . . , xn)

=

∞∑

r=0

(
− iλ
4!

)r 1

r!

〈
0

∣∣∣∣T
{
φin(x1) · · · φin(xn)

(∫
d4y φ4in(y)

)r}∣∣∣∣ 0
〉

∞∑

r=0

(
− iλ
4!

)r 1

r!

〈
0

∣∣∣∣T
(∫

d4y φ4in(y)

)r∣∣∣∣ 0
〉 . (217)

This expression cannot be dealt with as it stands. In order to evaluate it we must expand Gn in
powers of the coupling λ and truncate the series after a finite number of terms. This only makes
sense if λ is sufficiently small. In other words, the interaction Lagrangian must act as a small
perturbation on the system. As a consequence, the procedure of expanding Green’s functions in
powers of the coupling is referred to as perturbation theory. We will see that there is a natural
diagrammatic representation of this expansion (Feynman diagrams). First, we need to know how
to calculate the vacuum expectation values of time ordered products. This is the subject of the
next section.

5.1 Wick’s Theorem

The n-point Green’s function in Eq. (217) involves the time-ordered product over at least n fields.
There is a method to express VEV’s of n fields, i.e. 〈0|T {φin(x1) · · · φin(xn)} |0〉 in terms of VEV’s
involving two fields only. This is known as Wick’s theorem.
Let us for the moment ignore the subscript “in” and return to the definition of normal-ordered fields.
The normal-ordered product : φ(x1)φ(x2) : differs from φ(x1)φ(x2) by the vacuum expectation
value, i.e.

φ(x1)φ(x2) = : φ(x1)φ(x2) : +〈0|φ(x1)φ(x2)|0〉. (218)

We are now going to combine normal-ordered products with time ordering. The time-ordered
product T{φ(x1)φ(x2)} is given by

T{φ(x1)φ(x2)} = φ(x1)φ(x2)θ(t1 − t2) + φ(x2)φ(x1)θ(t2 − t1)

= : φ(x1)φ(x2) :
(
θ(t1 − t2) + θ(t2 − t1)

)

+〈0|φ(x1)φ(x2)θ(t1 − t2) + φ(x2)φ(x1)θ(t2 − t1)|0〉. (219)

Here we have used the important observation that

: φ(x1)φ(x2) : = : φ(x2)φ(x1) :, (220)

which means that normal-ordered products of fields are automatically time-ordered.7 Equation (219)
is Wick’s theorem for the case of two fields:

T{φ(x1)φ(x2)} = : φ(x1)φ(x2) : +〈0|T {φ(x1)φ(x2)} |0〉. (221)

For the case of three fields, Wick’s theorem yields

T{φ(x1)φ(x2)φ(x3)} = : φ(x1)φ(x2)φ(x3) : + : φ(x1) : 〈0|T{φ(x2)φ(x3)}|0〉
+ : φ(x2) : 〈0|T{φ(x1)φ(x3)}|0〉+ : φ(x3) : 〈0|T{φ(x1)φ(x2)}|0〉 (222)

7The reverse is, however, not true!
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At this point the general pattern becomes clear: any time-ordered product of fields is equal to its
normal-ordered version plus terms in which pairs of fields are removed from the normal-ordered
product and sandwiched between the vacuum to form 2-point functions. Then one sums over all
permutations. Without proof we give the expression for the general case of n fields (n even):

T{φ(x1) · · ·φ(xn)} =

: φ(x1) · · · φ(xn) :
+ : φ(x1) · · · φ̂(xi) · · · φ̂(xj) · · ·φ(xn) : 〈0|T{φ(xi)φ(xj)}|0〉 + perms.

+ : φ(x1) · · · φ̂(xi) · · · φ̂(xj) · · · φ̂(xk) · · · φ̂(xl) · · ·φ(xn) :
× 〈0|T{φ(xi)φ(xj)}|0〉〈0|T{φ(xk)φ(xl)}|0〉 + perms.

+ . . .+

+〈0|T{φ(x1)φ(x2)}|0〉〈0|T{φ(x3)φ(x4)}|0〉 · · · 〈0|T{φ(xn−1)φ(xn)}|0〉
+ perms.. (223)

The symbol φ̂(xi) indicates that φ(xi) has been removed from the normal-ordered product.
Let us now go back to 〈0|T{φ(x1) · · · φ(xn)}|0〉. If we insert Wick’s theorem, then we find that only
the contribution in the last line of Eq. (223) survives: by definition the VEV of a normal-ordered
product of fields vanishes, and it is precisely the last line of Wick’s theorem in which no normal-
ordered products are left. The only surviving contribution is that in which all fields have been
paired or “contracted”. Sometimes a contraction is represented by the notation:

φ (xi)φ︸ ︷︷ ︸(xj) ≡ 〈0|T{φ(xi)φ(xj)}|0〉, (224)

i.e. the pair of fields which is contracted is joined by the braces. Wick’s theorem can now be
rephrased as

〈0|T{φ(x1) · · · φ(xn)}|0〉 = sum of all possible contractions of n fields. (225)

An example of this result is the 4-point function

〈0|T{φ(x1)φ(x2)φ(x3)φ(x4)}|0〉 = φ (x1)φ︸ ︷︷ ︸(x2)φ (x3)φ︸ ︷︷ ︸(x4)

+φ (x1)φ
︷ ︸︸ ︷
(x2)φ(x3)φ︸ ︷︷ ︸(x4) + φ(x1)φ

︷ ︸︸ ︷
(x2)φ(x3)φ(x4)︸ ︷︷ ︸ . (226)

5.2 The Feynman propagator

Using Wick’s Theorem one can relate any n-point Green’s functions to an expression involving only
2-point functions. Let us have a closer look at

G2(x, y) = 〈0|T{φin(x)φin(y)}|0〉. (227)
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We can now insert the solution for φ in terms of â and â†. If we assume tx > ty then G2(x, y) can
be written as

G2(x, y) =

∫
d3p d3q

(2π)6 4E(p)E(q)

×
〈
0
∣∣∣
(
â†(p) eip·x + â(p) e−ip·x

)(
â†(q) eiq·y + â(q) e−iq·y

)∣∣∣ 0
〉

=

∫
d3p d3q

(2π)6 4E(p)E(q)
e−ip·x+iq·y

〈
0
∣∣∣â(p)â†(q)

∣∣∣ 0
〉
. (228)

This shows that G2 can be interpreted as the amplitude for a meson which is created at y and
destroyed again at point x. We can now replace â(p)â†(q) by its commutator:

G2(x, y) =

∫
d3p d3q

(2π)6 4E(p)E(q)
e−ip·x+iq·y

〈
0
∣∣∣
[
â(p), â†(q)

]∣∣∣ 0
〉

=

∫
d3p

(2π)3 2E(p)
e−ip·(x−y), (229)

and the general result, after restoring time-ordering, reads

G2(x, y) =

∫
d3p

(2π)3 2E(p)

(
e−ip·(x−y)θ(tx − ty) + eip·(x−y)θ(ty − tx)

)
. (230)

Furthermore, using contour integration one can show that this expression can be rewritten as a
4-dimensional integral

G2(x, y) = i

∫
d4p

(2π)4
e−ip·(x−y)

p2 −m2 + iε
, (231)

where ε is a small parameter which ensures that G2 does not develop a pole. This calculation has
established that G2(x, y) actually depends only on the difference (x− y). Equation (231) is called
the Feynman propagator GF (x− y):

GF (x− y) ≡ 〈0|T{φ(x)φ(y)}|0〉 = i

∫
d4p

(2π)4
e−ip·(x−y)

p2 −m2 + iε
. (232)

The Feynman propagator is a Green’s function of the Klein-Gordon equation, i.e. it satisfies

(
�x +m2

)
GF (x− y) = −iδ4(x− y), (233)

and describes the propagation of a meson between the space-time points x and y.

5.3 Two-particle scattering to O(λ)

Let us now consider a scattering process in which two incoming particles with momenta p1 and p2

scatter into two outgoing ones with momenta k1 and k2, as shown in Fig. 5. The S-matrix element
in this case is

Sfi = 〈k1,k2; out|p1,p2; in〉
= 〈k1,k2; in|S|p1,p2; in〉, (234)
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p1

p2

k1

k2

Figure 5: Scattering of two initial particles with momenta p1 and p2 into 2 particles with momenta
k1 and k2.

and S = 1 + iT . The LSZ formula Eq. (199) tells us that we must compute G4 in order to obtain
Sfi. Let us work out G4 in powers of λ using Wick’s theorem.

Suppressing the subscripts “in” from now on, the expression we have to evaluate order by order in
λ is

G4(x1, . . . , x4) (235)

=

∞∑

r=0

(
− iλ
4!

)r 1

r!

〈
0

∣∣∣∣T
{
φ(x1)φ(x2)φ(x3)φ(x4)

(∫
d4y φ4(y)

)r}∣∣∣∣ 0
〉

∞∑

r=0

(
− iλ
4!

)r 1

r!

〈
0

∣∣∣∣T
(∫

d4y φ4(y)

)r∣∣∣∣ 0
〉 .

At O(λ0), the denominator is 1, and the numerator gives

〈0|T{φ(x1)φ(x2)φ(x3)φ(x4)}|0〉 = GF (x1 − x2)GF (x3 − x4) +GF (x1 − x3)GF (x2 − x4)

+GF (x1 − x4)GF (x2 − x3), (236)

where we have used Wick’s theorem. We may represent this graphically as follows:

x3

x4

x1

x2

+

x3

x4

x1

x2

+

x3

x4

x1

x2

But this is the same answer as if we had set λ = 0, so O(λ0) does not describe scattering and hence
is not a contribution to the T -matrix.

The first non-trivial scattering happens at O(λ). For example, the expansion of the above formula
includes the contribution (from the numerator)

− iλ
4!
〈0|T [φ(x1) . . . φ(x4)

∫
d4yφ4(y)|0〉 = − iλ

4!

∫
d4y 4!GF (x1 − y)GF (x2 − y)GF (x3 − y)

×GF (x4 − y), (237)
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where the 4! inside the integral arises from all possible contractions in Wick’s theorem. This has
the graphical representation

x3

x4

x1

x2

y
−iλ

∫
d4y

where each line corresponds to a propagator, and we have assinged a vertex to each space-time
point. Also at this order, we have the graphs

x3

x4

x1

x2

+

x3

x4

x1

x2

+ . . .

We will see later on that neither of these graphs contributes to the S-matrix element (after sub-
stituting the Green’s function into the LSZ formula of eq. (199)), as they are not fully connected.
By this we mean that not all external particle vertices are connected to the same graph. At yet
higher orders, we may have graphs wich involve fully connected pieces, dressed by additional “vac-
uum bubbles” (such as that which is sitting in the middle of the right-most figure above). These
vacuum bubbles are cancelled by the denominator in eq. (212) which, given that it contains no ex-
ternal fields, generates all possible vacuum graphs. The presence of these vacuum graphs explains
why the vacuum of the interacting theory is different to that of the free theory, as mentioned earlier.

To summarise, the final answer for the scattering amplitude to O(λ) is given by Eq. (237).

5.4 Graphical representation of the Wick expansion: Feynman rules

We have already encountered the graphical representation of the expansion of Green’s functions in
perturbation theory after applying Wick’s theorem. It is possible to formulate a simple set of rules
which allow us to draw the graphs directly without using Wick’s theorem and to write down the
corresponding algebraic expressions.
We again consider a neutral scalar field whose Lagrangian is

L =
1

2
∂µ φ∂

µφ− 1

2
m2φ2 − λ

4!
φ4. (238)

Suppose now that we want to compute the O(λm) contribution to the n-point Green’s function
Gn(x1, . . . , xn). This is achieved by going through the following steps:

(1) Draw all distinct diagrams with n external lines and m 4-fold vertices:

• Draw n dots and label them x1, . . . , xn (external points)

• Draw m dots and label them y1, . . . , ym (vertices)
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• Join the dots according to the following rules:

– only one line emanates from each xi

– exactly four lines run into each yj

– the resulting diagram must be connected, i.e. there must be a continuous path
between any two points.

(2) Assign a factor − iλ
4!

∫
d4yi to the vertex at yi

(3) Assign a factor GF (xi − yj) to the line joining xi and yj

(4) Multiply by the number of contractions C from the Wick expansion which lead to the same
diagram.

These are the Feynman rules for scalar field theory in position space.
Let us look at an example, namely the 2-point function. According to the Feynman rules the
contributions up to order λ2 are as follows:

O(1): x1 x2 = GF (x1 − x2)

O(λ):

x1 x2y

= iλ
2

∫
d4yGF (x1 − y)GF (x2 − y)GF (0)

O(λ2):

x1 x2y1

y2
= −λ2

4

∫
d4y

∫
d4zGF (x1 − y)GF (x2 − y)

×G2
F (y − z)GF (0)

O(λ2): x1 x2y1 y2

= C
(
− iλ
4!

)2 ∫
d4y1d

4y2 GF (x1 − y1) [GF (y1 − y2)]
3GF (y2 − x2)

The combinatorial factor for this contribution is worked out as C = 4 · 4!. Note that the same
graph, but with the positions of y1 and y2 interchanged is topologically distinct. Numerically it
has the same value as the above graph, and so the corresponding expression has to be multiplied
by a factor 2.
Another contribution at order λ2 is
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O(λ2):

x1 x2

y1 y2 vacuum contribution;

not connected

This contribution must be discarded, since not all of the points are connected via a continuous line.

5.5 Feynman rules in momentum space

It is often simpler to work in momentum space, and hence we will discuss the derivation of Feynman
rules in this case. This also reflects what is typically done in scattering experiments (i.e. incoming
and outgoing particles have definite momentum). If one works in momentum space, the Green’s
functions are related to those in position space by a Fourier transform

G̃n(p1, . . . , pn) =

∫
d4x1 · · ·

∫
d4xn e

ip1·x1+...+ipn·xn Gn(x1, . . . , xn). (239)

The Feynman rules then serve to compute the Green’s function G̃n(p1, . . . , pn) order by order in
the coupling.

Let us see how this works for the 2 → 2 scattering example we considered above. At O(λ) this was
given in eq. (237), which we may simplify slightly to

−iλ
∫
d4y GF (x1 − y)GF (x2 − y)GF (x3 − y)GF (x4 − y). (240)

We may now substitute in the momentum space form of each propagator (eq. (232)) to give

− iλ

∫
d4y

(
4∏

i=1

∫
d4pi
(2π)4

i

p2i −m2 + iε

)
e−i

∑
i pi·(xi−y)

= −iλ(2π)4δ4(p1 + p2 + p3 + p4)

(
4∏

i=1

∫
d4pi
(2π)4

i

p2i −m2 + iε

)
e−i

∑
i pi·xi ,

where we have carried out the y integration in the second line. Substituting this into eq. (239) and
carrying out the integrals over each xi, one finds

G̃4(p1, . . . , pn) = −iλ(2π)4δ4(p1 + p2 + p3 + p4)

(
4∏

i

∫
d4pi
(2π)4

i

p2i −m2 + iε
(2π)4δ(pi)

)

= −iλ(2π)4δ4(p1 + p2 + p3 + p4)
∏

i

i

p2i −m2 + iε

We will not repeat the above derivation for a general Green’s function. Rather, we now state the
Feynman rules in momentum space, and the reader may easily verify that the above example is a
special case.

Feynman rules (momentum space)
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(1) Draw all distinct diagrams with n external lines and m 4-fold vertices:

• Assign momenta p1, . . . , pn to the external lines

• Assign momenta kj to the internal lines

(2) Assign to each external line a factor

i

p2k −m2 + iε

(3) Assign to each internal line a factor
∫

d4kj
(2π)4

i

k2j −m2 + iε

(4) Each vertex contributes a factor

− iλ
4!
(2π)4δ4

(∑
momenta

)
,

(the delta function ensures that momentum is conserved at each vertex).

(5) Multiply by the combinatorial factor C, which is the number of contractions leading to the
same momentum space diagram (note that C may be different from the combinatorial factor
for the same diagram considered in position space!)

Alternatively, one may rephrase (4) and (5) as follows:

(4*) Each vertex carries a factor

−iλ(2π)4δ4
(∑

momenta
)
,

(5*) Divide by the symmetry factor i.e. the dimension of the group of symmetry transformations
that leaves the diagram invariant.

5.6 S-matrix and truncated Green’s functions

The final topic in these lectures is the derivation of a simple relation between the S-matrix element
and a particular momentum space Green’s function, which has its external legs amputated: the so-
called truncated Green’s function. This further simplifies the calculation of scattering amplitudes
using Feynman rules.
Let us return to the LSZ formalism and consider the scattering of m initial particles (momenta
p1, . . . ,pm) into n final particles with momenta k1, . . . ,kn. The LSZ formula (eq. (199)) tells us
that the S-matrix element is given by

〈
k1, . . . ,kn; out

∣∣∣p1, . . . ,pm; in
〉

= (i)n+m

∫ m∏

i=1

d4xi

∫ n∏

j=1

d4yj exp



−i

m∑

i=1

pi · xi + i

n∑

j=1

kj · yj





×
m∏

i=1

(
�xi

+m2
) n∏

j=1

(
�yj +m2

)
Gn+m(x1, . . . , xm, y1, . . . , yn). (241)
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Figure 6: The construction of the truncated Green’s function in position space.

Let us have a closer look at Gn+m(x1, . . . , xm, y1, . . . , yn). As shown in Fig. 6 it can be split into
Feynman propagators, which connect the external points to the vertices at z1, . . . , zn+m, and a
remaining Green’s function Gn+m, according to

Gn+m =

∫
d4z1 · · · d4zn+mGF (x1 − z1) · · ·GF (yn − zn+m)Gn+m(z1, . . . , zn+m), (242)

where, perhaps for obvious reasons, Gn+m is called the truncated Green’s function.
Putting Eq. (242) back into the LSZ expression for the S-matrix element, and using that

(
�xi

+m2
)
GF (xi − zi) = −iδ4(xi − zi) (243)

one obtains
〈
k1, . . . ,kn; out

∣∣∣p1, . . . ,pm; in
〉

= (i)n+m

∫ m∏

i=1

d4xi

∫ n∏

j=1

d4yj exp



−i

m∑

i=1

pi · xi + i
n∑

j=1

kj · yj



 (244)

×(−i)n+m

∫
d4z1 · · · d4zn+m δ4(x1 − z1) · · · δ4(yn − zn+m)Gn+m(z1, . . . , zn+m).

After performing all the integrations over the zk’s, the final relation becomes
〈
k1, . . . ,kn; out

∣∣∣p1, . . . ,pm; in
〉

=

∫ m∏

i=1

d4xi

n∏

j=1

d4yj exp



−i

m∑

i=1

pi · xi + i

n∑

j=1

kj · yj





× Gn+m(x1, . . . , xm, y1, . . . , yn)

≡ Gn+m(p1, . . . , pm, k1, . . . , kn), (245)

where Gn+m is the truncated n+m-point function in momentum space. This result shows that the
scattering matrix element is directly given by the truncated Green’s function in momentum space.
In other words, calculating the S-matrix is much the same as calculating the Green’s function, but
without the free propagators associated with the external legs. Note that this renders zero any
graph which is not fully connected - any diagram in which not all external points are connected to
the same graph vanishes upon multiplication by the (p2i +m2) factors. This is what allowed us to
neglect such graphs in the previous section.
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6 Summary

That completes this introductory look at quantum field theory. Although we did not get as far as
some of the more relevant physical applications of QFT, we have looked in detail at what a QFT
is, and how the description of scattering amplitudes leads to Feynman diagrams. To recap how we
did this:

1. We reviewed the Lagrangian formalism for classical field theory, and also the canonical quan-
tisation approach to quantum mechanics.

2. We constructed the Lagrangian for a relativistic field theory (the free Klein-Gordon field),
and applied the techniques of canonical quantisation to this field theory.

3. States in this theory were found to represent particle excitations, such that a particle of
momentum p was found to be a quantum of excitation in the relevant Fourier mode of the
field.

4. We then studied the interacting theory, arguing that at initial and final times (when the
interaction dies away) we can work with free fields. These were related by an operator S,
whose matrix elements represented the transition probability to go from a given initial to a
given final state.

5. Using the interaction picture for time evolution, we found an expression for the S matrix in
terms of an evolution operator U , describing how the fields at general time t deviate from the
initial free fields.

6. We also found a formula which related S matrix elements to n-particle Green’s functions
(vacuum expectation values of time-ordered fields). This was the LSZ formula of eq. (199).

7. We related the Green’s functions involving Heisenberg fields to those involving the “in” fields
at time t→ −∞ (eq. (212)).

8. We then found how to compute these Green’s functions in perturbation theory, valid when
the strength of the interaction is weak. This involved having to calculate vacuum expectation
values of time-ordered products, for which we could use Wick’s theorem.

9. We developed a graphical representation of Wick’s theorem, which led to simple rules (Feyn-
man rules) for the calculation of Green’s functions in position or momentum space.

10. These can easily be converted to S matrix elements by truncating the free propagators asso-
ciated with the external lines.

Needless to say, there are many things we did not have time to talk about. Some of these will be
explored by the other courses at this school:

• Here we calculated S-matrix elements without explaining how to turn these into decay rates
or cross-sections, which are the measurable quantities. This is dealt with in the QED / QCD
course.
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• The Klein-Gordon field involves particles of spin zero, which are bosons. One may also
construct field theories for fermions of spin 1

2 , and vector bosons (spin 1). Physical examples
include QED and QCD.

• Fields may have internal symmetries (e.g. local gauge invariance). Again, see the QED /
QCD and Standard Model courses.

• Diagrams involving loops are divergent, ultimately leading to infinite renormalisation of the
couplings and masses. The renormalisation procedure can only be carried out in certain
theories. The Standard Model is one example, but other well-known physical theories (e.g.
general relativity) fail this criterion.

• There is an alternative formulation of QFT in terms of path integrals (i.e sums over all
possible configurations of fields). This alternative formulation involves some extra conceptual
overhead, but allows a much more straightforward derivation of the Feynman rules. More
than this, the path integral approach makes many aspects of field theory manifest i.e. is
central to our understanding of what a quantum field theory is. This will not be covered at
all in this school, but the interested student will find many excellent textbooks on the subject.

There are other areas which are not covered at this school, but nonetheless are indicative of the fact
that field theory is still very much an active research area, with many exciting new developments:

• Calculating Feynman diagrams at higher orders is itself a highly complicated subject, and
there are a variety of interesting mathematical ideas (e.g. from number theory and complex
analysis) involved in current research.

• Sometimes perturbation theory is not well-behaved, in that there are large coefficients at each
order of the expansion in the coupling constant. Often the physics of these large contribu-
tions can be understood, and summed up to all orders in the coupling. This is known as
resummation, and is crucial to obtaining sensible results for many cross-sections, especially
in QCD.

• Here we have “solved” for scattering probabilities using a perturbation expansion. It is
sometimes possible to numerically solve the theory fully non-perturbatively. Such approaches
are known as lattice field theory, due to the fact that one discretizes space and time into a
lattice of points. It is then possible (with enough supercomputing power!) to calculate things
like hadron masses, which are completely incalculable in perturbation theory.

• Here we set up QFT in Minkowski (flat space). If one attempts to do the same thing in curved
space (i.e. a strong gravitational field), many weird things happen that give us tantalising
hints of what a quantum field of gravity should look like.

• There are some very interesting recent correspondences between certain limits of certain string
theories, and a particular quantum field theory in the strong coupling limit. This has allowed
us to gain new insights into nonperturbative field theory from an analytic point of view, and
there have been applications in heavy ion physics and even condensed matter systems.

I could go on of course, and many of the more formal developments of current QFT research are
perhaps not so interesting to a student in experimental particle physics. However, at the present
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time some of the more remarkable and novel extensions to the Standard Model (SUSY, extra
dimensions) are not only testable, but are actively being looked for. Thus QFT, despite its age, is
very much at the forefront of current research efforts and may yet surprise us!
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A Books on QFT

There are numerous textbooks already and a surprisingly high number of new books are appearing
all the time. As with anything in theoretical physics, exploring a multitude of approaches to a
certain field is encouraged.
In the following list, [1] is said to be a good introductory text and a lot of my colleagues use this
one for their introduction to QFT classes. Mark has also put a “try-before-buy” version on his
webpage, which is an early version of the entire textbook. You can judge yourself if it’s worth the
investment.
My first encounter with QFT was [2]. It’s a very good book that heavily makes use of the Path
Integral Formalism (not discussed in these lectures), it also includes topics which are normally
not featured in general purpose QFT books (e.g. SUSY, topological aspects). A modern classic
is [3], which many use as a standard text. It covers a lot of ground and develops an intuitive
approach to QFT (but you aren’t spared the hard bits!). It also touches other areas where QFT
finds application (e.g. Statistical Physics). In my opinion, it isn’t very good to look things up
because Peskin’s pedagogical approach forces logically-connected topics to be scattered across the
text. Unless you are very familar with the book, it can take ages to find certain things again. My
personal favorite by far is [4], probably owing to the authors’ focus on particle theory applications of
QFT. But you’ll probably need a bit of exposure to one of the introductory texts to fully appreciate
the depth and technical details that the authors have put into it. Yes, it’s expensive (like most of
the Graduate-level textbooks), but having a advanced QFT book by a bunch of German authors
on your shelf will not go unnoticed by your colleagues. Another good text is [5]. Finally, those who
are not faint of heart and who like their field theory from the horse’s mouth may like to consult
Weinberg’s monumental three volume set [6].
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B Notation and conventions

4-vectors:

xµ = (x0,x) = (t,x)

xµ = gµν x
ν = (x0,−x) = (t,−x)

Metric tensor: gµν = gµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




Scalar product:

xµxµ = x0x0 + x1x1 + x2x2 + x3x3

= t2 − x2

Gradient operators:

∂µ ≡ ∂

∂xµ
=

(
∂

∂t
,−∇

)

∂µ ≡ ∂

∂xµ
=

(
∂

∂t
,∇
)

d’Alembertian: ∂µ∂µ =
∂2

∂t2
−∇2 ≡ �

Momentum operator:

p̂µ = i~∂µ =

(
i~
∂

∂t
, −i~∇

)
=
(
Ê, p̂

)
(as it should be)

δ-functions:
∫
d3p f(p) δ3(p− q) = f(q)

∫
d3x e−ip·x = (2π)3δ3(p)

∫
d3p

(2π)3
e−ip·x = δ3(x)

(similarly in four dimensions)

Note:

δ(x2 − x20) = δ{(x − x0)(x+ x0)}
=

1

2x
{δ(x − x0) + δ(x + x0)}
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QED and QCD

HEP Summer School 2016

This course gives an introduction to the ingredients of gauge theories which are necessary
to calculate cross sections for particular processes. The section headings are given below:

Outline of Lectures:

1. Relativistic Quantum Mechanics

2. Spin

3. Relativistic Electromagnetism

4. Coulomb Scattering, eµ→ eµ

5. Compton Scattering, eγ → eγ

6. Colour

7. Renormalisation

This course runs in parallel with the Quantum Field Theory course, from which we will
use some results. Some topics mentioned in this course will be covered in more detail in
the Standard Model and Phenomenology courses next week.
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Textbooks:

These notes are intended to be self-contained, but only provide a short introduction to a
complex and fascinating topic. You may find the following textbooks useful:

1. Aitchison and Hey, Gauge Theories in Particle Physics, CRC Press.

2. Halzen and Martin, Quarks and Leptons, Wiley.

3. Peskin and Schröder, An Introduction to Quantum Field Theory, ABP.

4. Ryder, Quantum Field Theory, CUP.

5. Srednicki, Quantum Field Theory, CUP.

6. Schwartz, Quantum Field Theory and the Standard Model, CUP.

The first two are more practical and closer to the spirit of this course while the other contain
many more mathematical details. The last one is very recent. If you are particularly
interested in (or confused by) a particular topic, I encourage you to take a look at it. If
there are other textbooks which you find particularly helpful, please tell me and I will
update the list.

These notes are based heavily on the content of previous versions of this course, in partic-
ular the 2013 version by Jennifer Smillie. Throughout, we will use “natural units” where
~ = c = 1 and the metric signature (+−−−).

Please email any comments, questions or corrections to a.banfi@sussex.ac.uk.

Andrea Banfi

May 25, 2016
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1 Relativistic Quantum Mechanics

In order to describe the dynamics of particles involved in high-energy collisions we must
be able to combine the theory of phenomena occurring at the smallest scales, i.e. quantum
mechanics, with the description of particles moving close to the speed of light, i.e. special
relativity. To do this we must develop wave equations which are relativistically invariant
(i.e. invariant under Lorentz transformations). In this section we will derive relativistic
equations of motion for scalar particles (spin-0) and particles with spin-1/2.

1.1 The Klein-Gordon Equation

We start with the Hamiltonian for a particle in classical mechanics:

E =
p2

2m
+ V (x) . (1)

To convert this into a wave equation, we make the replacements E → i∂t and p → −i∇,
so that a plane-wave solution

φ(t,x) ∝ e−i(Et−p·x) = e−ip·x (2)

has the energy-momentum relation given in eq. (1). Applied to a general wavefunction φ,
a linear superposition of plane waves, this gives

i∂tφ(t,x) =

(
− 1

2m
∇2 + V (x)

)
φ(t,x) = H φ(t,x) , (3)

where H is the so-called Hamiltonian. We recognise this as the Schrödinger Equation, the
cornerstone of Quantum Mechanics. From this form, we can deduce that eq. (3) cannot
be relativistically invariant because time appears only through a first-order derivative on
the left-hand side while space appears as a second-order derivative on the right-hand side.
Yet we know that if we make a Lorentz transformation in the x direction for example, this
would mix the x and t components and therefore they cannot have different rôles.

The problem with the Schrödinger Equation arose because we started from a non-relativistic
energy-momentum relation. Let us then start from the relativistic equation for energy.
For a particle with 4-momentum pµ = (E,p) and mass m,

E2 = m2 + p2. (4)

Again we convert this to an operator equation by setting pµ = i∂µ so that the corresponding
wave equation for an arbitrary scalar wavefunction φ(x, t) gives(

∂2t −∇2 +m2
)
φ(t,x) =

(
∂µ∂

µ +m2
)
φ(x) = (� +m2)φ(x) = 0 , (5)

59



where we have introduced the four-vector xµ = (t,x). This is the “Klein-Gordon equation”
which is the equation of motion for a free scalar field. We can explicitly check that this is
indeed Lorentz invariant. Under a Lorentz transformation

xµ → x
′µ = Λµ

νx
ν ⇒ ∂µ → ∂′µ = (Λ−1)ρµ∂ρ , (6)

The field φ is a scalar, i.e. it has the transformation property

φ(x)→ φ′(x′) = φ′(Λx) = φ(x) . (7)

Therefore, in the primed system,(
∂′µ∂

′µ +m2
)
φ′(x′) =

[
(Λ−1)ρµ∂ρ(Λ

−1)σν∂σg
µν +m2

]
φ′(Λx)

=
[
∂ρ∂σg

ρσ +m2
]
φ(x) = 0 ,

(8)

and the equation still holds.

1.2 The Dirac Equation

The Klein-Gordon equation admits negative-energy solutions, because the energy E ap-
pearing in the plane-wave in eq. (2) can have the two values ±

√
p2 +m2. Dirac sought to

find an alternative relativistic equation which was linear in ∂t like the Schrödinger equation
(this was an attempt to solve the problem of negative-energy solutions to eq. (5) – in fact
he didn’t solve this problem, but a different one). If the equation is linear in ∂t, it must
also be linear in ∇ if it is to be invariant under Lorentz transformations. We therefore
start with the general form

i∂tψ(t,x) = (−iα · ∇+ β m)ψ(t,x) . (9)

Dirac also required that the solutions of his equation would be a solution of the Klein-
Gordon equation as well, or equivalently, the energy relation eq. (4) was the correct energy-
momentum relation for plane wave solutions e−ip·x of the Dirac equation. To see what
constraints this imposes, we must square eq. (9):

−∂2t ψ(t,x) = i∂t (−iα · ∇+ β m)ψ(t,x)

= (−iα · ∇+ β m)2 ψ(t,x)

=
[
−αiαj∇i∇j − i(βαi + αiβ)m∇i + β2m2

]
ψ(t,x) .

(10)

However, the Klein-Gordon equation requires that the right-hand side is equal to [−∇2 +
m2]ψ(t,x) and therefore α and β must satisfy

αiαj + αjαi = {αi, αj} = 2δij, βαi + αiβ = {αi, β} = 0, β2 = 1 . (11)

If αi and β are just numbers, these equations cannot be solved. Dirac solved them by
instead taking αi and β to be n × n matrices, and ψ(t,x) to be a column vector. Even
now, the solution is not immediate. One can show that the conditions in eq. (11) require

Tr αi = 0 = Tr β, (12)
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and further that the eigenvalues of the above matrices are ±1. This in turn means that n
must be even (do you understand why?). In 2-dimensions, there are still not enough lin-
early independent matrices to satisfy eq. (11). There do exist solutions in four dimensions.
One such solution is

α =

(
0 σ
σ 0

)
, β =

(
12 0
0 −12

)
, (13)

where σ are the usual Pauli matrices and 12 represents the 2× 2 identity matrix. Now we
have formed an equation which may be thought of as a square-root of the Klein-Gordon
equation, but which is not obviously Lorentz invariant. To show that, we first define the
new matrices

γ0 = β, γ = βα . (14)

Then we form γµ = (γ0,γ) where the µ is a Lorentz index. Each component is a 4 × 4
matrix. In terms of the γ-matrices, one can write the conditions in eq. (11) in a Lorentz
covariant form

{γµ, γν} = γµγν + γνγµ = 2gµν . (15)

This is an example of a Clifford algebra. Any matrices satisfying this condition in eq. (15)
may be used to construct the Dirac equation. The representation in eqs. (13) and (14) is
just one example, known as the Dirac representation. Note, for example, that any other
matrices satisfying

α′i = UαiU
−1, and β′ = UβU−1 , (16)

where U is a unitary matrix, will also be suitable.

Multiplying through by γ0, we may rewrite the eq. (9) in a covariant form as

(iγµ∂µ −m14)ψ(t,x) = (i∂/−m)ψ(x) = 0 , (17)

where �a, a vector with a slash, is a short-hand notation for γµaµ. The equation above
is known as the Dirac equation. In momentum space, i.e. after a Fourier transformation,
∂µ → −ipµ, and the Dirac equation becomes

(γµpµ −m14)ψ̃(p) = (�p−m)ψ̃(p) = 0 , (18)

where ψ̃(p) is the Fourier transform of a solution of the Dirac equation ψ(x).

We mentioned in passing that ψ(t,x) is a column vector rather than a scalar. This
means that it contains more than one degree of freedom. Dirac exploited this property to
interpret his equation as the wave equation for spin-1/2 particles, fermions, which can be
either spin-up or spin-down. The column vector ψ is known as a Dirac spinor.

Comparing eq. (9) to the Schrödinger equation in eq. (3) gives the Hamiltonian for a free
spin-1/2 particle:

HDirac = −iα · ∇+ β m . (19)
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Figure 1: The energy levels in the Dirac sea picture. They must satisfy |E| > m, but
negative-energy states are allowed. The vacuum is the state in which all negative-energy
levels are filled.

The trace of the Hamiltonian gives the sum of the energy eigenvalues. The condition
that the matrices α and β are traceless therefore means that the eigenvalues of HDirac

must sum to zero. Therefore, like the Klein-Gordon equation, also the Dirac equation has
negative-energy solutions.

Dirac himself proposed a solution for this problem which became known as the “Dirac
sea”. He accepted the existence of negative-energy states, but took the vacuum as the
state in which all these states are filled, see fig. 1. There is a conceptual problem with
this in that the vacuum has infinite negative charge and energy. However, any observation
relies only on energy differences, so this picture can give an acceptable theory.

As the negative-energy states are already full, the Pauli exclusion principle forbids any
positive-energy electron to fall into one of the negative-energy states. If instead energy
is supplied, an electron is excited from a negative-energy state to a positive-energy state
and an “electron-hole” pair is created. The absence of the negative-energy electron, the
hole, is interpreted as the presence of of state with positive energy and positive charge,
i.e. a positron. Dirac predicted the existence of the positron in 1927 and this particle was
discovered five years later.

However, Dirac’s argument only holds for spin-1/2 particles which obey the Pauli exclusion
principle. A consistent solution for all particles is provided by Quantum Field Theory
in a picture developed by Feynman and Stückelberg, in which positive-energy partices
travel only forward in time, whereas negative-energy particles travel only backwards in
time. In this way, a negative-energy particle with momentum pµ, travelling backward in
time, is re-interpreted as a positive energy anti-particle with momentum −pµ travelling
forward in time. Let us see how this picture naturally arises by considering two processes,
the scattering e−µ− → e−µ−, and Compton scattering e−γ → e−γ. In non-relativistic
quantum mechanics, the scattering e−µ− → e−µ− corresponds to the scattering of an
electron from an external Coulomb potential. This is represented on the left-hand side of
fig. 2. The horizontal axis represents the time at which a give elementary process occurs.
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Figure 2: A pictorial representation of the scattering e−µ− → e−µ− in non-relativistic
quantum mechanics (left) and in Quantum Field Theory (right).

In non-relativistic quantum mechanics, scattering happens instantaneously, so that the
time t1 at which a photon is emitted by the incoming electron coincides with the time t2
in which it is absorbed by a muon, which stays at rest as a source of a static potential. In
quantum field theory the scattering cannot occur instantaneously, because we need to take
into account the fact that the photon mediating the scattering travels at the speed of light.
The corresponding scattering amplitude is given by the sum of the contributions of the
two diagrams on the right-hand side of fig. 2. It is clear that, in the limit in which c can be
taken to be infinite, the two diagrams coincide and give the non-relativistic contribution.
From the point of view of the electron, the first diagram can be interpreted as the emission
of a positive-energy photon at t = t1 that travels forward in time, and is later absorbed by
a muon at t = t2. The second diagram has an awkward interpretation from the point of
view of the electron, because it corresponds to the emission of a negative-energy photon
at t = t2 that travels backwards in time. However, the graph makes perfectly sense if one
considers that it is the muon that emits a photon a time t1, which is later reabsorbed by the
electron at a time t2. A similar interpretation can be applied to the Compton scattering
diagrams in Fig. 3, and clarifies the Feynman and Stückelberg interpretation of negative-
energy states. In the left diagram, an electron emits a photon at time t1 and later, at
time t2 absorbs another one. In the right-hand diagram it appears as if an electron emits
a photon and then travels backwards in time to absorb another photon. Feynman and
Stückelberg reasoned instead that the incoming photon split into an electron-positron pair
and then at a later time, the positron annihilates the other electron, emitting a photon.

2 Spin

In the previous section, we introduced a Dirac spinor as a solution to the Dirac equation
in the form of a column vector. In this section, we will discuss the explicit form of
the solutions to the Dirac equation, and verify that they indeed correspond to the wave
functions for particles with spin-1/2.

63



t
1 t

1
t
2

t
2

e− e−

e−

γ

γ

γ

γ

t

x

t

x

Figure 3: Diagrams illustrating the Feynman-Stückelberg interpretation of negative-energy
particles, which correspond to those travelling backwards in time, as in the right-hand
diagram. They interpreted a negative-energy particle travelling backwards as a positive-
energy anti-particle travelling forwards in time, see text.

2.1 Plane-Wave Solutions of the Dirac Equation

We begin by seeking plane-wave solutions to the Dirac Equation. Given the 2 × 2 block
nature of the γ-matrices, we will start with the form

ψ(x) =

(
χ(p)
φ(p)

)
e−ip·x, (20)

where χ and φ are two-component spinors. Substituting this into eq. (18) and using
eqs. (13) and (14), we find

p0
(
χ
φ

)
=

(
m σ ·p
σ ·p −m

)(
χ
φ

)
, (21)

or equivalently

(σ ·p) φ = (p0 −m)χ

(σ ·p) χ = (p0 +m)φ.
(22)

From the identity (σ ·p)2 = p2, these equations are only consistent for particles with
p0 = ±

√
p2 +m2 (consistent with having solutions of the Klein-Gordon equation).

For a massive fermion at rest (p = 0), we have

p0χ = mχ and p0φ = −mφ. (23)

Positive-energy solutions ψp=0
+ must therefore have φ = 0 and negative energy solutions

ψp=0
− have χ = 0, as follows:

ψp=0
+ =

(
χ
0

)
e−imt, and ψp=0

− =

(
0
φ

)
eimt . (24)
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For particles which are not at rest (p 6= 0), the solution is then dictated by eq. (22), with
the requirement that it reduces to eq. (24) for p = 0. For positive-energy solutions, we
therefore write

ψ+(x) = N
(

χr
σ·p
E+m

χr

)
e−ip·x ≡ ur(p) e−ip·x , p0 = E ≡

√
p2 +m2 , (25)

where r = 1, 2 and N is a normalisation conventionally chosen such that u†r(p)us(p) =
2E δrs, which gives N =

√
E +m. The spinors χ1 and χ2 cover the two (spin) degrees of

freedom:

χ1 =

(
1
0

)
, and χ2 =

(
0
1

)
. (26)

Similarly, negative-energy solutions are conventionally written as

ψ−(x) = N
( σ·p

E+m
φr

φr

)
eip·x ≡ vr(p) eip·x , p0 = E , (27)

with the spinors φ1 and φ2 again covering the two (spin) degrees of freedom:

φ1 =

(
1
0

)
, and φ2 =

(
0
1

)
. (28)

The spinors u(p) and v(p) therefore represent particle and anti-particle solutions with
momentum p and energy E =

√
p2 +m2.

2.2 Spin

Each Dirac spinor has two linearly independent solutions which we stated earlier corre-
sponded to the two possible spin states of a fermion. In this subsection we will define the
corresponding spin operator. If we again consider a particle at rest we have

u1 =


1
0
0
0

 , and u2 =


0
1
0
0

 . (29)

These have eigen-values ±1
2

under the matrix

1

2

(
σz 0
0 0

)
. (30)

One can repeat the same thing for anti-particles and generalise to all the Pauli matrices
to deduce the “spin operator”

S =
1

2

(
σ 0
0 σ

)
. (31)
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You can check explicitly that S2 = 3
4
14, as we would expect. Therefore, for particles at

rest, p = 0, the top two components of ψ+ describe fermions with Sz = +1/2 (spin up)
and Sz = −1/2 (spin down) respectively.

In case of a general p one can consider the projection of the spin-operator along the
direction of motion of a particle, i.e. p/|p|. This gives the helicity operator, h(p)

h(p) =

(
σ.p
|p| 0

0 σ.p
|p|

)
. (32)

This operator satisfies h(p)2 = 1, and hence its eigenvalues are ±1.

2.3 Working with Dirac Spinors

So far we have discussed Dirac spinors, ψ, describing spin-1/2 particles and how Dirac
used his equation to predict anti-particles. To generate an equation for anti-particles, we
first take the Hermitian conjugate of the Dirac equation and find

ψ†(−iγ0←−∂0 + iγi
←−
∂i −m) = 0 , (33)

where the arrows over the derivatives just mean they act on the left, and we have used
the fact that γ0† = γ0 and γi† = −γi. All matrices have to be written on the right
because they are multiplying matrices and ψ† is a row-vector. The above equation does
not seem Lorentz covariant. This can be rectified by multiplying the equation by γ0 on
the right-hand side and using [γ0, γi] = 0. Then we have

(ψ†γ0)(−i
←−
��∂ −m) = 0, or ψ(i

←−
��∂ +m) = 0 . (34)

The interpretation of the above equation is that the field ψ ≡ ψ†γ0 represents an anti-
particle.

By construction, the spinors u(p) and v(p) satisfy their respective Dirac equations in
momentum space:

(�p−m)u(p) = 0 , (�p+m)v(p) = 0 . (35)

They also satisfy a number of relations which will prove very useful in calculations of
scattering amplitudes. Firstly, they are orthonormal:

ur(p)us(p) = 2mδrs = −vr(p)vs(p),

ur(p)vs(p) = 0 = −vr(p)us(p).
(36)

If instead one takes the outer product of spinor and anti-spinor, they also satisfy the
following completeness relations:

2∑
r=1

ur(p)ur(p) = (�p+m) and
2∑
r=1

vr(p)vr(p) = (�p−m). (37)

These relations can be checked explicitly (see problem sheet).
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2.4 Lorentz transformations on spinors

Let us consider the Lorentz transformation of eq. (6). The field ψ has the transformation
property

ψ(x)→ ψ′(x′) = ψ′(Λx) = S(Λ)ψ(x) ⇒ ψ̄(x)→ ψ̄′(x′) = ψ̄(x)γ0S†(Λ)γ0 , (38)

with S(Λ) a suitable 4× 4 matrix. Its explicit form is derived by imposing that the Dirac
equation is Lorentz invariant:(

i∂′µγ
µ −m

)
ψ′(x′) =

(
i(Λ−1)νµ∂νγ

µ −m
)
S(Λ)ψ(x) . (39)

Imposing that S(Λ) satisfies
γµS(Λ) = S(Λ)Λµ

ργ
ρ , (40)

we obtain (
i∂′µγ

µ −m
)
ψ′(x′) = S(Λ)

[
i(Λ−1)νµΛµ

ρ∂νγ
ρ −m

]
ψ(x)

= S(Λ)(i∂νγ
ν −m)ψ(x) = 0 ,

(41)

so that ψ′(x′) is a solution of the transformed Dirac equation, provided ψ(x) is a solution
of the original one.

Eq. (40) is enough to construct the matrices S(Λ). By direct inspection one observes that

S†(Λ) = γ0S−1(Λ)γ0 ⇒ ψ̄′(x′) = S−1(Λ)ψ̄(x) . (42)

The fact that S−1(Λ) 6= S†(Λ) is not surprising, and is due to the fact that the Lorentz
group is non-compact, and therefore it does not admit unitary finite-dimensional repre-
sentations.

One can construct bi-linear products ψ̄Γψ, with Γ a 4 × 4 matrix. We now show that Γ
can be decomposed into a set of bi-linears, each having a definite transformation property
under the Lorentz group. Since Γ is 4 × 4 matrix, we expect to find 16 such bi-linear
products, constructed out of linearly independent matrices. Already we can find 5 such
bi-linears:

ψ̄ ψ → ψ̄S−1(Λ)S(Λ)ψ = ψ̄ ψ (scalar) ,

ψ̄ γµψ → ψ̄S−1(Λ)γµS(Λ)ψ = Λµ
ν

(
ψ̄ γνψ

)
(vector) ,

(43)

We can construct 6 more matrices by considering

Σµν =
i

4
[γµ, γν ] . (44)

Note that γµγν is not linearly independent from the previous matrices because {γµγν} =
2gµν1. This gives

ψ̄Σµνψ → ψ̄ S−1(Λ)
i

4
[γµ, γν ]S(Λ)ψ = Λµ

ρΛν
σ

(
ψ̄Σµνψ

)
(tensor) . (45)
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In addition to the four γ-matrices, we can construct their product which is conventionally
known as γ5:

γ5 ≡ iγ0γ1γ2γ3 =
i

4!
εµνρσγ

µγνγργσ =

(
−12 0

0 12

)
, (46)

which satisfies

(γ5)2 = 1, {γ5, γµ} = 0, (γ5)† = γ5. (47)

The factor of i is to make then matrix Hermitian. Using γ5, we can construct 5 more
bi-linears

ψ̄ γ5ψ → ψ̄ S−1(Λ)iεµνρσγ
µγνγργσS(Λ)ψ

= i εµνρσΛµ
αΛν

βΛρ
γΛ

σ
δ

(
ψ̄ γαγβγγγδψ

)
= det(Λ) ψ̄ i εαβγδγ

αγβγγγδψ = det(Λ) ψ̄ γ5ψ (pseudo-scalar) ,

ψ̄ γ5γµψ → det(Λ) Λµ
ν

(
ψ̄ γ5γνψ

)
(pseudo-vector) .

(48)

We have then found a set of 16 linearly independent matrices (check that they are linearly
independent!)

1, γ5, γµ, γµγ5, Σµν =
i

4
[γµ, γν ] , (49)

so that any bi-linear ψΓψ can be written as a sum of terms with definite transformation
properties, i.e. transforming in a clear way as a scalar, pseudo-scalar, vector, pseudo-
vector and tensor. (This is why the Feynman rule for a pseudo-scalar interacting with a
particle-anti-particle pair has a γ5 for example.)

The most common use of γ5 is in the projectors PL = (1 − γ5)/2 and PR = (1 + γ5)/2.
You can check explicitly that these behave like projectors (ie. P 2 = P and PLPR = 0).
When these act upon a Dirac spinor they project out either the component with “left-
handed” chirality or with “right-handed” chirality. These projectors therefore appear
when considering weak interactions, for example, as W bosons only couple to left-handed
particles. One has to take care when defining the handedness of antiparticles because

ψL = ψ†Lγ
0 = ψ†PLγ

0 = ψ†γ0PR = ψPR. (50)

A left-handed anti-particle appears with a right-handed projection operator next to it and
vice-versa.

3 Quantum Electro-Dynamics

In this section, we will develop the theory of quantum electro-dynamics (QED) which
describes the interaction between electrically charged fermions and a vector field (the
photon Aµ).
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3.1 The QED Lagrangian

In this course, we have so far considered spin-0 and spin-1/2 particles. We will postpone a
detailed discussion of spin-1 particles until section 5.1. For the time being, we start from
the Maxwell’s equations in the vacuum in relativistic notation:

∂µF
µν = Jν , where F µν = ∂µAν − ∂νAµ , (51)

and Jν is a conserved current, i.e. satisfying ∂νJ
ν = 0. Maxwell’s equations can be derived

from the Lagrangian

L = Lem + Lint , Lem = −1

4
F µνFµν , Lint = −JµAµ , (52)

by applying Euler-Lagrange equations

∂µ
∂L

∂(∂µAν)
− ∂L
∂Aν

= −∂µF µν + Jν = 0 . (53)

The Dirac equation for ψ and its equivalent for ψ can be derived from the Lagrangian

LDirac = ψ(iγµ∂µ −m)ψ . (54)

The starting point for the QED Lagrangian is then the sum of Lem and LDirac. However,
in order to make the theory describe interactions, we must include a term which couples
Aµ to ψ and ψ. If we wish Maxwell’s equation to be valid, this term has to be of the
form Lint = −JµAµ, with Jµ a conserved vector current. We then observe that the vector
current Jµ = ψ̄ γµψ is conserved if ψ is a solution of Dirac equation. In fact

∂µJ
µ = ψ̄

←−
��∂ ψ + ψ̄ (∂ψ) = (−mψ̄) + ψ̄ (mψ) = 0 . (55)

Therefore, a good candidate for the electromagnetic current describing an electron of
charge −e is

Jµ = −e ψ̄ γµψ , (56)

where−emultiplies the vector current so as to be sure that the resulting Coulomb potential
arising from the solution of the static Maxwell’s equations is the expected one. Using the
above current, we obtain:

L = Lem + LDirac + Lint = −1

4
F µνFµν + ψ̄ (i��∂ −m)ψ + eψ̄ γµψAµ . (57)

Notice that L is invariant with respect to the “gauge” transformations

ψ(x)→ ψ′(x) = e−ieα(x)ψ(x) , Aµ(x)→ A′µ(x) = Aµ(x) + ∂µα(x) . (58)

Notice that the addition of the interaction term Lint is equivalent to the replacement

∂µ → Dµ = ∂µ − ieAµ . (59)
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This prescription is known as “minimal coupling” and automatically ensures that the
Lagrangian is gauge invariant. The use of gauge invariance to introduce interactions will
be covered in detail in the Standard Model course next week. This gives

L = −1

4
F µνFµν + ψ(iγµ(∂µ + ieAµ)ψ . (60)

The fact that L is invariant under the gauge transformations in eq. (62) means that Aµ

contains unphysical degrees of freedom. This is clear in view of the fact that a massless
vector field contains two physical polarisations, whereas Aµ has four degrees of freedom. In
order to eliminate this degeneracy, a “gauge-fixing” condition is imposed. A possible choice
of a gauge condition is the so-called Coulomb gauge, in which ∇ ·A = 0. Although this
condition eliminates the two additional degrees of freedom, it breaks Lorentz covariance.
A common choice that preserves Lorentz covariance is the Lorentz gauge:

∂µA
µ = 0. (61)

This corresponds to choosing the gauge parameter α such that �α = −∂µAµ above. In
this gauge, the Maxwell equations become �Aν = 0.

Notice that the Lorentz gauge condition reduces the number of degrees of freedom in A
from four to three. Even now though Aµ is not unique. A transformation of the form

Aµ → A′µ = Aµ + ∂µχ , �χ = 0 , (62)

will also leave the Lagrangian unchanged. At classical level we can eliminate the extra
polarisation “by hand”, but at quantum level this cannot be done without giving up
covariant canonical commutation rules. The way out, which can only be summarised, is
to add a gauge-fixing Lagrangian Lgf , so that the full QED Lagrangian becomes

LQED = Lem + LDirac + Lint + Lgf , Lgf = − 1

2ξ
(∂µA

µ)2 . (63)

Using this Lagrangian as a starting point, and an extra condition on physical states, only
the two physical polarisations propagate on-shell. Notice that setting ξ = 0 corresponds
to enforcing the Lorentz gauge condition ∂µA

ν = 0, otherwise the equations of motions
give �∂µAν = 0, i.e. ∂µA

ν is a free field.

3.2 Feynman Rules

Feynman developed a method of organising the calculation of scattering amplitudes in
terms of diagrams. Starting from a set of vertices (or interactions), each corresponding
to a term in the Lagrangian and a set of links (or propagators), you build every possible
diagram corresponding to your initial and final state. Each piece comes with a “rule” and
the combination of these give the scattering amplitude (actually iM).
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Figure 4: The Feynman rules for QED. Wavy lines represent a photon and straight lines
represent any charged fermion. The arrow on the straight line tells you it is a particle or
anti-particle depending on whether it is with or against momentum flow. The polarisation
vectors εµ(p) will be discussed in section 5.2.

In the quantum field theory course at this school, you learn how to derive the “Feynman
rules” for scalar φ4 theory. The principles are the same here so in this course we will state
the Feynman rules for QED and learn how to work with them. The Feynman rules are
shown in figure 4. The left-hand column represents internal parts of the diagram while
the right-hand column gives the rules for external fermions and photons.

A few comments are necessary here:

1. Individual pieces of a Feynman diagram are a mixture of matrices, vectors, co-
vectors and scalars. They do not commute. The final amplitude is a number and
therefore you must follow each fermion line from a spinor (either outgoing particle
or incoming anti-particle) through the series of matrices to finish on an anti-spinor
(either incoming particle or out-going anti-particle). This corresponds to working
backwards along the fermion line. We will see this in the examples which follow.
Similarly, all Lorentz indices corresponding to photons have to be contracted.

2. The photon propagator term has a free parameter ξ. This is due to the gauge
freedom we discussed in the previous section. It does not represent a physical degree
of freedom and therefore any calculation of a physical observable will be independent
of ξ. We will most commonly work in Feynman gauge ξ = 1.

3. The propagators come with factors of iε in the denominator, otherwise they would
have poles on the real axis and any integral over p would not be well-defined. The
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e(p) e(p′)

µ(k) µ(k′)

e(p) e(p′)

µ(k) µ(k′)

↓ q

Figure 5: Building the leading-order Feynman diagram for Coulomb scattering. We start
from the initial and final states on the left-hand side. The diagram on the right is the only
way to connect these with up to two vertices.

factor of iε prescribes which direction to travel around the poles. This choice corre-
sponds to the “Feynman prescription”, which ensures causality.

4. The interaction vertex contains only one flavour of fermion. We know that the
emission of a photon does not change an electron to a quark for example.

5. There are addtional factors of (−1) in the following scenarios:

(a) an anti-fermion line runs continuously from an initial to a final state;

(b) there is a closed fermion loop;

(c) between diagrams with identical fermions in the final state.

These arise from the anti-commutation properties of fermionic operators which is
beyond the scope of this course. This sign can be important to get the relative
phase between diagrams correct, as happens for instance in Bhabha scattering.

Examples: Coulomb Scattering

As a first example, we consider Coulomb scattering:

e(p)µ(k) → e(p′)µ(k′) . (64)

We start by drawing the external particles, see left-hand side of fig. 5. We now want to
find all possible ways to connect these. There is no direct interaction between an electron
and a muon but both interact with a photon, so a possible connected diagram is the one
shown on the right-hand side. In fact, this is the only possible diagram with no more than
two vertices. The number of vertices is directly related to the powers of the coupling e
and therefore the diagram shown on the right is the leading-order (or tree-level) process.

If we consider e(p) e(k)→ e(p′) e(k′) or e+(p) e−(k)→ e+(p′) e−(k′) instead, there are two
diagrams with two vertices, i.e. at O(e2) (try this!). Both have to be added before squaring
the amplitude to have the tree-level contribution to the cross section.
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If we allow ourselves more than two vertices, there are many more diagrams we can draw.
Since the number of external particles doesn’t increase, these must contain closed loops
and, therefore, they represent higher-loop processes. In this course, we will limit ourselves
to tree-level processes. Loop-diagrams will be covered in the phenomenology course.

Now we will construct the tree-level amplitude for Coulomb scattering from the rules in
Fig. 4. Keeping in mind the earlier warning about the ordering of matrices and spinors,
we take each fermion line in turn. The electron line gives

u(p′) (ieγµ) u(p) . (65)

In spin-space, this is co-vector–matrix–vector, which is a number. In Lorentz space it has
one free index µ and is therefore a vector. Similarly, for the muon line we get

u(k′) (ieγν) u(k) . (66)

Lastly, for the propagator with momentum q = p′ − p = k − k′ in Feynman gauge, we get

−igµν
q2 + iε

, (67)

so that the full amplitude is

iM = ie2 [u(p′) γµ u(p)]
gµν
q2

[u(k′) γν u(k)] . (68)

We will drop the iε from now on, as we will not need it in this example.

Just as in quantum mechanics, in order to compute the probability of this process hap-
pening, we must calculate |M|2. We will now add specific indices to label the spins,
r, r′, s, s′. In order to describe an unpolarised physical scattering process, we will average
over initial-state spins and sum over final-state spins. This convention is represented by a
bar as follows:

|M|2 =
1

2

2∑
r=1

1

2

2∑
s=1

2∑
r′=1

2∑
s′=1

|M|2

=
1

4

e4

(q2)2

∑
r,r′

[ur′(p
′) γµ ur(p)][ur′(p

′) γρ ur(p)]
∗

×
∑
s,s′

[us′(k
′) γµ us(k)][us′(k

′) γρ us(k)]∗ ,

(69)

where we have explicitly evaluated the metric contractions for brevity.

To evaluate the products in eq. (69) we will use the results from section 2.1. We will take
the pieces corresponding to the electron line first. Since [ur′(p

′)γρur(p)]
∗ is a number, its

complex conjugate is its hermitian conjugate. Therefore

[ur′(p
′)γρur(p)]

∗ = u†r(p)γ
ρ†γ0†ur′(p

′) = u†r(p)γ
0γρur′(p

′) = ur(p)γ
ρur′(p

′) , (70)
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where we have used γν† = γ0γνγ0, which you showed on the problem sheet. We now use
eq. (37) to find∑

r,r′

[ur′(p
′) γµ ur(p)][ur′(p

′) γρ ur(p)]
∗ =

∑
r,r′

ur′(p
′) γµ ur(p)ur(p)γ

ρur′(p
′)

=
∑
r′

ur′(p
′)γµ (�p+m) γρur′(p

′) .
(71)

We will use m for the electron mass and M for the muon mass. It is now useful to add a
component index in spinor-space like you would do in normal linear algebra. Schematically
we have ∑

r′

ur′iΓijur′j , (72)

where Γ represents the chain of γ-matrices in eq. (71). Now that we are explicitly labelling
the components, we can swap the order of the terms to get∑

r′

Γijur′jur′i = Γij(�p
′ +m)ji = Tr(γµ (�p+m) γρ(�p

′ +m)) . (73)

We could have anticipated that we would get a trace as we need to get a single number
from a series of matrices. Working from the anti-commutation relations, one can readily
show the following identities (see problem sheet):

Tr(odd number of γ matrices) = 0 , Tr(γµγν) = 4gµν ,

Tr(γµγνγργσ) = 4(gµνgρσ − gµρgνσ + gµσgνρ) .
(74)

Therefore, eq. (73) equals

4pνp
′
σ(gµνgρσ − gµρgνσ + gµσgνρ) + 4m2gµρ . (75)

The same series of steps gives∑
s,s′

[us′(k
′) γµ us(k)][us′(k

′) γρ us(k)]∗ = 4kαk′β(gµαgρβ − gµρgαβ + gµβgαρ) + 4M2gµρ .

(76)

Substituting these results into eq. (69) gives

|M|2 =
8e4

(q2)2
(
(pk) (p′k′) + (pk′)(p′k) + 2m2M2 −M2(pp′)−m2(kk′)

)
. (77)

We will now rewrite the invariants which appear in the above equation in terms of the
centre-of-mass energy squared, s and the exchanged momentum-squared, q2 = t. We have

2(pk) = (p+ k)2 −m2 −M2 = s−m2 −M2, 2(p′k′) = s−m2 −M2

2(pp′) = −(p− p′)2 + 2m2 = −q2 + 2m2 , 2(kk′) = −q2 + 2M2

2(pk′) = 2p·(p+ k − p′) = s+ q2 −m2 −M2 , 2(p′k) = s+ q2 −m2 −M2 ,

(78)
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which finally gives

|M|2 =
2e4

(q2)2
(
(s−m2 −M2)2 + (s+ q2 −m2 −M2)2 + 2q2(m2 +M2)

)
. (79)

This expression can be further simplified by introducing the further invariant u = (p −
k′)2 = (p′ − k)2:

|M|2 =
2e4

t2
(
(s−m2 −M2)2 + (u−m2 −M2)2 + 2t (m2 +M2)

)
. (80)

The above equation gives the probability that the corresponding process occurs at a given
point in phase space. In the next section, we will derive how to calculate a total cross
section (or a total decay width) from amplitudes squared.

4 Calculation of Cross Sections

Ultimately it is not the amplitude we really want to calculate, but its integral over phase
space to give the total cross section if it is a scattering process or the total decay width if
it is a decay.

4.1 Phase Space Integrals

We must integrate over all the allowed phase space, which means all possible momentum
configurations of the final-state particles. This result, divided by the flux of incoming
particles, will give the total cross section.

In principle, we must integrate over over a 4-dimensional phase space for each particle f
in the final state, but we must impose that each satisfies its on-shell condition p2f = m2

f .
We therefore must have∏

f

∫
d4pf
(2π)4

(2π)δ(p2f −m2)Θ(p0f ) =
∏
f

∫
d4pf
(2π)4

(2π) δ((p0f )
2 − p2f −m2)Θ(p0f )

=
∏
f

∫
d3pf

(2π)3(2Ef )
,

(81)

where Ef =
√
p2f +m2. Although the final expression explicitly separates the depen-

dence on E and p, it is still Lorentz invariant as the original expression is clearly Lorentz
invariant. Eq. (81) is frequently referred to as the Lorentz Invariant Phase Space mea-
sure (LIPS). The factors of 2π correspond to the conventions used for momentum space
integrations in QFT.

We now need to normalise this expression to the flux of incoming particles. This is done
by multiplying by the flux factor, F . For the scattering of two incoming particles, this is
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usually written as

F =
1

4EaEb|va − vb|
, (82)

where Ei and vi are the energy and velocity of each incoming particle.1 A neater, equivalent
form which explicitly demonstrates the Lorentz invariance of this quantity is

F =
1

4
√

(papb)2 −m2
am

2
b

. (83)

In the massless limit s� m1,m2, this simplifies to F ' 1/(2s). Finally, we must impose
total conservation of momentum to find

σ = F
(∏

f

∫
d3pf

(2π)3(2Ef )

)
|M|2 (2π)4δ4

(∑
f

pf − p1 − p2
)
. (84)

If you wish to calculate a total decay width instead, the expression is very similar. The
only difference is that the flux factor becomes

F =
1

2M
, (85)

where M is the mass of the decaying particle. The total decay width, Γ, is therefore given
by

Γ =
1

2M

(∏
f

∫
d3pf

(2π)3(2Ef )

)
|M|2 (2π)4δ4

(∑
f

pf − pM
)
. (86)

4.2 Return to Coulomb Scattering

We may now calculate the relativistic cross section for Coulomb scattering, using our result
from section 3.2. Eq. (84) applied to this example gives

σ = F
∫

d3p′

(2π)3(2E ′p)

d3k′

(2π)3(2E ′k)
|M|2 (2π)4δ4 (p′ + k′ − p− k) . (87)

As this expression is Lorentz invariant, we are free to choose which frame to evaluate it
in. This is an extremely powerful tool to evaluate these integrals, as a careful choice can
lead to considerable simplifications. We will choose the centre-of-mass frame here so that
p = −k. We can easily do the the k′ integration using three of the δ-functions to give

σ = F
∫

d3p′

(2π)3
1

4E ′pE
′
k

|M|2 (2π)δ
(
E ′p + E ′k − Ep − Ek

)
. (88)

1You can find a motivation for the flux factor in Aitchison and Hey and a more complete derivation in
Peskin and Schröder chapter 4.5.
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We will proceed by transforming to spherical polar coordinates, d3p′ = |p′|2d|p′|dΩ, where
we have written the solid angle, sin θ dθ dφ, as dΩ:

σ =
F

(2π)2

∫
dΩd|p′| |p

′|2
4E ′pE

′
k

|M|2 δ
(
E ′p + E ′k − Ep − Ek

)
. (89)

We now make the change of variable |p′| → E = E ′p + E ′k, which has Jacobian factor

∂E

∂|p′| =
E|p′|
E ′pE

′
k

(90)

to get

σ =
F

(2π)2

∫
dΩdE

|p′|
4E
|M|2 δ

(
E −√s

)
=
F

(2π)2

∫
dΩ
|p′|
4
√
s
|M|2 , (91)

where it is understood that k′ = −p′ with |p′| determined from E =
√
s. The only

undefined variables are the angles which remain to be integrated over. We could now

substitute the expression for |M|2 explicitly in terms of these angles but it is actually
informative to instead study the differential cross section

dσ

dΩ
=
F

16π2

|p′|√
s
|M|2 . (92)

We will now consider the high energy limit where s � m2
e,m

2
µ. In this limit, the three

Mandelstam invariants are given by

s = 4p2 , t = −4p2 sin2(θ/2) , u = −4p2 cos2(θ/2) , (93)

which gives

|M|2 ' 2e4
s2 + u2

t2
=

2e4

sin4(θ/2)

(
1 + cos4

θ

2

)
. (94)

Note that this amplitude squared has no dependence on the azimuthal angle φ. Using the
conventional notation α = e2/(4π), we obtain

dσ

dΩ
' α2

2s

1 + cos4(θ/2)

sin4(θ/2)
. (95)

4.3 The Coulomb Potential

The same calculation may be used to calculate the cross section for the scattering of a
relativistic particle from an external Coulomb potential by working in the rest frame of
the muon and taking mµ →∞. This is illustrated in fig. 6.
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θ
k = (Ek, k)

k′ = (Ek′, k
′)

Figure 6: Scattering by an external Coulomb potential.

Repeating the same calculation in this limit yields

dσ

dΩ
=

α2

4k2v2 sin4(θ/2)

(
1− v2 sin2(θ/2)

)
=

(
dσ

dΩ

)
R

(
1− v2 sin2(θ/2)

)
,

(96)

where v = |k|/Ek and (
dσ

dΩ

)
R

=
α2

4k2v2 sin4(θ/2)
(97)

is the Rutherford cross section which was calculated in preschool problem 9. The extra
v2-term in eq. (96) then gives the relativistic correction to this. This result is entirely due

to the electron being a spin-1/2 particle. If it were spin-0 instead, |M|2 would look much
simpler as there are no fermion traces to be performed and in that case we would find that
there is no relativistic correction.

4.4 e+e− Annihilation

The calculation we have just performed is almost identical to e+(p′) e−(p)→ µ+(k)µ−(k′).
Although this now involves anti-particles, there is still one single diagram at leading-order
and the trace algebra is very similar. Indeed we can re-interpret the incoming e+ as an
outgoing e− with momentum −p′, and the outgoing µ+ as an incoming µ− with momentum
−k. Then we do find explicitly that

|Me+(p′)e−(p)→µ+(k′)µ−(k)|
2

= |Me−(p)µ−(−k)→e−(−p′)µ−(k′)|
2
. (98)

This is an example of “crossing symmetry”. Note in general that there is an additional
minus sign for each fermion which swaps from the initial to final state or vice versa. This
is because, for example,∑

r

ur(p
′)ur(p

′) = �p
′ +m −→

∑
r

vr(−p′)vr(−p′) = −�p
′ −m = −(�p

′ +m) . (99)

78



In this case there are two minus signs whose combined effect gives just one.

If in e+e−-annihilation we take the approximation me = 0, we find

|M|2 =
8e4

s2
[
(pk)2 + (pk′)2 +m2

µ(kk)′
]
, (100)

Once again, choosing to work in the centre-of-mass frame, we find(
dσ

dΩ

)
e+e−→µ+µ−

=
α2

4s

√
1− 4m2

µ

s

(
1 +

4m2
µ

s
+

(
1− 4m2

µ

s

)
cos2 θ

)
. (101)

If we again take the high-energy limit where s� m2
µ, this reduces to(

dσ

dΩ

)
e+e−→µ+µ−

=
α2

4s
(1 + cos2 θ) . (102)

We can now convert the above result to a total cross section by performing the integral
over the solid angle. This gives

σ(e+e− → µ+µ−) ' 4πα2

3s
. (103)

Now, when an electron and positron annihilate, other fermions may be produced. If these
are quarks, they are then observed in the detector as hadrons. The same calculation gives

σ(e+e− → hadrons) =
4πα2

3s
Nc

nf∑
i=1

Q2
i , (104)

plus higher-order corrections, where there are Nc colours in each of the nf massless flavours
of quarks with charge Qi. Therefore the ratio

R =
σ(e+e− → µ+µ−)

σ(e+e− → hadrons)
(105)

has been used to measure the number of colours to be Nc = 3.

5 Photon Scattering

In this section we will calculate the scattering amplitude for eγ → eγ. In order to do that
we need first to consider how to treat incoming and outgoing photons.

5.1 Photon Polarisation

We seek to find a plane-wave solution corresponding to a free photon (like our treatment
for Dirac particles in section 2.1). It will have the form

Aµ(x) = εµ(k) e−ik·x , (106)
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where εµ(k) is the polarisation vector of the photon. In the Lorentz gauge of eq. (61), the
photon equation of motion in eq. (51) is

�Aµ = 0 , (107)

and is automatically satisfied by a solution of the form in eq. (106), provided k2 = 0. The
Lorentz gauge condition gives an additional constraint on the polarisation vector

k ·ε(k) = 0 . (108)

However, there is still freedom here because, given a polarisation vector ε which solves this
equation, any other vector of the form ε′ = ε + λ k will also be a solution, which corre-
sponds to the propagation of an extra unphysical longitudinal photon, with a polarisation
proportional to kµ. This freedom is usually used to set ε0 = 0 such that k ·ε = 0 so that
the two physical polarisations εα, with α = 1, 2, are in the transverse direction, and are
chosen to be orthonormal. A useful relation we will use in the following is

2∑
α=1

εαi(k)εαj(k) = δij − k̂ik̂j, where k̂i =
ki

|k| =
ki

k0
. (109)

The Feynman rule for an incoming photon is simply εµ(k) while for an outgoing photon
it is ε∗µ(k), as shown in Fig. 4.

As for fermion spins, for unpolarised processes you compute the total cross section by
averaging over incoming polarisations and summing over outgoing polarisations. Let us
consider the case of a general process with one external incoming photon. The matrix
element would have the form

iM = Aµ εµ(k) . (110)

The left-hand side is a physical quantity, hence it should give the same result for any
choice of the gauge. Had we chosen ε+ λ k instead, this implies that Aµ kµ has to vanish.
This is a “Ward Identity” for QED, and is therefore a test of gauge-invariance.

Squaring the scattering-amplitude over the physical polarisations gives

2∑
α=1

|Aµ εαµ(k)|2 =
2∑

α=1

AµA∗ν εαµ(k) ε∗αν (k)

= AiAj(δij − k̂ik̂j) ,
(111)

using eq. (109). The equation Aµ kµ = 0 implies Ai k̂i = A0 and hence

2∑
α=1

|Aµ εαµ(k)|2 = AiAi − A0A0 = −AµAνgµν . (112)
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p

k

p′

k′

p k′

k p′

Figure 7: The two tree-level diagrams for e(p) γ(k)→ e(p′) γ(k′).

This could be done for each photon in turn if there were more in the process, and we find
the general result that

2∑
α=1

εαµ ε
∗α
ν → −gµν . (113)

We have used the → notation of Peskin and Schröder here as the result is not an exact
equality in the absence of the rest of the matrix element, but the result is nonetheless true
in any practical calculation.

5.2 Compton Scattering

There are two diagrams at leading order for this process, shown in Fig. 7. Following the
Feynman rules in Fig. 4 and the rules for external photons in the previous subsection, we
find that the sum of the two diagrams gives

iM = −ie2 ε∗′µ(k′) εν(k) u(p′)

(
γµ

�p+��k +m

(p+ k)2 −m2
γν + γν

�p−��k′ +m

(p− k′)2 −m2
γµ

)
u(p) . (114)

You can check explicitly that the above amplitude does indeed satisfy the appropriate QED
Ward Identities, i.e. replacing εν(k) with kν gives M = 0, and similarly when replacing
ε∗′µ(k′) with k′µ (see tutorial sheet).

We now square the amplitude to get

|M|2 =
1

2

∑
γ pol

1

2

∑
e spin

|M|2

= 2e4

(
(pk)

(pk′)
+

(pk′)

(pk)
+ 2m2

(
1

(pk)
− 1

(pk′)

)
+m4

(
1

(pk)
− 1

(pk′)

)2
)
.

(115)

The calculation of the spin traces in this case requires the identities

γµγ
µ = 4 , γµγ

ργµ = −2γρ , (116)
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k = (ω, k)

θ

k′ = (ω′, k′)

p = (m, 0)

p′ = (E ′, p′)

Figure 8: The Compton scattering process in the rest frame of the incoming electron.

from the problem sheet. We will again choose a suitable reference frame to simplify the
calculation. In this case, it is convenient to work in the rest frame of the incoming electron
as shown in fig. 8. We can use energy conservation to compute ω′:

m2 = p′2 = (p+ k − k′)2 = m2 + 2m(ω − ω′)− 2ωω′(1− cos θ)

⇒ ω′ =
ω

1 + (ω/m)(1− cos θ)
.

(117)

In this frame, we therefore have

|M|2 = 2e4
(
ω

ω′
+
ω′

ω
− sin2 θ

)
. (118)

The explicit dependence on the electron mass cancels with the factors of m in ω′. It is
however present in the flux factor F = 1/(4mω). We now compute the integral over the
phase space to get

σ =
1

4mω

∫
d3p′

(2π)3(2E ′)

d3k′

(2π)3(2ω′)
2e4
(
ω

ω′
+
ω′

ω
− sin2 θ

)
(2π)4δ4 (p′ + k′ − p− k) .

(119)

We can again do the integral over d3k′ using the spatial parts of the δ-function. Then we
transfer to spherical polars and find

dσ

dΩ
=

α2

2m2

(
ω′

ω

)2(
ω

ω′
+
ω′

ω
− sin2 θ

)
. (120)

A nice check of this result is to take the low-energy limit where ω � m. Then ω ' ω′ and
we find

dσ

dΩ
=

α2

2m2

(
1 + cos2 θ

)
. (121)

This is the Thomson cross section for the scattering of classical electromagnetic radiation
by a free electron. In the other limit, the high-energy limit where ω � m, we have

ω′ ' m

1− cos θ
⇒ dσ

dΩ
' α2

2mω

1

1− cos θ
. (122)
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and the cross section is strongly peaked for small angles. This leads to a logarithmic
enhancement when you perform the angular integration. These “collinear” logarithms
arise whenever massless particles are emitted; this will be discussed in more detail in the
phenomenology course.

Note that, since ω > ω′, eq. (122) holds strictly for (1− cos θ) > m/ω. For smaller angles,
eq. (121) holds and

dσ

dΩ
' α2

m2
. (123)

The forward (small scattering angle) Compton scattering cross section is then a valuable
method to measure the QED coupling α.

6 Strong Interactions

In this section we will develop the theory of the strong interactions, quantum chromo-
dynamics (QCD). The major difference between QED and QCD is that the gluons are
self-interacting because they also carry colour charge (unlike the charge-neutral photon).

6.1 QCD Lagrangian

The particles which carry colour charge are

Spin-1/2: six families of quarks (up, charge and top with electric charge +2/3;
down, strange and bottom with electric charge -1/3)
For each flavour, there are Nc = 3 of these.

Spin-1: 8 = (N2
c − 1) massless gluons.

The QCD Lagrangian for a quark of mass m is

LQCD = −1

4
F aµνF a

µν + ψi(i��Dij −mδij)ψj,
with Dµ

ij = ∂µδij + igst
a
ijA

aµ, F a
µν = ∂µA

a
ν − ∂νAaµ + gsf

abcAbµA
c
ν .

(124)

The a, i and j indices are gauge group indices which are discussed further below. The
sum over these is implicit in eq. (124). Each ta is a 3 × 3 matrix in colour space. The ta

matrices do not commute with each other, but obey the following algebra

[ta, tb] = ifabctc , (125)

which is reminiscent of the algebra of angular momentum operators, [Ji, Jj] = iεijkJk.
Here, in place of the alternating tensor εijk, we have the “structure constants” fabc (which
also appear in F a

µν). These are also completely anti-symmetric under the swapping of any
pair of indices.
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Just as the Ji generate the rotation group, SU(2), the ta generate the colour symmetry
group, SU(3). We choose to take the Pauli matrices as a representation of SU(2). For
SU(3) we choose to take the representation where ta = 1

2
λa and the λa are the Gell-Mann

matrices:

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 . λ3 =

 1 0 0
0 −1 0
0 0 0

 ,

λ4 =

 0 0 1
0 0 0
1 0 0

 , λ5 =

 0 0 −i
0 0 0
i 0 0

 , λ6 =

 0 0 0
0 0 1
0 1 0

 ,

λ7 =

 0 0 0
0 0 −i
0 i 0

, λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 .

(126)

In practice, we are not interested in calculating one particular colour component and
instead work with sums over all colours which ultimately leads to traces over the ta-
matrices. We will see explicit examples of this in the sections that follow and here just
collect some useful identities:

Tr(ta) = 0, Tr(tatb) =
1

2
δab,

∑
a

taijt
a
jk = CF δik ,

∑
a,b

fabcfabd = CAδ
cd ,

where CF =
4

3
, CA = 3 .

(127)

Notice that we have labelled with a = 1, . . . , 8 the gluon indices and with i = 1, . . . , 3 the
quark indices. Particular care must be taken when these identities combine to give a trace
of a δ-function:

δaa = N2
c − 1 = 8 (the number of gluons)

δii = Nc = 3 (the number of quarks) .
(128)

The QCD Lagrangian LQCD is invariant under the infinitesimal “gauge” transformations

ψi(x)→
(
δij − igsθa(x)taij

)
ψ(x) ,

Aaµ(x)→ Aaµ(x) +Dab
µ θ

b(x) ,
(129)

where Dab
µ is the covariant derivative in the “adjoint” representation, the one under which

the gluon fields transforms under SU(3), as opposed to the “fundamental” representa-
tion, which rules the transformation of quark fields. In particular, the adjoint covariant
derivative is given by

Dab
µ = ∂µδ

ab + igsA
c
µ(T c)ab , (T c)ab = ifacb = −ifabc . (130)

The matrices T a, as needed for any generator of a representation of SU(3), satisfy the
same commutation rules as ta:

[T a, T b] = ifabcT c . (131)
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These are nothing else than the Jacobi identity satisfied by the structure constants fabc:

fabcf cde + f bdcf cae + fdacf cbe = 0 . (132)

Notice that the gauge transformation for Aaµ involves the strong coupling gs:

Aµ → Aµ + ∂µθ
a + gsf

abcθbAcµ = Aaµ + ∂aµθ
a +O(gs) , (133)

and only at lowest order in gs does it reduce to the analogous transformation for QED.

As in QED, in order to quantise the QCD Lagrangian, we need to introduce a “gauge-
fixing” term, for instance

Lgf = − 1

2ξ
(∂µA

µ
a)2 . (134)

We now describe the Feynman rules for QCD. The quark and gluon propagators are
identical to those for QED except they are also accompanied by the appropriate delta-
function in colour space (see fig. 9). The coupling between two quarks and a gluon is now

p →
j k

p →µ ν

a b

δkj
i(�p+m)

p2 −m2 + iε

δab
−igµν
p2 + iε

Figure 9: The Feynman rules for the quark and gluon propagators (the latter is in Feynman
gauge ξ = 1).

given in terms of colour matrices, taij as shown in fig. 10. Notice that the Dirac matrix
γµ also still appears as it must for spin-1/2 particles. The colour matrices and Dirac
matrices do not interact with each other (they act on different vector spaces). The ‘a’
is the “adjoint” index and is associated with the gluon. The k and j are “fundamental”
indices associated with the outgoing and incoming fermion line respectively.

j k

a

µ igsγ
µT a

kj

−igsγµtakj

Figure 10: The Feynman rule for a quark-quark-gluon vertex.
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a b

c

pµ qν

rρ

a b

cd

gsf
abc (gµν(p− q)ρ + gνρ(q − r)µ + gρµ(r − p)ν)

−ig2s
(
fabef cde(gµρgνσ − gµσgνρ)

+facef bde(gµνgρσ − gµσgνρ)

+fadef bce(gµνgρσ − gµρgνσ)
)

Figure 11: Three and four gluon vertices which arise from eq. (124). All momenta are
taken to be incoming.

Returning to the Lagrangian, in QCD F a
µν has an extra term compared to QED, as required

by gauge invariance. (Technically this term is present for QED too, but QED is an
“Abelian” gauge theory which means that the structure constants are zero). Multiplying
out F aµνF a

µν give extra terms with 3 and 4 gauge fields. These correspond to new three-
and four-gluon vertices as shown in fig. 11.

6.2 Gauge Invariance

The presence of the non-commuting colour matrices illustrates that SU(3) is a non-Abelian
gauge group. We can see the effect of this by studying the QCD equivalent of photon pair
production, q(p) q̄(p′)→ g(k) g(k′), shown in fig. 12. In QED, the matrix element squared

p

p’ p’

p p

p’

k k k

k’k’k’

(a) (b) (c)

Figure 12: Feynman diagrams for the process qq̄ → gg.

for this process can be obtained from that of Compton scattering via crossing.

One immediate effect is obvious – there is now a third diagram including the three-gluon
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vertex. If we sum the contributions from the first two diagrams we find

M(a)+(b) = A(a)+(b)
µν ε∗µ(k)ε′∗ν(k′),

A(a)+(b)
µν = −ig2sv(p′)

(
γνt

b �p−��k

(p− k)2
γµt

a + γµt
a �p−��k′

(p− k′)2γνt
b

)
u(p) ,

(135)

where we have implicitly assumed that gluon k has colour a and polarisation index µ, and
gluon k′ has colour b and polarisation index ν. At this order, see eq. (133), gauge invari-
ance corresponds to testing whether the replacement εµ → εµ + λkµ leaves the amplitude

invariant. This is equivalent to testing the condition for the Ward Identity, A(a)+(b)
µν kµ = 0:

A(a)+(b)
µν kµ = −ig2s [ta, tb]v(p′)γνu(p) 6= 0 . (136)

The non-zero commutator makes these diagrams alone not gauge-invariant. Adding di-
agram (c) gives a contribution which exactly cancels this (try this!) but yields another
term proportional to k′µ. This vanishes when we remember the whole expression is con-
tracted with ε′∗ν(k′), and so gauge invariance is only obeyed once we project onto physical
polarisations. This wasn’t necessary in QED.

Recall in the QED case in section 3.2, we used Aµνkµ = 0 to show that, in practical
calculations, we can always make the replacement

2∑
α=1

εαµε
∗α
ν → −gµν . (137)

Although the right-hand summed all polarisations and not only the physical transverse
ones, in actual calculations the unphysical longitudinal gluon polarisations automatically
cancelled. This is no longer the case in QCD, where one has to sum strictly over physical
polarisations. However, this can make calculations more cumbersome, so it might still be
useful to sum over all polarisations, and to cancel in some way the unphysical degrees of
freedom. How this cancellation is performed depends on the gauge. In covariant gauges,
like the Feynman gauge, this is done by introducing extra fields, called the ghost fields.
The alternative is to use the so-called physical gauges, that ensure that that only physical
degrees of freedom propagate on shell.

Ghost Fields

To understand how the cancellation of unphysical polarisations actually arises in a covari-
ant gauge, we need to revert to the case of photon pair production in QED. When we
make the replacement in eq. (137), we are exploiting the fact that QED is unitary, i.e.
probability is conserved through time evolution. A non-trivial implication of unitarity is
that, at the lowest order in perturbation theory, twice the imaginary part of the forward
amplitude for the process e+e− → e+e− has to be equal to amplitude squared for the
process e+e− → γγ, when we integrate over the photon phase space and sum over physi-
cal photon polarisations. This is illustrated in Fig. 13, which shows the only intermediate
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Figure 13: Unitarity relation for the process e+e− → γγ. The shaded blob represent the
sum of all possible subdiagrams that can give rise to two photons in the final state at the
lowest order in perturbation theory.

states that, at the considered order in perturbation theory, give a non-zero imaginary part,
namely two virtual photons. Furthermore, it is possible to show that the imaginary part of
any Feynman diagram is obtained by putting on shell in all possible ways the intermediate
propagators (i.e. cutting the diagram) by replacing i/(p2 − m2 + iε) in each of them by
(2π)Θ(p0)δ(p

2−m2). This divides each Feynman diagram into two subdiagrams on either
side of the cut. On one side of the cut, one uses standard Feynman rules. On the other
sides, one needs to apply complex conjugation to all Feynman vertices and propagators.
Cuts of a diagram that conflict with energy-momentum conservation do not give any con-
tribution to the imaginary part. The result of this cutting procedure for the present case
is illustrated in Fig. 14. The dashed line on the right-hand side of the figure represents
the only cut of the diagram that gives a non-zero imaginary part, obtained by putting on
shell the intermediate photon propagators. If the amplitude is computed in the Feynman

Im2 =

Figure 14: Pictorial representation of the cutting rules needed to compute the imaginary
part of the forward amplitude e+e− → e+e− mediated by two virtual photons. The
shaded blob represents the sum all possible subdiagrams that can give two photons in the
intermediate state, that is, the two diagrams on the left-hand side of Fig. 13.

gauge, for an intermediate photon of momentum k, we have to perform the replacement

−gµµ′
i

k2 + iε
→ −gµµ′(2π)Θ(k0)δ(k

2) . (138)

Let us call Aµν the contribution to the diagram on the left of the cut in Fig. 14. From
the Ward identity kµAµν = 0, we obtain that the contribution of gluon k to the imaginary
part of the amplitude becomes∫

d4k

(2π)4
(−gµµ′)(2π)Θ(k0)δ(k

2)Aµν =

∫
d3k

(2π)32k0
Aµν

2∑
α=1

εαµ(k)ε∗αµ′ (k) , (139)
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where α = 1, 2 is the index labelling photon physical polarisations. This verifies explicitly
the unitary relation represented in Fig. 13. The latter means that, in QED, making the
replacement in eq. (137) corresponds to exploiting the unitarity of the theory to compute
an amplitude squared through the imaginary part of the corresponding forward amplitude.

In the case of QCD, as we have seen in the previous section, the fact that kµAµν 6= 0 implies
that the amplitude squared for the process qq̄ → gg is not given by the imaginary part of
the forward amplitude qq̄ → qq̄, when only gluons are considered as intermediate states.
In fact, the cut forward amplitude contains the contribution of non-physical longitudinal
polarisations, which do not contribute to the amplitude squared for qq̄ → gg. This would
violate unitarity, so there has to be additional fields that are responsible for the cancellation
of the contribution of non-physical polarisations in the imaginary part of the forward
amplitude. These new fields are called ghosts. They are scalar fields, but satisfy Pauli
exclusion principle like fermions. They transform under SU(3) in the same way as gluons,
i.e. in the adjoint representation. The Feynman rules for ghosts are shown in fig. 15.
They can propagate and couple to gluons, but never appear in physical final states. If

b c

a

µ

q

gsf
abcqµ

a b

q →
δab

i

q2 + iε

Figure 15: The Feynman rules for ghost fields, which are constructed explicitly to cancel
unphysical degrees of freedom.

we now consider the imaginary part of the forward qq̄ amplitude, at the lowest order in
perturbation theory we need to include not only gluons as intermediate states, but ghosts
as well, as pictorially illustrated in Fig. 16. The ghost-antighost loop contributes to the
imaginary part of the forward amplitude with a factor (−1), just like a normal fermion
loop, so as to cancel the contribution of the unphysical longitudinal gluon polarisations
when summing over all diagrams. The resulting imaginary part equals the amplitude
squared for the process qq̄ → gg, integrated over the gluon phase space and summed over
physical gluon polarisations, as required by unitarity of QCD.

Physical Gauges

Alternatively, we can impose a so-called “physical gauge” condition on the gluon fields
to eliminate unphysical polarisations from the start. This eliminates the need for ghosts,
which do not interact with gluons anymore, but complicates the gluon propagator. In
place of the Lorentz gauge condition ∂µAaµ = 0, we impose

Aaµn
µ = 0 , (140)
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Figure 16: Pictorial representation of the unitarity constraint for QCD discussed in the
text. Longitudinal polarisations for on-shell gluons in the cut amplitude on the left-hand
side of the equality are cancelled by the contribution of the ghost-antighost loop. Each
blob represents the sum of the three diagrams in Fig. 12.

for some arbitrary reference vector nµ. This is done by adding the gauge-fixing Lagrangian

Lgf = − 1

2ξ
(Aaµn

µ)2 , (141)

and taking the limit ξ → 0, thus enforcing the gauge condition in eq. (140).

The new expression for the propagator (for ξ = 0) is shown in fig. 17. When we use a

a b

µ ν
q →

δab
i

q2 + iε

(
−gµν +

qµnν + qνnµ

(qn)
− n2 q

µqν

(qn)2

)
Figure 17: The gluon propagator when working in a physical gauge, Aaµn

µ = 0.

physical gauge, whenever we sum over polarisations, we can make the replacement

2∑
α=1

εαµ(q)ε∗αν (q)→ −gµν +
qµnν + qνnµ

(qn)
− n2 q

µqν

(qn)2
. (142)

The different choices of reference vector nµ correspond to different choices of the gauge.
One can explicitly check that results for physical quantities, such as cross sections, are
independent of this choice.

A relevant example of a physical gauge is the light-cone gauge, in which n2 = 0. In such a
gauge, if we have an on-shell gluon q = (ω, q), we can choose n = (1,−q/ω). In this case

−gµν +
qµnν + qνnµ

(qn)
=

2∑
α=1

εαµ(q)ε∗αν (q) , (143)

so that the replacement gives exactly the sum over the physical polarisations introduced
in section 5.1. The expression in eq. (143) is the one that must be used in covariant gauges
if one does not want to introduce unphysical amplitudes squared with ghosts in the final
state.
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(a) (b)

Figure 18: Sample “loop” Feynman diagrams: (a) one of the one-loop corrections to
Coulomb scattering and (b) a one-loop correction to the photon propagator.

7 Renormalisation

7.1 Dimensional regularisation and renormalisation scale

As mentioned in section 3.2, starting from the Feynman rules one can construct diagrams
with loops, as for example the diagrams shown in fig. 18. The presence of loops means that
momentum-conservation at each interaction vertex is no longer sufficient to determine the
momentum in each leg. For example, k can take any value in the diagrams shown in fig. 18.
We must therefore integrate over all possible values of unconstrained loop momenta. For
example, the result for the diagram in fig. 18(b) is

(ie)2
∫

d4k

(2π)4
Tr[γµ(��k + �p+m)γν(��k +m)]

(k2 −m2)((k + p)2 −m2)
, (144)

with p the photon momentum and d the number of space-time dimensions. As the integral
runs over all values of k, it includes very large values of k. Counting the powers of k,
there are six of them in the numerator and four in the denominator, which implies that
this integral diverges. In general, for any integral of the form∫

ddk

(2π)4
N(k)

M(k)
(145)

we define the superficial degree of divergence, D, to be the result of the näıve power-
counting:

D = d+ (powers of k in N)− (powers of k in M) . (146)

If D ≥ 0, then the integral is said to be superficially divergent. Such divergences are called
ultra-violet (UV) because they arise whenever loop momenta get large. The boundary case
of D = 0 is a logarithmic divergence (think of

∫
dk 1/k). The term “superficial” is used

because there can be other factors which can affect the actual degree of divergence. In
the example above, gauge invariance actually implies that the final result of the integral
in eq. (144) must be proportional to (p2gµν − pµpν). Therefore the divergence is only
logarithmic, and not quadratic as it appears from näıve power counting.

The main point, though, is not the degree of divergence, but the fact that one finds
divergences at all. These higher-loop corrections were supposed to be corrections in the
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perturbative series, hence smaller than those appearing at the previous perturbative order.
For many years, this caused a major problem for the development of perturbation the-
ory. However, there exists a well-defined procedure to “remove” these divergences which
is called renormalisation. The basic idea behind renormalisation is that the parameters
appearing in the Lagrangian do not need to be physical quantities, but their value is deter-
mined by comparing perturbative predictions to actual experimental data. For instance,
the value of e can be extracted by measuring the Compton differential cross section at
small angles. Therefore, infinities that eventually appear in perturbative calculations can
be in principle reabsorbed in a redefinition of the parameters entering the Lagrangian. In
practice, this amounts to rescaling all quantities in the Lagrangian by a “renormalisation
constant”, Z. For instance, for a field φ we have

φ −→ φ0 = ZφφR . (147)

The field φ0 is called “bare” field, as opposed to the “renormalised” field φR, and Zφ is
called renormalisation constant. This procedure has to be repeated for all fields, masses
and coupling constants. Provided that all infinities in the theory can be removed with
a finite number of renormalisation constants Z, then the theory is said to be renormalis-
able. After the renormalisation constants have been fixed, we can calculate all physical
quantities in terms of the renormalised quantities and the results will be both finite and
unambiguously defined.

The renormalisation constants are calculated according to some procedure that is called
“renormalisation scheme”. This consists in computing a suitable set of correlation func-
tions, and imposing that these functions are finite at any order in perturbation theory.
In this procedure one finds divergent integrals, which have to be regularised in some way.
The regularisation actually provide means to parameterise the divergence. One approach
is to implement a momentum cut-off, Λ, so as to artificially remove the region with large
momentum. The most common approach though is called “dimensional regularisation”.
Here we decrease the term d in eq. (146) to a lower value, so that we calculate all integrals
in d = 4− 2ε dimensions instead of d = 4. The integration measure becomes

d4k

(2π)4
−→ d4−2εk

(2π)4−2ε
, (148)

and for each dimensionsless coupling gR one performs the replacement

gR → µ
4−d
2 gR(µ) = µεgR(µ) . (149)

The factor of µε is essential to preserve the correct dimensions of the bare coupling in d
dimensions. The renormalised coupling gR stays dimensionsless and depends now on the
scale µ. The latter quantity is the famous renormalisation scale and it is the price that
we pay for renormalisation as our finite calculations are now all dependent upon µ.

To summarise, the steps to perform renormalisation within dimensional regularisation are:

1. Compute all integrals in terms of renormalised quantities.

92



2. All UV divergences appear as 1/ε-poles.

3. Define the renormalisation functions Z so as to cancel the poles in ε (and maybe
some finite terms).

After renormalisation, eq. (147) depends on both ε and µ, as follows:

φ0(ε) = Zφ(µ, ε)φR(µ) , (150)

and a similar expression holds for all couplings and masses. Both φ0 and Z are infinite for
ε→ 0, whereas φR(µ) stays finite, but depends on the unphysical renormalisation scale µ.

In a renormalised theory then, even tree-level diagrams depend on the renormalisation
scale, through the coupling for example. The dependence on the renormalisation scale
would dissappear only if we were able to calculate physical quantities to all orders in
perturbation theory. Although this is unpractical, calculating one or two extra orders in
perturbation theory can reduce the dependence considerably. However, this does mean
that any theoretical calculation now depends on a free parameter, and it is exactly this
parameter which leads to a way to estimate the “theory uncertainty”. In fact, consider an
observable O(αR(µ), µ, {Qi}), where {Qi} is a set of characteristic scales for the process.
If we know O(n), the perturbative expansion of O at order n in perturbation theory, we
have

O(n)(αR(µ′), µ′, {Qi}) = O(n)(αR(µ), µ, {Qi}) +O(αn+1
R (µ)) , (151)

so that the variation of µ around some central value µ0 produces automatically a higher-
order term. Notice that O(n)(αR(µ), µ, {Qi}) might contain ln(Qi/µ). This is why the
central scale µ0 is normally chosen of the order of the typical value that the scales Qi can
assume. For example in gg → H, one would typically take µ0 ∼ mH .

The obvious way to gauge how the strength of the dependence on the scale in a calculation
is to vary the scale and see how the result varies. If the dependence is very weak, the
result will be negligible. If the dependence is very strong, the variation will be large.
The consensus of the community is to quote the theoretical uncertainty when the central
scale is varied by a factor of 2 in each direction. One should remember that this is only an
uncertainty of the dependence on the renormalisation scale and not a strict error bar. This
is illustrated by the plot in fig. 19, which is taken from Gehrmann-De Ridder, Gehrmann,
Glover & Pires, arXiv:1301.7310. It shows the scale dependence for inclusive jet production
in the gluon-gluon channel at LO, NLO and NNLO. Indeed the variation decreases each
time indicating that the sensitivity to the scale is decreasing. The fact that the lines do
not overlap is a clear sign that these uncertainty bands are not error bands.

7.2 Running Coupling

Suppose we have chosen a renormalisation scale µ. How do we measure a coupling αR(µ)?
We normally consider an observable O(αR(µ′), µ′, {Qi}), compute it at the highest possible
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Figure 19: Plot showing the scale dependence for inclusive jet production at LO, NLO and
NNLO, taken from Gehrmann-De Ridder, Gehrmann, Glover & Pires, arXiv:1301.7310.

order in perturbation theory, and compare the obtained number with experimental data:

O(n)(αR(µ′), µ′, {Qi}) = Oexp ⇒ αR(µ) . (152)

By doing this for various observables, characterised by different typical scales µ, one can
actually measure the dependence of the coupling on the renormalisation scale µ. This
dependence can be predicted theoretically, and the comparison of the predicted dependence
with the one that is actually observed represents one of the most stringent tests of the
validity of a given QFT. This is illustrated for QCD in fig. 20, where one sees an astonishing
agreement between the predicted “running” of the QCD coupling with the renormalisation
scale Q, and what is observed in experimental data.

The theoretical object that dictates how a coupling evolves with the renormalisation scale
is the beta function β(αR), defined as

µ2∂αR
∂µ2

= β(αR) = −β0α2
R − β1α3

R + . . . . (153)

There are various ways to compute the beta function, which in general depends on the
renormalisation scheme used. However, one can show that the first two coefficient of the
beta function, β0 and β1, are independent of the renormalisation scheme. If we consider
a scheme tied to dimensional regularisation (e.g. the so-called MS scheme), one has the
relation

α0(ε) = µ2ε Z2
g (ε, µ2)αR(µ2) , (154)

where α0 = g20/(4π) and αR = g2R/(4π). The crucial observation is that the bare coupling
α0 does not depend on µ. Therefore, its logarithmic derivative with respect to µ2 is zero:

0 = µ2∂α0

∂µ2
= µ2ε Z2

g (ε, µ2)

[(
ε+

µ2

Z2
g

∂Z2
g

∂µ2

)
αR + µ2∂αR

∂µ2

]
. (155)
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Figure 20: The QCD coupling αs as a function of the renormalisation scale Q, in theory
and experiment, taken from arXiv:1512.0519.

This gives

µ2∂αR
∂µ2

= −
(
ε+

µ2

Z2
g

∂Z2
g

∂µ2

)
αR ≡ β(ε, αR)→ β(αR) = − lim

ε→0

µ2

Z2
g

∂Z2
g

∂µ2
αR , ε→ 0 .

(156)
In any scheme based on dimensional regularisation we have

Zg(ε, µ
2) = 1 +

αR(µ2)

ε
Z(1)
g + . . . . (157)

Therefore the first term of the beta function is just obtained from the 1/ε pole of Zg, as
follows

β(αR) = − lim
ε→0

µ2

Z2
g

∂Z2
g

∂µ2
αR = − lim

ε→0

2Z
(1)
g

ε
µ2∂αR
∂µ2︸ ︷︷ ︸

=−εαR

αR = −β0α2
R ⇒ β0 = −2Z(1)

g . (158)

The calculation of Z
(1)
g can be performed using any quantity that involves an interaction

vertex. A way that is common to both QED and QCD is to consider the renormalised
interaction Lagrangian

Lint → ZgZ2

√
Z3 (gRψ̄R��ARψR) = Z1 (gRψ̄R��ARψR) , ⇒ Zg =

Z1

Z2

√
Z3

. (159)

Here we have used the ubiquitous notation Zψ =
√
Z2 and ZA =

√
Z3. The function

Z1 contains all UV divergences associated with loop corrections to the interaction vertex,
whereas Z2 and Z3 contain UV divergences arising in the calculations of the fermion
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and gauge-boson propagators respectively. In QED, a powerful Ward identity implies
Z1 = Z2, so that the beta function can be calculated just from all the loop corrections to
the propagator in the unrenormalised theory. For the case of QED

β0 = −2Z(1)
g = Z

(1)
3 = − 1

3π
. (160)

Inserting this expression in the beta function we obtain

βQED(α) =
1

3π
α2 . (161)

which means that the QED coupling, at least until the beta function is dominated by its
first term, becomes stronger with energy.

In QCD instead the Ward identity Z1 = Z2 does not hold any more. However, it holds
at least for the part of these renormalisation functions that depends on CF . Since, at
one loop, Z

(1)
2 is proportional to CF , its contribution to the beta function cancels exactly

with the abelian contribution to Z
(1)
1 . Therefore, the only contributions to the QCD beta

function at one loop come from the renormalisation function of the gluon Z
(1)
3 and the

non-abelian part of Z
(1)
1 , which we call Z

(1)
1 |n.a. The two depend on the gauge, but this

gauge dependence cancels in the combination

β0 = −2Z(1)
g = Z

(1)
3 − 2Z

(1)
1 |n.a . (162)

For instance, in the Feynman gauge

Z
(1)
3 =

αs
ε

5CA − 2nf
12π

, Z
(1)
1 = −αs

ε

CF + CA
4π

, (163)

where αs = g2s/(4π) and nf is the number of massless (a.k.a. “active”) quark flavours
contributing to the renormalisation of the gluon propagator. This gives

βQCD(αs) = −11CA − 2nf
12π

α2
s = − 21

12π
α2
s , (164)

where the latter expression corresponds to the actual value of the beta function for nf = 6
active flavours, as is the case at very high momentum scales. The fact that the beta
function of QCD is negative when αs is small means that the QCD coupling decreases
with energy. This property is known as asymptotic freedom, and is crucial to be able to
compute hadronic cross sections in terms of quarks and gluons. In fact, when probed at
short distances, hadrons appear as made up of pointlike constituents, quarks and gluons,
which interact very feebly. Therefore, the Feynman rules we have learnt so far are enough
to compute high-energy observables, for instance jet cross sections, as will be explained
in the phenomenology course. At larger distances, the QCD coupling becomes stronger
and stronger, at a point that quarks and gluons bind together to form hadrons. This
phenomenon is known as confinement.
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Summary

This has been a very quick tour through some very important, deep and interesting ma-
terial. I hope it has provided some insight into the quantum field theory descriptions of
QED and QCD, and provided you with useful tools for the future.
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1 Abelian and non-Abelian local gauge theories

The Standard Model is based on a product of groups SU(3)c×SU(2)L×U(1)Y , describing

QCD, the chiral SU(2)L electroweak sector and the hypercharge U(1)Y sector in which QED

is embedded. The first two of these groups are non-abelian, and are based on non-commuting

group generators. The final group is abelian. We shall review in what follows how such gauge

theories can be constructed from the principle of local gauge invariance, beginning with the

simplest case of QED, and generalising this recipe to the construction of the non-abelian

SU(N) theories.

1.1 QED Lagrangian from local gauge invariance

The QED Lagrangian can be defined more fundamentally by demanding local gauge in-

variance. The Dirac Lagrangian

LDirac = iψ̄γµ∂µψ −mψ̄ψ , (1.1)

has an obvious invariance under the global gauge transformation

ψ(x) → ψ
′

(x) = eiαψ(x) , ψ̄(x) → ψ̄
′

(x) = e−iαψ̄(x) , (1.2)

where the phase iα is independent of spacetime position x. Each term is simply multiplied

by eiαe−iα = 1. Local gauge invariance corresponds to demanding invariance with phases

iα(x) which are chosen independently at each spacetime point.

ψ(x) → ψ
′

(x) = eiα(x)ψ(x) , ψ̄(x) → ψ̄
′

(x) = e−iα(x)ψ̄(x) . (1.3)

One now finds that local gauge invariance does not hold since

iψ̄(x)γµ∂µψ(x) → iψ̄(x)e−iα(x)γµ∂µ[e
iα(x)ψ(x)]

= iψ̄(x)γµ∂µψ(x)− ψ̄(x)γµψ(x)[∂µα(x)] . (1.4)

The ∂µα(x) term violates the local gauge invariance. The resolution is that one needs to

replace the ordinary derivative ∂µ by the covariant derivative Dµ. To ensure local gauge

invariance one needs to ensure that under a gauge transformation Dµψ(x) transforms in

exactly the same way as ψ(x) itself. It is in this sense that one has a “covariant derivative”.
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Dµψ(x) → D
′

µψ
′

(x) = eiα(x)(Dµψ(x)) . (1.5)

This transformation rule holds if we define the covariant derivative

Dµ ≡ ∂µ + ieAµ , (1.6)

where under a local gauge transformation the gauge field Aµ transforms as

Aµ → A
′

µ = Aµ −
1

e
∂µα(x) . (1.7)

The gauge transformation of Aµ is exactly the same as the classical EM transformation, but

the idea will be that the covariant derivative Dµ and gauge fields Aµ can provide a general

recipe for constructing general non-abelian gauge theories. Having changed ∂µ to Dµ, and

adding in the “kinetic energy” term −1
4
FµνF

µν one has the QED Lagrangian

LQED = −1

4
FµνF

µν + iψ̄γµDµψ −mψ̄ψ

= −1

4
FµνF

µν + iψ̄γµ∂µψ − eψ̄γµψAµ −mψ̄ψ . (1.8)

Crucially Fµν can be defined in terms of the commutator of covariant derivatives, Dµ. This

involves introducing a “gauge comparator” and is analogous to parallel transport in General

Relativity. The definition is

[Dµ, Dν ]ψ ≡ ieFµνψ . (1.9)

In the case of abelian QED one finds the classical EM result

Fµν = ∂µAν − ∂νAµ . (1.10)

How does this generalise to non-Abelian gauge groups ?

1.2 The Non-Abelian Recipe Book

Local gauge transformations will be of the form

ψ(x) → ψ
′

(x) = U(x)ψ(x) , ψ̄(x) → ψ̄
′

(x) = ψ̄(x)U−1(x) . (1.11)

Here U(x) denotes an element of the gauge group G chosen independently at each spacetime

point. In the case of QED G = U(1) the group of 1 × 1 unitary (MM † = I) matrices

(complex phases). We shall be interested in the non-Abelian Lie groups SU(N) of N × N

unitary matrices with detU = 1. An element of such a Lie Group will have the form
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U(x) = exp(i
N2−1
∑

j=1

αj(x)Tj) . (1.12)

Here the sum is over the N2−1 generators of the Lie group. These satisfy the Lie Algebra

[Ti, Tj ] = icijkTk . (1.13)

Here the cijk are the real structure constants of the group. Abelian groups have commuting

generators and so for the U(1) of QED cijk = 0. For SU(2) the generators involve the three

Pauli matrices Ti = σi/2 and the structure constants are cijk = ǫijk, whilst for SU(3) the

generators involve the eight Gell-Mann λ matrices Ti = λi/2. The spin-
1
2
matter fields are N -

plets in the fundamental representation of the gauge group. For instance (chiral) leptonic

doublets of neutrinos and electrons in electroweak SU(2)L
(

νe

e

)

, (1.14)

or quark colour triplets (red, green and blue, RGB) in SU(3) QCD.

ψ(x) =









ψR(x)

ψG(x)

ψB(x)









. (1.15)

The gauge fields are linear combinations of the generators of the gauge group

Aµ =
N2−1
∑

i=1

Ai
µTi . (1.16)

One defines the covariant derivative

Dµ = (∂µ − igAµ) . (1.17)

Here g is the gauge coupling. For local gauge invariance one requires that

Dµψ(x) → D
′µψ

′

(x) = U(x)[Dµψ(x)] , (1.18)

and hence Aµ transforms as

Aµ → A
′

µ = U(x)AµU
−1(x) +

i

g
U(x)[∂µU

−1(x)] . (1.19)
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The locally gauge invariant Lagrangian is then obtained by replacing ∂µ → Dµ in the free

Dirac Lagrangian

L = iψ̄γµDµψ −mψ̄ψ

The non-Abelian expression for Fµν follows from

[Dµ, Dν ]ψ(x) = −igFµνψ(x) (1.20)

which yields

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ]

= ∂µAν − ∂νAµ − igAi
µA

j
ν [Ti, Tj ]

= ∂µAν − ∂νAµ + gAi
µA

j
νcijkTk . (1.21)

One can easily check that under a local gauge transformation

Fµν → F
′

µν = U(x)FµνU
−1(x) , (1.22)

and so the kinetic energy term

−1

2
Tr[FµνF

µν ] , (1.23)

is locally gauge invariant since the trace is cyclic.

Tr[F
′

µνF
′µν ] = Tr[UFµνU

−1UF µνU−1] = Tr[FµνF
µν ] (1.24)

−1

2
Tr[FµνF

µν ] = −1

2
F i
µνF

jµνTr[TiTj ] . (1.25)

Defining the generators so that Tr[TiTj] =
1
2
δij one arrives at the kinetic energy term

−1

4
F i
µνF

iµν . (1.26)
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1.3 The Lagrangian of QCD

Quantum Chromodynamics (QCD) is a non-abelian gauge theory of interacting quarks and

gluons. The gauge group is SU(Nc), and there are N2
c − 1 gluons. Experimental indications

are that Nc = 3. The Lagrangian density is

LQCD = ψ̄(iγµ∂µ −m)ψ + gs(ψ̄γ
µTaψ)G

a
µ −

1

4
Ga

µνG
µν
a . (1.27)

Here a = 1, 2, 3, . . . , 8, and Ta are the generators of SU(3), Ta = λa/2, where λa (a =

1, 2, . . . , 8) are the Gell-Mann λ-matrices. They satisfy the Lie algebra

[Ta, Tb] = ifabcTc (1.28)

The quark fields carry colour, R, G, B, and transform as a triplet in the fundamental repre-

sentation

ψ(x) =









ψR(x)

ψG(x)

ψB(x)









(1.29)

LQCD is invariant under local SU(3) gauge transformations

ψ(x) → U(x)ψ = eiT
aαa(x)ψ(x) . (1.30)

The field strength tensor Ga
µν contains the abelian (QED) result and an extra term pro-

portional to the structure constants fabc which are responsible for three and four-point

self-interactions of gluons, not present for photons in QED.

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gsf

abcGb
µG

c
ν . (1.31)

For QCD (but not QED) one also needs to include unphysical ghost particles. These are

scalar Grassmann (anti-commuting) fields needed to cancel unphysical polarization states

for the gluons. The required Fadeev-Popov extra term in LQCD is

Lghost = η̄a(−∂2δac − gs∂
µfabcGb

µ)η
c . (1.32)

In both QED and QCD one needs also to include a gauge fixing term if inverse propagators

are to be defined.

Lgauge−fixing =
1

2ξ
(∂µGa

µ)
2 (1.33)

There is only one other gauge-invariant structure that we could add involving the dual field

strength tensor G̃a
µν ,
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Lθ =
θg2s
64π2

G̃a,µνGρσ
a (1.34)

This is a total derivative and so produces no effects at the perturbative level. However, if

θ 6= 0 non-perturbative effects would induce a CP-violating electric dipole moment for the

neutron, experimental constraints on this provide a bound |θ| < 3.10−10.

2 Glashow’s Model SU(2)L×U(1)Y

We begin by defining a weak isospin doublet containing a left-handed electron and electron

neutrino

χL =

(

νL

eL

)

≡
(

ν

e

)

L

. (2.1)

With an adjoint

χ̄L = ( ν̄L ēL ) . (2.2)

We shall introduce a weak isospin quantum number T . The doublet has T = 1
2
, the upper

and lower members of the doublet have T 3 = ±1
2
, respectively.

These row and column matrices are acted on by isospin generators in the form of 2×2 Pauli

matrices

τ 1 =

(

0 1

1 0

)

, τ 2 =

(

0 −i
i 0

)

, τ 3 =

(

1 0

0 −1

)

. (2.3)

The generators 1
2
τ i satisfy the SU(2) Lie Algebra

[
1

2
τ i,

1

2
τ j] = iǫijk

1

2
τ k . (2.4)

The isospin raising and lowering operators are τ± = 1
2
(τ 1 ± iτ 2).

One can then write an isospin triplet of weak currents

J i
µ = χ̄Lγµ

1

2
τ iχL (i = 1, 2, 3) . (2.5)

Putting in row vectors, column vectors and matrices, we have explicitly on multiplying out

J1
µ =

1

2
(ēLγµνL + ν̄LγµeL)

J2
µ =

i

2
(ēLγµνL − ν̄LγµeL)

J3
µ =

1

2
(ν̄LγµνL − ēLγµeL) . (2.6)
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The charge raising and lowering V-A currents can be written in terms of J1
µ and J2

µ

J±
µ = χ̄Lγµτ

±χL = J1
µ ± iJ2

µ . (2.7)

The isospin triplet of currents have corresponding charges

T i =
∫

d3x J i
0(x) , (2.8)

and these satisfy an SU(2) algebra

[T i, T j ] = iǫijkT
k . (2.9)

To construct a combined weak and electromagnetic theory we will also require the electro-

magnetic current

Jem
µ = Q(ēLγµeL + ēRγµeR) , (2.10)

where Q denotes the charge of the particle (in this case an electron) in units of e ≈ 0.303

(α = e2/4π is the fine structure constant). So Q = −1 for e−. In terms of the net charge

of interacting particles J3
µ and Jem

µ are neutral currents, whereas J1
µ and J2

µ are charged

currents. J3
µ does not involve eR whereas electromagnetism does, and so to have a gauge

theory involving both weak and electromagnetic interactions we must add an extra current

JY
µ to J3

µ. The simplest approach is to write

Jem
µ = J3

µ +
1

2
JY
µ , (2.11)

then putting in the expressions for Jem
µ and J3

µ we have

JY
µ = −χ̄LγµχL − 2ēRγµeR

= −ν̄LγµνL − ēLγµeL − 2ēRγµeR . (2.12)

In virtue of the above identity between Jem
µ , J3

µ and JY
µ the corresponding charges, Q (electric

charge in units of e), T 3 (third component of weak isospin) and Y (termed hypercharge)

satisfy

Q = T 3 +
Y

2
. (2.13)

This is identical to the Gell-Mann Nishijima relation obtained in the quark model of hadrons.

The 1
2
coefficient in front of JY

µ is purely conventional. T 3, Q and Y may be read off from the

coefficients of the ν̄LγµνL, ēLγµeL and ēRγµeR terms in J3
µ, J

em
µ and JY

µ above. The charge

assignments (T, T 3, Q, Y ) for the particles in the model are

νL = (
1

2
,
1

2
, 0,−1)

eL = (
1

2
,−1

2
,−1,−1)

eR = (0, 0,−1,−2) (2.14)
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Each generation of leptons will have a similar weak isospin doublet with the same quantum

numbers,
(

νe

e−

)

L

,

(

νµ

µ−

)

L

,

(

ντ

τ−

)

L

. (2.15)

We have an SU(2)L × U(1)Y structure where the generators of U(1)Y commute with those

of SU(2)L. This implies that members of an isospin doublet must have the same hypercharge.

We have the following commutation relations for the generators T i, Q, Y (i = 1, 2, 3)

[T i, Y ] = 0 , [Q, Y ] = 0 , [Q, T i] = iǫ3ijT
j , (2.16)

so Q, T 3, Y , form a mutually commuting set of generators, but only two are independent

because of the relation Q = T 3 + Y
2
. The maximum number of independent mutually com-

muting generators defines the rank of the group. SU(2)L × U(1)Y has rank 2.

Notice that U(1)Y is chiral since e−L and e−R have different hypercharges whereas the electro-

magnetic charges are the same. To complete the specification of an SU(2)L × U(1)Y guage

theory invariant under local gauge transformations, we need to introduce suitable vector

fields to couple to these currents.

QED is based on the interaction −eJemµ
µ Aµ of the electromagnetic current Qψ̄γµψ with the

photon field Aµ. This leads to a term in the Lagrangian ψ̄γµ(i∂µ + eAµ)ψ. Analogously

we introduce an isotriplet of vector gauge bosons W i
µ, (i = 1, 2, 3), to gauge the SU(2)L

symmetry with coupling g and a vector boson Bµ to gauge the U(1)Y symmetry with coupling

g
′

/2. The interaction (analogous to QED) will be −gJ iµW i
µ− g

′

2
JY µBµ, leading to the lepton-

gauge boson portion of L ,

L(e) = χ̄Lγ
µ[i∂µ − g

(

1

2

)

~τ · ~Wµ −
g′

2
(−1)Bµ]χL + ēRγ

µ[i∂µ −
g′

2
(−2)Bµ]eR . (2.17)

The (1
2
), (−1), (−2) in brackets are, respectively, the weak isospin of the doublet χL, Y (eL),

and Y (eR). The notation ~τ · ~Wµ is shorthand for τ iW i
µ = τ 1W 1

µ + τ 2W 2
µ + τ 3W 3

µ . The full

lepton-gauge boson Lagrangian will contain
∑

l=eµτ L(l), a sum over the three generations.

The SU(2)L and U(1)Y gauge transformations under which L(l) is invariant are

χL → χ
′

L = exp[−ig~τ
2
· ~∆+ i

1

2
g

′

Λ]χL

eR → e
′

R = exp(ig
′

Λ)eR
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~Wµ → ~W ′

µ = ~Wµ + g~∆× ~Wµ + ∂µ~∆

Bµ → B
′

µ = Bµ + ∂µΛ . (2.18)

Here Λ(x) specifies the local U(1)Y gauge transformations and ~∆(x) = (∆1(x),∆2(x),∆3(x))

the local SU(2)L gauge transformations. The transformation of the ~Wµ field is for an in-

finitessimal SU(2)L gauge transformation. Explicitly W i′

µ = W i
µ + gǫijk∆

jW k
µ + ∂µ∆

i .

Separating off the interaction piece of L(l) we have

LI = χ̄Lγ
µ[−g1

2
~τ · ~Wµ +

1

2
g

′

Bµ]χL + ēRγ
µg

′

BµeR . (2.19)

We want to decompose this into a charged current (exchange of electrically charged W±)

and a neutral current (exchange of electrically neutral Z0.)

LI = LCC + LNC . (2.20)

Consider the ~τ · ~Wµ term in LI . We have

1

2
(~τ · ~Wµ) =

τ 1

2
W 1

µ +
τ 2

2
W 2

µ +
τ 3

2
W 3

µ

=
1√
2
(τ+W+

µ + τ−W−
µ ) +

τ 3

2
W 3

µ . (2.21)

Here we have defined the charged vector fieldsW±
µ = 1√

2
(W 1

µ∓iW 2
µ). TheW

3
µ term is neutral

and so belongs in LNC . We therefore have

LCC = − g√
2
[J+

µ W
+µ + J−

µ W
−µ]

= χ̄Lγ
µ[− g√

2
(τ+W+

µ + τ−W−
µ )]χL . (2.22)

So the V − A charge raising and lowering currents of Eq.(2.7) couple to the charged W±
µ

fields. The rest of LI gives us

LNC = −gJ3
µW

3µ − g
′

2
JY
µ B

µ

= χ̄Lγ
µ[−g

2
τ 3W 3

µ +
g

′

2
Bµ]χL + ēRγ

µg
′

BµeR . (2.23)

The next step is to identify the physical neutral vector fields Zµ and Aµ. We therefore write

W 3
µ and Bµ as an orthogonal mixture of Zµ and Aµ.

(

W 3
µ

Bµ

)

=

(

cos θw sin θw

− sin θw cos θw

)(

Zµ

Aµ

)

(2.24)
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The angle θw is the weak mixing angle. So in terms of Zµ and Aµ

LNC = −gJ3
µ[cos θwZ

µ + sin θwA
µ]− g

′

2
JY
µ [− sin θwZ

µ + cos θwA
µ] . (2.25)

We must have that Jem
µ = J3

µ + 1
2
JY
µ is coupled to Aµ with strength e, so we need

LNC = −eAµ(J3
µ +

1

2
JY
µ ) + . . . (2.26)

So both J3
µA

µ and 1
2
JY
µ A

µ terms must have coefficient −e implying that

g sin θw = g
′

cos θw = e , (2.27)

or equivalently
1

g2
+

1

g′2
=

1

e2
. (2.28)

We then have

L = −eJem
µ Aµ + Zµ[−g cos θwJ3

µ − g
′

sin θwJ
3
µ + g

′

sin θwJ
em
µ ] , (2.29)

where JY
µ has been eliminated using JY

µ = 2(Jem
µ − J3

µ). The terms in the square bracket

coefficient of Zµ can then be written as

[

−g cos
2 θw

cos θw
J3
µ − g

sin2 θw
cos θw

J3
µ + g

sin2 θw
cos θw

Jem
µ

]

(2.30)

where g
′

= g sin θw/ cos θw has been used. Then setting sin2+cos2 = 1 we get

LNC = −eJem
µ Aµ − g

cos θw
[J3

µ − sin2 θwJ
em
µ ]Zµ . (2.31)

So finally assembling all this we have

LI = − g√
2
[J+

µ W
+µ + J−

µ W
−µ]− eJem

µ Aµ − g

cos θw
[J3

µ − sin2 θwJ
em
µ ]Zµ . (2.32)

Expressing the currents in terms of the full fermion fields ν, e we obtain

LI = − g√
2
[ν̄γµ

1

2
(1− γ5)eW

+µ + ēγµ
1

2
(1− γ5)νW

−µ] + e(ēγµeA
µ)

− g

2 cos θw

[

ν̄γµ
1

2
(1− γ5)ν − ēγµ

1

2
(1− γ5)e+ 2 sin2 θwēγµe

]

Zµ . (2.33)

From the coefficients of the l̄lV terms (l = e, ν, V = A(γ),W±, Z) multiplied by i we obtain

the fermion-gauge boson vertex factors given in the Appendix.
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2.1 Kinetic Energy Terms for Glashow’s Model

To complete the Glashow model Lagrangian we need SU(2)L×U(1)Y gauge invariant kinetic

energy terms for the vector boson fields. In QED we have the kinetic energy term −1
4
FµνF

µν

with Fµν = ∂µAν − ∂νAµ. The relevant terms for the W i
µ fields (LW ) and Bµ (LB) are

LW = −1

4
~Wµν · ~W µν = −1

4

∑

i

( ~Wµν)
i
( ~W µν)

i
, (2.34)

where
~Wµν = ∂µ ~Wν − ∂ν ~Wµ − g ~Wν × ~Wν , (2.35)

and
~W i

µν = ∂µW
i
ν − ∂νW

i
µ − gW k

µW
l
νǫikl . (2.36)

Explicitly in terms of the fields W i
µ (i = 1, 2, 3) which gauge SU(2)L. For the U(1)Y field Bµ

one has the Abelian field strength tensor Bµν = ∂µBν − ∂νBµ, and the kinetic energy term

LB = −1

4
BµνB

µν . (2.37)

These terms can of course be rewritten in terms of the physical fields W+,W−, Zµ, Aµ.

W 1
µ =

1√
2
(W+

µ +W−
µ )

W 2
µ =

i√
2
(W−

µ −W+
µ )

W 3
µ = cos θwZµ + sin θwAµ

Bµ = cos θwAµ − sin θwZµ . (2.38)

Having so rewritten LW and LB we can pick out the (∂µV )V V and V V V V cross terms in

the physical fields. The Feynman Rules are in momentum space so i∂µV should be replaced

by pµV , where pµ is the momentum of the vector boson V. We have therefore generated

the three and four-point self-interactions of W±, Z and γ. The relevant Feynman Rules are

given in the Appendix.

We now have all the Feynman rules for the Glashow model Lagrangian

L =
∑

l=e,µ,τ

L(l) + LW + LB . (2.39)

Notice that there are no mass terms. If we want to have an SU(2)L×U(1)Y gauge invariant

theory we cannot have them! For instance a mass term for the field Bµ would be 1
2
M2

BBµB
µ.

Under the local gauge transformation in Eq.(2.18) Bµ → B
′

µ = Bµ + ∂µΛ it is obvious
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that 1
2
M2

BBµB
µ 6= 1

2
M2

BB
′

µB
′µ. Similarly for a term involving M2

W = M2
W
~Wµ

~W µ under an

SU(2)L gauge transformation. This comment would apply in QED and forbid the photon

mass term 1
2
M2

γAµA
µ, of course this is not a problem since we know experimentally that

Mγ = 0 and that photons are massless particles. A Dirac mass term for the leptons is also

disallowed since mψ̄ψ = m(ψ̄RψL + ψ̄LψR), written in terms of chiral L and R components.

This is gauge invariant in QED which is L/R symmetric, but in the chiral SU(2)L × U(1)Y

theory ψR and ψL have different gauge transformations in Eq.(2.18). Simply adding mass

terms by brute force would lead to a sick theory. For masless vector bosons, e.g a photon

in QED, one only has transverse polarization degrees of freedom, gauge invariance implies

the absence of the longitudinal (L) modes. For massive W bosons one could consider the

scattering of longitudinally polarized W pairs, W+
L W

−
L → W+

L W
−
L . The propagator for a

massive vector boson of virtuality q2 involves (gµν−qµqν/M2
W )/(q2−M2

W ). The longitudinally

polarized W bosons are described by polarization vectors with ǫLµ → qµ
MW

as q2 → ∞, so the

propagator approaches a constant at large q2. This implies that the longitudinally polarized

W scattering grows like the square of the c.m. energy and unitarity is violated since at

most a logarithmic growth is allowed. We therefore need to generate mass more subtly. One

possibility is to exploit the so-called Higgs mechanism suggested by Peter Higgs in 1964 and

motivated by the generation of Cooper pairs in superconductivity, involving the concept of

spontaneous symmetry breaking.

3 Spontaneous Symmetry Breaking

In what follows we shall introduce the concept of Spontaneous Symmmetry Breaking (SSB)

using the physical example of the Heisenberg spin chain model for a ferromagnet. This

involves spontaneous breaking of rotational invariance. Treated in Landau mean field theory

we shall see that the Free Energy of the ferromagnet below the critical Curie temperature

Tc has a form similar to the wine-bottle or mexican-hat potential which we shall use later in

the context of breaking local Gauge Symmetry. We will develop this idea via a series of toy

models involving a complex doublet of scalar fields, first discussing SSB of a global gauge

symmetry and then the more relevant SSB of local gauge invariance.
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3.1 The Heisenberg Ferromagnet

We consider a ferromagnetic material in a zero external magnetic ~B field. The Hamiltonian

of the system is given by

H = −1

2
J
∑

(i,j)

~σi · ~σj , (3.1)

where the sum is over nearest-neighbour pairs of spins (i, j), ~σi denoting the spin on site

i. This Hamiltonian is rotationally invariant so that it commutes with the unitary rotation

operator of three-dimensional spatial rotations, U(R).

U(R)H = HU(R) . (3.2)

However, below a critical temperature Tc, the Curie temperature (Tc = 1043 K for Iron), the

ground state of the system has an overall net magnetization ~M 6= 0. This overall magneti-

zation will be in a particular direction, and hence the rotational invariance has been broken.

Heating up the ferromagnet so that T > Tc one finds that above the Curie temperature the

overall magnetization vanishes ~M = 0 as the magnetic domains are randomized, and the

system is rotationally invariant. Cooling down below Tc selects a new non-zero magnetiza-

tion. It is interesting to study the free energy, F , of the ferromagnet. This may be analysed

using Landau mean field theory. One finds

F = V N
(

T − Tc
Tc

| ~M |2 + β| ~M |4
)

. (3.3)

Here V is the volume, N is a degeneracy of states normalization factor. β > 0 is a parameter.

Plotting F versus | ~M | for T > Tc reveals a monotonically increasing curve with a minimum

at | ~M | = 0. For T < Tc, however, one has a non-trivial minimum at | ~M | 6= 0. So the

system has a degenerate set of rotationally equivalent ground states. Rotating the T < Tc

curve around the F axis one finds a surface of the same form as the famous “wine-bottle”

or “mexican hat” potential which we shall encounter in the Higgs Mechanism.

3.2 SSB of gauge symmetry-general considerations

The analogue of the ground state in the ferromagnet example will be the field theory vacuum.

Crucially physical symmetries such as rotational and translational invariance must hold for

the vacuum state. We want to spontaneously break the internal gauge symmetry leaving

rotational invariance unbroken. If the vacuum is specified by a (Higgs) field we require a

scalar field with J = 0, otherwise the vacuum has an intrinsic angular momentum and

rotational invariance would be broken. We should therefore require a scalar operator φ̂(x)
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with some non-vanishing vacuum expectation value (vev) φc(x),

〈0|φ̂(x)|0〉 = φc(x) 6= 0 . (3.4)

For translational invariance we must have a constant vev φc(x) = v, so that

〈0|φ̂(x)|0〉 = v . (3.5)

We now turn to some specific toy models of SSB involving complex scalar fields.

3.3 SSB of a global Gauge Symmetry: Nambu-Goldstone mecha-

nism

We consider the Lagrangian

L = (∂µφ)
∗∂µφ− µ2φ∗φ+ λ(φφ∗)2 . (3.6)

This has a global guage invariance under φ → φ
′

= eiαφ with α a constant. φ is a complex

scalar field with real components φ1 and φ2,

φ =
1√
2
(φ1 + iφ2) . (3.7)

We can then write L as

L =
1

2
∂µφ1∂

µφ1 +
1

2
∂µφ2∂

µφ2 − V (φ) , (3.8)

where the scalar potential V (φ) is

V (φ) =
1

2
µ2(φ2

1 + φ2
2)−

λ

4
(φ2

1 + φ2
2)

2
. (3.9)

We can distinguish between two cases. If λ < 0 and µ2 > 0 there is an overall minimum

of V (φ) at φ1 = φ2 = 0. The term −µ2φ∗φ is then a conventional mass term for a scalar

particle, as in the Klein-Gordon Lagrangian

LKG =
1

2
∂µφ∂

µφ− 1

2
m2φ2 . (3.10)

If, however, λ < 0 and also µ2 < 0 then we have a “wrong-sign” (imaginary) mass term.

The true vacuum is no longer at φ = 0, we obtain the mexican-hat (wine-bottle) potential

with a degenerate circle of minima in the φ1 − φ2 plane. Introducing X2 = φ2
1 + φ2

2 we find

the minimum of

V (φ) =
µ2

2
X2 − λ

4
X4 (3.11)
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when
dV

dX
= (µ2 − λX2)X = 0 (3.12)

corresponding to

X2 = φ2
1 + φ2

2 =
µ2

λ
≡ v2 (3.13)

The minimum of the potential is

V |min =
λ

4
< 0 . (3.14)

A gauge transformation moves one around the degenerate circle of minima. By picking

a particular vacuum state defined by a non-zero vev one spontaneously breaks the gauge

invariance. We shall choose for simplicity to give a non-zero vev to the φ1 direction with φ2

having a zero vev.

〈0|φ1|0〉 = v 〈0|φ2|0〉 = 0 . (3.15)

Correspondingly

〈0|φ|0〉 = v√
2
. (3.16)

We now rewrite the field φ in terms of new fields ξ and η reflecting the deviation from this

true vacuum state,

φ(x) =
1√
2
(v + ξ(x) + iη(x)) . (3.17)

Rewriting V (φ) in terms of ξ and η we find

V (φ) =
µ2

2
[v2 + ξ2 + 2vξ + η2]− λ

4
[v2 + ξ2 + 2vξ + η2]

2

=
µ2

2
[v2 + ξ2 + 2vξ + η2]− µ2

4v2
[v4 + 4v3ξ + 6v2ξ2 + 2v2η2] + . . .

= −µ2ξ2 + . . . (3.18)

Here the ellipsis denotes constant, cubic and quartic terms which we shall ignore. Substi-

tuting this back into the Lagrangian we have

L =
1

2
∂µξ∂

µξ +
1

2
∂µη∂

µη + µ2ξ2 + . . . (3.19)

We see that we have a correct sign mass term, µ2ξ2, for the ξ scalar boson corresponding

to mξ =
√
−2µ2 (recall that µ2 < 0). ξ is the Higgs boson and corresponds to the

field direction given a non-zero vev v. We have a massless η scalar boson. This is the

Goldstone Boson which corresponds to a field direction given a zero vev. Thinking of

these field directions as analogous to normal modes the Higgs excitations are around the

circle of minima, whereas the Goldstone excitations are around the bottom of the well.
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3.4 SSB of local Gauge Symmetry

We now consider the same scalar Lagrangian as in Eq.(3.6), but rewritten using the covariant

derivative

Dµ = ∂µ + ieAµ (3.20)

Where under the local gauge transformation φ → φ
′

= eiα(x)φ we have

Aµ → A
′

µ = Aµ − 1
e
∂µα(x). We have the locally gauge invariant Lagrangian

L = (∂µ − ieAµ)φ
∗(∂µ + ieAµ)φ− µ2φ∗φ+ λ(φ∗φ)2 − 1

4
FµνF

µν . (3.21)

We will perform SSB in exactly the same way as in the previous example so that φ1 acquires

a vev, and φ2 is the Goldstone mode which doesn’t. Substituting φ(x) = 1√
2
(v+ξ(x)+ iη(x))

into the Lagrangian then yields

L =
1

2
(∂µ − ieAµ)(v + ξ − iη)(∂µ + ieAµ)(v + ξ + iη) + µ2φ2 + . . .

=
1

2
(∂µη)

2 +
1

2
(∂µξ)

2 +
1

2
e2AµAµv

2 + evAµ∂µη + µ2ξ2 + . . . (3.22)

We see that we have successfully produced a mass term for the Aµ field, 1
2
M2

AAµA
µ with

MA = ev. We also have a massive Higgs ξ with mξ =
√
−2µ2. Less easy to interpret is

the +evAµ∂µη cross-term. The clue to how this unwanted cross-term can be removed lies in

counting the number of field degrees of freedom before and after SSB. Rewriting the fields by

identifying a different non-trivial vacuum cannot change this number. However, before SSB

we have two longitudinal polarization states for the originally massless Aµ field, since the

longitudinal polarization state is absent for massless vector particles, there are in addition

two scalar fields, so overall we have four degrees of freedom before SSB. After SSB the Aµ

field is now massive and so acquires an extra longitudinal polarization degree of freedom, so

overall we have five field degrees of freedom after SSB. The explanation is that the Goldstone

scalar field η is an unphysical spurion or ghost field which can be gauged away. We can say

that it is “eaten” to provide the extra longitudinal polarization degree of freedom for the Aµ

field. To see this we can locally gauge transform φ(x) → φ
′

(x) = e−iη(x)/vφ(x),

e−iη(x)/v 1√
2
(v + ξ(x) + iη(x)) ≈ 1√

2
(v + ξ(x)) , (3.23)

where we have dropped O(η2) terms. We see that the η ghost field has been gauged away

and is not present in the unitary gauge. We can also see that the unwanted cross-term is

removed since
1

2
e2v2AµA

µ +
1

2
∂µη∂

µη + evAµ∂µη (3.24)
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can be rewritten as

1

2
e2v2

(

Aµ +
1

ev
∂µη

)(

Aµ +
1

ev
∂µη

)

=
1

2
e2v2A

′

µA
′µ , (3.25)

where A
′

µ denotes the Aµ field in unitary gauge. In unitary gauge one finally has the La-

grangian

L =
1

2
∂µξ∂

µξ + µ2ξ2 +
1

2
e2v2AµA

µ + . . . (3.26)

The unitary gauge is not suitable for practical calculations, and one needs to introduce

extra Feynman rules for the ghost scalars. We have not listed these rules in the Appendix,

which assumes unitary gauge. In the next section we finally move on to discuss SSB for

SU(2)L × U(1)Y .

4 The Higgs Mechanism for SU(2)L × U(1)Y

We begin by defining the SU(2)L × U(1)Y covariant derivative

Dµ = ∂µ +
i

2
g~τ · ~Wµ + ig

′ Y

2
Bµ . (4.1)

We introduce an SU(2)L doublet of complex scalar Higgs fields

Φ =

(

φ+

φ0

)

. (4.2)

The doublet has weak isospin T = 1
2
and hypercharge Y = 1 leading to electromagnetic

charges +1, 0, for the T 3 = ±1
2
upper and lower members of the doublet (recallQ = T 3+Y/2).

In terms of real scalar fields φi one has

φ+ =
φ1 + iφ2√

2
, φ0 =

φ3 + iφ4√
2

. (4.3)

We then add to the massless Glashow model Lagrangian of Eq.(2.39) the scalar contribution

LΦ = (DµΦ)
†DµΦ− V (Φ) . (4.4)

The conjugate Φ† contains the antiparticles (φ−φ̄0).

The most general SU(2)L × U(1)Y invariant and renormalisable scalar potential V (Φ) is

V (Φ) = µ2(Φ†Φ)− λ(Φ†Φ)
2
. (4.5)

119



We arrange that as before λ < 0 and µ2 < 0 so that LΦ contains a wrong-sign −µ2Φ†Φ mass

term. V (Φ) is then bounded below so there will be an SU(2)L×U(1)Y invariant manifold of

minima lying below V (Φ) = 0, and we obtain the “wine-bottle” or “mexican hat” potential.

LΦ is invariant under the SU(2)L × U(1)Y gauge transformations

Φ → Φ
′

= exp[−ig~τ
2
·∆− i

g
′

2
Λ]Φ . (4.6)

V (Φ) has minima specified by

dV

d(Φ†Φ)
= 0 ⇒ µ2 − 2λ(Φ†Φ) = 0 (4.7)

so that the degenerate minima are specified by

Φ†Φ|min =
µ2

2λ
, (4.8)

or in terms of real scalar fields φi

1

2
(φ2

1 + φ2
2 + φ2

3 + φ2
4) =

µ2

2λ
. (4.9)

We need to spontaneously break SU(2)L × U(1)Y by picking the vacuum from the set of

minima of the potential V . We shall choose the vacuum expectation values (vev’s) of the

fields φ1, φ2 and φ4 to be zero

〈0|φ1|0〉 = 〈0|φ2|0〉 = 〈0|φ4|0〉 = 0 . (4.10)

We assign a non-zero vev v to the field φ3

〈0|φ3|0〉2 = v2 =
µ2

λ
. (4.11)

Of course, we should be able to pick the vacuum direction completely arbitrarily, but in order

for the photon to remain massless, as it must do after the spontaneous symmetry breaking

we need to give a non-zero vev to a neutral field. To do things generally we should only

assign charges and other quantum numbers after performing the symmetry breaking. We

shall proceed with these particular choices.

We now expand Φ around this chosen vacuum, setting φ3 = H + v, where H is the neutral

scalar Higgs field. It is possible to choose a special gauge, the unitary gauge, in which

Φ =
1√
2

(

0

H + v

)

. (4.12)
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That is the “Goldstone” fields with zero vevs, φ1, φ2, φ4 can be eliminated. To see this

we can apply the local gauge transformation exp(i~τ · ~θ(x)/v) to this unitary gauge form to

obtain

Φ
′

=
1√
2
exp





i~τ · ~θ(x)
v





(

0

H + v

)

. (4.13)

Expanding the exponential to O(θ) we find

Φ
′

=
1√
2

(

1 + iθ3/v i(θ1 − iθ2)/v

i(θ1 + iθ2)/v 1− iθ3/v

)(

0

H + v

)

=
1√
2

(

θ2 + iθ1

v +H − iθ3

)

. (4.14)

So we see that the unitary gauge field of Eq.(4.12) is a gauge transformation of a general

Φ with four independent scalar fields. The idea is that the three originally massless gauge

fields W±, Z0 will become massive and acquire three extra longitudinal polarization degrees

of freedom by “eating” the three unphysical Goldstone bosons. Notice that the above gauge

transformation accordingly uses only three of the four possible SU(2)L×U(1)Y gauge trans-

formation parameters. λ = 0, ~∆ = −2~θ
v
. As we noted earlier the unitary gauge is unsuited for

calculations. One will need to add extra Feynman rules for the Goldstone bosons, analogous

to the extra Feynman rules for Fadeev Popov ghost particles in QCD.

We can now evaluate LΦ in unitary gauge explicitly and exhibit the spontaneously generated

mass terms for W± and Z0. From Eq.(3.1) we find

DµΦ =

(

∂µ + ig
2
W 3

µ + ig
′

2
Bµ ig

2
(W 1

µ − iW 2
µ)

ig
2
(W 1

µ + iW 2
µ) ∂µ − ig

2
W 3

µ + ig
′

2
Bµ

)(

0

H + v

)

=

( ig
2
(W 1

µ − iW 2
µ)(H + v)

(∂µ − ig
2
W 3

µ + ig
′

2
Bµ)(H + v)

)

=

( ig√
2
W+

µ (H + v)

(∂µ − i
2
(g cos θw + g

′

sin θw)Zµ)(H + v)

)

. (4.15)

Notice that the photon field Aµ is no longer involved, only W±
µ and Zµ. The photon will

therefore not acquire a 1
2
M2AµA

µ mass term. The masslessness of the photon is guaranteed

by the U(1)em gauge invariance of the Lagrangian. U(1)em is a residual symmetry . SU(2)L×
U(1)Y has been spontaneously broken to U(1)em, and the originally massless W±, Z0 gauge

bosons have acquired masses in the process. The conjugate (DµΦ)
† is given by

(DµΦ)
† =

1√
2
(− ig√

2
W−

µ (H + v) (∂µ +
i
2
(g cos θw + g

′

sin θw)Zµ)(H + v) ) . (4.16)

We finally obtain in the unitary gauge

LΦ = (DµΦ)
†DµΦ + µ2Φ†Φ− λ(Φ†Φ)

2
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=
1

2
∂µH∂

µH +
1

4
g2(H2 + 2vH + v2)W+

µ W
−µ

+
1

8
(g2 + g

′2)(H2 + 2vH + v2)ZµZ
µ

+ µ2H2 +
λ

4
(H4 + 4vH3) . (4.17)

We have used the relation (g cos θw + g
′

sin θw)
2
= g2 + g

′2. The masses of W± and Z can

now be read off by identifying the terms M2
WW

+
µ W

−µ and 1
2
M2

ZZµZ
µ in Eq.(4.17). We find

MW =
1

2
gv (4.18)

MZ =
1

2
(g2 + g

′2)
1/2
v =

1

2

gv

cos θw
. (4.19)

For the Higgs scalar we identify the overallH2 term (1
2
µ2−3

2
λv2)H2 coming from µ2

2
(H + v)2−

λ
4
(H + v)4, and recalling that µ2 = λv2 we obtain the H2 coefficient −1

2
M2

H = µ2 so that

MH =
√
−2µ2. There are also VVH, VVHH and HHH, HHHH Higgs self-interactions. The

corresponding Feynman rules and vertex factors are contained in the Appendix.

An immediate consequence of the above vector boson masses is that

MW

MZ

= cos θw . (4.20)

This is often referred to as the “weak ∆I = 1
2
rule” and is connected with our choice of a

Higgs doublet to perform the spontaneous symmetry breaking.

Notice that from the measured fine structure constant α = e2/4π and the vector boson

masses MW and MZ we can determine sin2 θw, v and g, but not µ. This means that the

Higgs mass MH is not determined directly by other experimentally measured parameters.

We shall return a little later to a discussion of the number of independent Standard Model

parameters.

4.1 Yukawa terms for lepton masses

To give charged leptons a mass one adds a so-called Yukawa term to the Lagrangian, LY (l),

where l = e, µ, τ labels the lepton. We have for instance for an electron

LY (e) = −Ge[χ̄LΦeR + ēRΦ
†χL] . (4.21)
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This is SU(2)L × U(1)Y invariant. Ge is the Yukawa coupling. On spontaneous symmetry

breaking we have in the unitary gauge

Φ =
1√
2

(

0

H + v

)

, (4.22)

substituting this into LY (e) one has

LY (e) = −Ge√
2
(v +H)(ēLeR + ēReL)

= −Ge√
2
(H + v)ēe = −Gev√

2
(ē)− Ge√

2
(ēeH) . (4.23)

From which we can identify the electron mass me = Gev/
√
2, and the lepton-Higgs coupling

g(Hēe) = me/v = gme/(2MW ). Notice that the νL upper element of the doublet does not

appear since in unitary gauge the upper entry in Φ is zero, and so as required we do not

generate a neutrino mass term or interaction with the Higgs. We see that the coupling

between leptons and the Higgs is proportional to the lepton mass, so τ signatures involving

the heaviest mass lepton will be important for Higgs searches at colliders. Similarly for

quarks bb̄, and tt̄ signatures will be important. The vertex factor and Feynman rule for the

Yukawa term is contained in the Appendix.

4.2 Electroweak quark sector

So far we have just considered the lepton sector. We also need to include a Lagrangian

L(q) to describe electroweak quark interactions. We have six quarks (three generations)

u, d, s, c, b, t. Qu = Qc = Qt = 2
3
, and Qd = Qs = Qb = −1

3
. We can construct SU(2)L

isospin doublets analogous to the leptonic case

χf
L =

(

Uf

Df

)

f = 1, 2, 3 (4.24)

Here U1 = u, U2 = c, U3 = t and D1 = d,D2 = s,D3 = b. However experimentally

one observes n → pe−ν̄e and also Λ → pe−ν̄e decays, corresponding to d → u and s →
u transitions. This implies that the weak interaction eigenstates are mixtures of flavour

eigenstates. We therefore replace the above χf
L by

χf
L =

(

Uf

D
′

f

)

, f = 1, 2, 3 , (4.25)

where D
′

f is a flavour rotated mixture

D
′

f =
∑

f
′
=1,2,3

Vff ′Df
′ . (4.26)
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Here V is a 3× 3 unitary matrix (V V † = 1) called the Cabibbo-Kobayashi-Maskawa CKM

matrix. For two generations we have the Cabibbo model

D
′

1 = cos θcd+ sin θcs

D
′

2 = − sin θcd+ cos θcs . (4.27)

Here θc is the Cabibbo angle, and experimentally one finds θc ≈ 13 degrees or cos θc ≈ 0.97.

The full three generation CKM matrix has the following |Vij| structure for the magnitudes

of the elements

V =









|Vud| = 0.97 |Vus| = .23 |Vub| ≈ 0

|Vcd| = 0.24 |Vcs| = 0.97 |Vcb| = 0.06

|Vtd| ≈ 0 |Vts| ≈ 0 |Vtb| ≈ 1









. (4.28)

The matrix involves 4 parameters- 3 angles and 1 complex phase. The presence of this com-

plex phase enables CP violation to occur.

In analogy with the leptonic isotriplet of currents one then defines the quark isotriplet

Jfi
µ = χ̄f

Lγµ
1

2
τiχ

f
L (i = 1, 2, 3) . (4.29)

As before i = 1, 2 are charged currents, and Jf3
µ is a neutral current.

Jf3
µ =

1

2
(ŪfLγµUfL − D̄

′

fLγµD
′

fL)

=
1

2
(ŪfLγµUfL − D̄fLγµDfL) . (4.30)

Notice that D
′

fL the rotated flavour mixture has been replaced by DfL in the final line. This

follows from the unitarity property V V † = 1. It has the important consequence that flavour

changing neutral current processes are forbidden. We can now determine the electromagnetic

quark currents

Jf(em)
µ =

(

2

3

)

ŪfRγµUfR +
(

2

3

)

ŪfLγµUfL +
(−1

3

)

D̄fRγµDfR +
(−1

3

)

D̄fLγµDfL . (4.31)

Here the (2
3
), (−1

3
) in brackets denote the electric charges of the quarks. If we define the

hypecharge current JfY
µ in the same way as for the leptons, so that Jf(em)

µ = Jf3
µ + 1

2
JfY
µ ,

then we can infer that

JfY
µ =

(

1

3

)

(ŪfLγµUfL + D̄fLγµDfL) +
(

4

3

)

ŪfRγµUfR +
(−2

3

)

D̄fRγµDfR . (4.32)

Again the (1
3
) etc. numbers in brackets refer to the hypercharges of the particles. One can

then read off for each generation Uf , Df the charges (T, T 3, Q, Y )

UL = (
1

2
,
1

2
,
2

3
,
1

3
)
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DL = (
1

2
,−1

2
,−1

3
,
1

3
)

UR = (0, 0,
2

3
,
4

3
)

DR = (0, 0,−1

3
,−2

3
) (4.33)

So analogous to L(l) for leptons one obtains the quark electroweak lagrangian L(q)

L(q) =
∑

f=1,2,3

(χ̄f
Lγ

µ
[

i∂µ −
1

2
~τ · ~Wµ −

(

1

3

)

Bµ

]

χf
L

+ ŪfRγ
µ

[

i∂µ −
g

′

2

(

4

3

)

Bµ

]

UfR + D̄fRγ
µ

[

i∂µ −
g

′

2

(−2

3

)

Bµ

]

DfR) . (4.34)

To give masses to the quarks we shall require a corresponding quark Yukawa term LY (q).

LY (q) =
∑

f=1,2,3

−[χ̄f
LG

D
ff

′ΦDf
′
R + χ̄f

LG
U
ff

′ΦcUf
′
R + h.c.]. (4.35)

Here the GU
ff

′ and GD
ff

′ are the matrix of quark Yukawa couplings. To give a mass to the

upper UfL members of the chiral doublet one needs to use the conjugate scalar field

Φc =

(

φ̄0

−φ−

)

. (4.36)

After spontaneous symmetry breaking one has in unitary gauge

Φc =

(

H + v

0

)

. (4.37)

In this way one generates a quark mass matrix and qq̄H interactions. We shall not pursue

the details any further.

4.3 SM Lagrangian and independent parameter count

Assembling all the pieces we have discussed we can now arrive at the Glashow-Weinberg-

Salam Standard Model Lagrangian

LSM = LW + LB +
∑

l=e,µ,τ

L(l) +
∑

l=e,µ,τ

LY (l) + L(q) + LY (q) + LΦ + LQCD + . . . . (4.38)

The ellipsis denotes further gauge-fixing and ghost contributions. The Standard Model as

specified by this Lagrangian has been shown to be renormalisable by ‘t Hooft and Veltmann.

The unitarity problem for W+
L W

−
L → W+

L W
−
L scattering is also cured. It is solved by extra

diagrams involving virtual Higgs exchange which now appear due to the WWH interaction
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terms.

It is interesting to count how many of the parameters in the Standard Model are independent.

There are fifteen parameters overall if we ignore the quark sector, which may be divided into

couplings: e(α), g, g
′

, Ge, Gµ, Gτ . Masses: MW , MZ ,MH ,me,mµ,mτ . Higgs sector parame-

ters µ2, λ (v2 = µ2

λ2 ), and last but not least the weak mixing angle sin2 θw. There are clearly

many relations between the parameters, such as MW = 1
2
gv or e = g sin θw for instance. It

turns out that there are in fact seven independent parameters which if specified can then

predict all fifteen. One can choose for instance the set g, g
′

, Ge, Gµ, Gτ , µ
2, λ. Alternatively

α,MW ,MZ ,MH ,me,mµ,mτ or α, sin2 θw,MH , v, Ge, Gµ, Gτ are possible sets.

Including the electroweak quark sector adds the CKM matrix V (three angles and one com-

plex phase) and mass matrices m(U),M(D), (mu,mc,mt,md,ms,mb) making 4+3+3 = 10

extra parameters. Including QCD we have in addition ΛQCD and the QCD θ-parameter

involved in the strong CP problem. So overall there are 19 independent free parameters in

SU(3)c × SU(2)L × U(1)Y .

A model with at least 19 undetermined parameters, in which the particular representa-

tions containing fermions and scalars are not compellingly motivated, and with a mysterious

replication of three generations, does not seem a likely candidate for a complete theory of

everything, even though it has proved consistent with experiment in essentially every detail

checked, with the Higgs, confirmed by LHC earlier this year, being the last ingredient to fall

into place.
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5 Appendix of Feynman rules

The following pages summarize the Feynman Rules in unitary gauge for one generation

of leptons. All the Lagrangian terms needed to derive the vertex factors for the different

interactions are contained in these lecture notes.
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Feynman Rules in the Unitary Gauge (for one Generation of
Leptons)

Propagators:

All propagators carry momentum p.

W
µ ν −i (gµν − pµ pν/M

2
W )/(p2 −M2

W )

Z
µ ν −i (gµν − pµ pν/M

2
Z)/(p

2 −M2
Z)

A
µ ν −i gµν/p2

e
i (γ · p+me)/(p

2 −m2
e)

ν
i γ · p/p2

H
i/(p2 −m2

H)
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Three-point gauge-boson couplings:

All momenta are incoming

Aρ

W−
µ W+

ν

p3

p1 p2
i g sin θW ((p1 − p2)ρ gµν + (p2 − p3)µ gνρ + (p3 − p1)ν gρµ)

Zρ

W−
µ W+

ν

p3

p1 p2
i g cos θW ((p1 − p2)ρ gµν + (p2 − p3)µ gνρ + (p3 − p1)ν gρµ)
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Four-point gauge-boson couplings:

W−
ρ W+

σ

W−
µ W+

ν

i g2 (2gµρ gνσ − gµν gρσ − gµσ gνρ)

Zρ Zσ

W−
µ W+

ν

i g2 cos2 θW (2gµν gρσ − gµρ gνσ − gµσ gνρ)

Aρ Aσ

W−
µ W+

ν

i g2 sin2 θW (2gµν gρσ − gµρ gνσ − gµσ gνρ)

Zρ Aσ

W−
µ W+

ν

i g2 cos θW sin θW (2gµν gρσ − gµρ gνσ − gµσ gνρ)
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Three-point couplings with Higgs scalars:

H H

− 3
2
i g m2

H/MW

H

e e

− 1
2
i g me/MW

H

W−
µ W+

ν

i g MW gµν

H

Zµ Zν

i (g/ cos2 θW ) MW gµν
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Four-point couplings with Higgs scalars:

H H

H H

− 3
4
i g (m2

H/M
2
W )

H H

W−
µ W+

ν

1
2
i g2 gµν

H H

Zµ Zν

1
2
i (g2/ cos2 θW ) gµν
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Fermion interactions with gauge bosons:

W−
µ

e ν

− i
(

g/2
√
2
)

γµ (1− γ5)

Aµ

e e

+ i g sin θW γµ

Zµ

e e

+ 1
4
i (g/ cos θW ) γµ

(

1− 4 sin2 θW − γ5
)

Zµ

ν ν

− 1
4
i (g/ cos θW ) γµ (1− γ5)
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Phenomenology

Lectures given at the 2016 HEP Summer School

Simon Badger,
IPPP, Durham University.

1 Introduction

Historically the lecture notes for the phenomenology course have consisted of the slides
presented in the lectures. These notes are intended to provide additional information,
and more mathematical detail, on the more theoretical aspects of the course which don’t
change from year to year. The recent experimental results, which as the LHC experiments
take more and more data change from day-to-day, will continue to be presented solely on
the slides used in the lectures.

These notes have been adapted from notes from Daniel Mäıtre and Peter Richardson.
In order to study hadron collisions we need to understand the basics of cross section

calculations, Quantum Chromodynamics (QCD) and jets which we will first consider in
the simpler environment of e+e− and lepton-hadron collisions before we go on to study
hadron–hadron collisions.

Unfortunately there is no single good book on modern phenomenology. Two old
classics but now a bit dated are:

• Quarks and Leptons Halzen and Martin [1];

• Collider Physics Barger and Phillips [2].

Two good books, although mainly focused on QCD and probably at a bit too high a level
for this course, are:

• QCD and Collider Physics Ellis, Stirling and Webber [3];

• Quantum Chromodynamics Dissertori, Knowles and Schmelling [4];

and of course the classic on Higgs physics

• The Higgs Hunter’s Guide Gunion, Haber, Kane and Dawson [5].

In addition the recent reviews:

• Towards Jetography [6] which provides a good primer on jet physics;

• General-purpose event generators for LHC physics [7] which gives a detailed descrip-
tion of the physics of Monte Carlo event generators;

are good sources of additional information.
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2 e
+
e
− Annihilation

While electron-positron colliders are less relevat for current phenomenology than they
were before, they are a good starting oint to discuss many concepts one also finds at
hadron colliders.

If we consider what happens when electrons and positrons collide, then the most likely
thing is that some hadrons are produced. However, none of the Lagrangians or Feynman
rules you’ve learnt involve hadrons. This is the key issue in most collider physics, we can
calculate things for quarks and gluons but we observe hadrons.

2.1 Leading Order

We will start by studying one of the simplest possible processes, e+e− annihilation via the
exchange of a photon or Z0 boson, as shown in Fig. 1. This process can produce either

e+

e−

ℓ+, ν̄

ℓ−, ν

γ/Z0 e+

e−

q

q̄

γ/Z0

Figure 1: Feynman diagrams for e+e− annihilation into leptons and quarks.

quarks or leptons. Unfortunately due to quark confinement we cannot observe free quarks
directly, instead quarks and antiquarks will produce hadrons with unit probability. Much
of what we will study in this course will be concerned with the question, given that we
observe hadrons how do we infer what was going on in the fundamental process involving
quarks?

We will start with the simplest example. Given that quarks and antiquarks produce
hadrons with unit probability we can measure the cross section for the process e+e− → qq̄,
which we can calculate perturbatively, by measuring the cross section for e+e− → hadrons.
This is the case because gluons (which also produce hadrons) do not couple directly to
the leptons. This is the basis of most collider phenomenology, we want to measure things
using hadrons that we can calculate using partons. The total cross section for e+e−

annihilation into hadrons is the simplest such observable.
Using the techniques you have learnt in the other courses you can now calculate the

total cross section for e+e− annihilation. In reality it is more common to study the ratio

R ≡ σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
, (1)

as this reduces experimental uncertainties. At low energies this process is dominated by
photon exchange so we can neglect the Z0 boson. In this limit

σ(e+e− → µ+µ−) =
4πα2

3s
, (2)
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Figure 2: Expected shape for the R ratio.

where s is the centre-of-mass energy of the collision squared. The cross section for the
production of quarks is

σ(e+e− → hadrons) =
4πα2

3s

∑

q

e2qNc, (3)

where eq is the charge of the quark in units of the positron charge and the sum runs over
all quarks for which the centre-of-mass energy

√
s > 2mq, where mq is the mass of the

quark. Remember we must sum over all the quantum numbers of the quarks so the cross
section is multiplied by number of colours, Nc. Therefore for centre-of-mass energies much
less than the mass of the Z0 boson,

√
s ≪ Mz,

R =
∑

q

e2qNc = Nc

(

4

9
+

1

9
+

1

9
︸ ︷︷ ︸

u,d,s

+
4

9

︸ ︷︷ ︸

u,d,s,c

+
1

9

)

︸ ︷︷ ︸

u,d,s,c,b

. (4)

The expected picture is shown in figure 2. The experimental measurement of this ratio
is shown in Fig. 3 as a function of energy showing the thresholds for the production
of the charm and bottom quarks. Below the charm threshold there are three active
quarks down (ed = −1

3
), up (eu = 2

3
) and strange (es = −1

3
) giving R = 2. Above the

charm (ec =
2
3
) threshold R = 10

3
while above the bottom (eb = −1

3
) threshold R = 11

3
.

2.1.1 The Z resonance

For energies
√
s ∼ mZ we will need to include the effects of the second diagram in Fig. 1.

The cross-section will then have three different contributions, the photon background, the
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Figure 3: The ratio R ≡ σ(e+e−→hadrons)
σ(e+e−→µ+µ−)

as a function of energy taken from Ref. [8].

Z-boson resonance and the photon-Z interference. The total cross-section, summed and
averaged over spins can be written as (e.g. [3]):

σ
(

f f̄ → f ′f̄ ′
)

= α2 π

2s

∫ 1

−1

d(cos θ)

{

(

1 + cos2 θ
)

(

q2fq
2
f ′ +

g2Z
4g2e

qfqf ′vfvf ′χ1 +
g4Z
16g4e

(a2f + v2f )(a
2
f ′ + v2f ′)χ2

)

+ cos θ

(

g2Z
2g2e

afaf ′vfvf ′χ1 +
g4Z
2g4e

afaf ′vfvf ′χ2

)

}

where

gZ
ge

=
1

cos θw sin θw
χ1 =

s(s−m2
Z)

(s−m2
Z)

2 +m2
ZΓ

2
Z

χ2 =
s2

(s−m2
Z)

2 +m2
ZΓ

2
Z

The axial (vf = T 3
f − 2qf sin

2 θw) and vector (af = T 3
f ) couplings in the Standard Model

are given in Table 1. T 3
f is the 3rd component of the weak isospin as covered in the course

on the Standard Model. The terms proportional to χ2 come from the Z resonance while
those propotional to χ1 come from the photon-Z interference. ΓZ is the width of the Z
boson.

Later we will take a closer look at the EW sector of the Standard Model and use this
measurement to find constraints on the number of neutrinos families below the Z mass
threshold (see Figure 28).
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qf af vf
u, c, t 2/3 1/2 1/2− 4/3 sin2 θw
d, s, b −1/3 −1/2 −1/2 + 2/3 sin2 θw
e, µ, τ −1 −1/2 −1/2 + 2 sin2 θw
νe, µ, τ 0 1/2 1/2

Table 1: EW couplings in the Standard Model.

2.2 Higher Order Corrections

When we draw Feynman diagrams we are performing a perturbative expansion in the (hope-
fully) small coupling constant. Unfortunately the strong coupling often isn’t very small,
at the Z0 mass, αS(MZ) = 0.118. We therefore need to consider higher orders in the
perturbative expansion. There are always two types of correction:

• real gluon emission;

• virtual gluon loops.

2.2.1 Real Emission

There are two possible diagrams for gluon emission, see Fig. 4. The matrix element, only

e+

e−

q

q̄

g
γ/Z0 e+

e−

q

q̄

γ/Z0

g

Figure 4: Feynman diagrams for e+e− → qq̄g.

considering photon exchange for simplicity, is

M = e2eqgst
a
ij v̄(pb)γµu(pa)

−gµν

q2
(5)

ūi(p1)

[

γσ
p16 +p36

(p1 + p3)2
γν − γν

p26 +p36
(p2 + p3)2

γσ

]

vj(p2)ǫ
σ
a(p3),

where pa,b are the 4-momenta of the incoming electron and positron, respectively. The out-
going quark, antiquark and gluon have 4-momenta p1,2,3, respectively. The total momen-
tum of the system q = pa+pb = p1+p2+p3. The gluon has colour index a = 1, . . . , N2

c −1
whereas the quark/antiquark have colour indices i, j = 1, . . . , Nc.

Summing/averaging over spins and colours

|M|2 =
4e2e2qg

2
sNc

s
CF

(p1 · pa)2 + (p1 · pb)2 + (p2 · pa)2 + (p2 · pb)2
p1 · p3 p2 · p3

. (6)

The colour algebra gives a colour factor

N2
c−1
∑

a

taij
(

taij
)∗

= taijt
a
ji =

1

2
δaa =

1

2
(N2

c − 1) = NcCF , (7)
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where the colour charges in the fundamental (quarks and antiquarks) and adjoint (gluons)
representations are

CF ≡ 1

2Nc
(N2

c − 1) and CA ≡ Nc, (8)

respectively. More about the colour algebra can be found in appendix C
The three-body phase space is

dΦn(pa + pb; p1, p2, p3)

= (2π)4δ(4) (pa + pb − p1 − p2 − p3)
d3 ~p1

(2π)32E1

d3 ~p2
(2π)32E2

d3 ~p3
(2π)32E3

=
1

8(2π)5
E1dE1d cos θdφE2dE2d cos βdα

1

E3

δ(
√
s− E1 −E2 − E3),

where θ and φ are the polar and azimuthal angles, respectively, of the outgoing quark
with respect to the beam direction. The polar and azimuthal angles of the antiquark with
respect to the quark direction are β and α, respectively. We have integrated over p3 using
the δ-function and assumed that the outgoing particles are massless.

Using momentum conservation

E3 = |~p3| = |~p1 + ~p2| =
√

E2
1 + E2

2 + 2E1E2 cos β. (9)

Therefore the integral over the remaining δ-function is
∫

d cos βδ(
√
s−E1 − E2 − E3) =

E3

E1E2

, (10)

so

dΦn(pa + pb; p1, p2, p3) =
1

8(2π)5
dE1d cos θdφdE2dα (11)

=
s

16(2π)3
dx1dx2

d cos θdφdα

2(2π)2
,

where xi ≡ 2Ei/
√
s. Momentum and energy conservation requires that x1 + x2 + x3 = 2.

The total cross section is

σ =
1

2s

s

16(2π)3

∫

dx1dx2
d cos θdφdα

2(2π)2
|M |2, (12)

=
4πα2e2qNc

3s
CF

αS

2π

∫

dx1dx2
x2
1 + x2

2

(1− x1)(1− x2)
.

The contribution from the Z0 boson is the same except for σ0. This is divergent at the
edge of phase space as x1,2 → 1 so that the total cross section is σ = ∞!

This is a common feature of all perturbative QCD calculations. Configurations which
are indistinguishable from the leading-order result are divergent. Physically there are two
regions where this happens.
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1. Collinear limit: If we take x1 → 1 at fixed x2 or x2 → 1 at fixed x1. We can see
what happens physically by considering the dot product of the antiquark and gluon
4-momenta, i.e.

2p2 · p3 =
sx2x3

2
(1− cos θ23) = s(1− x1) ⇒ (1− cos θ23) =

2(1− x1)

x2x3
→ 0. (13)

So the limit x1 → 1, where the matrix element diverges, corresponds to the angle
between the antiquark and gluon θ23 → 0, i.e. collinear emission of the gluon from
the antiquark. Similarly the limit x2 → 1 corresponds to collinear emission of the
gluon from the quark.

2. Soft limit: x1,2 → 1 at fixed 1−x1

1−x2
. We can consider what happens in this limit by

considering the energy of the gluon

Eg =

√
s

2
x3 =

√
s

2
(1− x1 + 1− x2) → 0, (14)

i.e. the matrix element diverges in the soft limit, when the energy of the gluon is
small.

These are both universal features of QCD matrix elements. In general one can see how
the divergencies appear by looking at the propagator just before the emission of a gluon.

P 2 = (k + p)2 = 2|~k||~p|(1− cos θ)

From this expression one can see that the propagator vanishes (and therefore divergences
appear) when the gluon is either soft (|k| → 0) or collinear (cos θ → 0)

In these limits QCD matrix elements factorize, i.e. the matrix element including the
emission of a soft or collinear gluon can be written as the convolution of the matrix
element before the emission and a universal term describing collinear or soft emission.

Collinear Limit If we first consider collinear emission we take the momentum of the
gluon p3 parallel to p2 (θ23 = 0). We can therefore define

p2 = (1− z)p̄2, p3 = zp̄2, with p̄22 = 0, (15)

where p̄2 is the momentum of the antiquark before the gluon radiation and z is the
fraction of the original antiquark’s momentum carried by the gluon. In this limit the
matrix element factorizes

|Mqq̄g|2 = |Mqq̄|2 ×
g2s

p2 · p3
× CF

1 + (1− z)2

z
. (16)
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As does the phase space

dx1dx2 −→
1

4
z(1− z)dzdθ223. (17)

Putting this together

σ = σ0

∫

dθ223
θ223

dzCF
αS

2π

1 + (1− z)2

z
= σ0

∫

dθ223
θ223

dz
αS

2π
P̂q→gq(z). (18)

The Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) splitting function is a universal
probability distribution for the radiation of a collinear gluon in any processes producing
a quark. The splitting functions are:

P̂g→gg(z) = CA

[

1− z

z
+

z

1− z
+ z(1− z)

]

; P̂q→qg(z) = CF
1 + z2

1− z
; (19)

pg→qq̄(z) = TR

[

z2 + (1− z)2
]

; P̂q→gq(z) = CF
1 + (1− z)2

z
;

where z is the fraction of the momenta carried by the first outgoing particle and TR = 1
2
.

Soft Limit In the limit that Eg → 0 the matrix element for the process factorizes

Mqq̄g = Mqq̄gst
a
ij

(

p1
p1 · p3

− p2
p2 · p3

)

· ǫA(p3), (20)

the eikonal current. The matrix element squared therefore factorizes in this case

|Mqq̄g|2 = |Mqq̄|2g2sCF
2p1 · p2

p1 · p3p2 · p3
. (21)

The phase space is

dx1dx2 −→
2

s
EgdEgd cos θ. (22)

So in the soft limit

σ = σ0

∫

CF
αS

2π

dEg

Eg
d cos θ

2(1− cos θqq)

(1− cos θqg)(1− cos θqg)
, (23)

the dipole radiation pattern a universal probability distribution for the emission of a soft
gluon from any colour-connected pair of partons.1

Figure 5 illustrates the dipole radation pattern.

2.2.2 Virtual Corrections

There are three diagrams involving virtual gluon loops, see Fig. 6. This contribution is
also divergent, but negative. This will cancel the real divergence to give a finite answer.
To show this we need to regularize both the real and virtual cross sections and add them
together. The result should be finite when we remove the regularization. The standard

1Strictly this is only universal at the amplitude level, not as a probability distribution.
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Figure 5: Dipole radiation pattern for e+e− → qq̄γ and e+e− → qq̄g.

e+

e−

q

q̄

g
γ

e+

e−

q

q̄

γ
g

e+

e−

q

q̄

g
γ

Figure 6: Virtual loop corrections to e+e− → qq̄.

way of doing this is to work in d = 4 − 2ǫ dimensions where to regularize these infrared
divergences ǫ < 0. In this case

σreal = σ0CF
αS

2π
H(ǫ)

(

4

ǫ2
+

3

ǫ
+

19

2
− π2 +O(ǫ)

)

,

σvirtual = σ0CF
αS

2π
H(ǫ)

(

− 4

ǫ2
− 3

ǫ
− 8 + π2 +O(ǫ)

)

,

where H(0) = 1. The sum

σtotal = σreal + σvirtual = σ0CF
3αS

4π
, (24)

is finite as ǫ → 0. So finally combining this correction with the leading-order result

R(e+e−) = R0(e
+e−)

(

1 +
αs

π

)

. (25)

Measuring R(e+e−) is one way of measuring the strong coupling giving2

αS(mZ) = 0.1226± 0.0038. (26)

The second and third order corrections, and the results for the next-to-leading-order
corrections including quark masses are also known.

This is the simplest example of an observable which we can calculate using perturba-
tion theory involving quarks and gluons, but measure experimentally using hadrons. We
now need to go on and consider more complicated observables.

2Taken from the Ref. [8].
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3 Running Coupling

q

q̄

gg g

q

q̄

Figure 7: Example virtual corrections contributing to the evolution of the strong coupling
constant.

In addition to the infrared, soft and collinear, divergences we saw in the calculation of
σ(e+e− → hadrons) it is possible to have ultraviolet divergences. The virtual corrections
shown in Fig. 7 are divergent in the ultraviolet. These, and other similar corrections, lead
to the strong coupling being renormalized to absorb the ultraviolet singularities. The
renormalisation procedure introduces an unphysical renormalisation scale µ.

The leads to:

1. diagrams are dependent on µ;

2. αS is replaced by the running coupling αS(µ);

3. although we can’t calculate the coupling we can calculate how it changes with scale:

µ2dαS

dµ2
≡ β(αS) = −β0α

2
S + . . . β0 =

11Nc − 4TRnf

12π
, (27)

where nf is the number of active quark flavours.

For β0 > 0 the coupling displays asymptotic freedom, i.e. αS(µ) → 0 as µ → ∞ which
allows us to perform perturbative calculations at high energies where the coupling is small.

It is standard to quote the value of αS(MZ). The value at other scales can by found by
solving the evolution equation. Recent experimental measurements of the strong coupling
evolved to the Z0 mass and the running of coupling are shown in Fig. 8.

It is common to define a scale ΛQCD so that

αs(µ) =
4π

β0 ln
(

µ2

Λ2
QCD

) [1 + . . .] . (28)

In general there is a choice of precisely how we perform the renormalisation, which leads
to both renormalisation scale and scheme dependence. Physical observables don’t depend
on µF or the renormalisation scheme, but fixed order perturbative calculations do.

3.1 Higher order calculations

Since the strong coupling constant is not very small the perturbative series converges
slower than it does in QED. To get reliable QCD predictions we need at least NLO pre-
cision and NNLO is preferable for important processes, but NNLO calculations are very
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Figure 8: Measurements of the strong coupling at the Z0 mass and the running of the
coupling taken from Ref. [8].

challenging. Perturbative calculations for hadron colliders have two unphysical param-
eters: the factorisation and renormalisation scales. The former defines the separation
between the perturbative and non-perturbative description of hte proton and the latter
is needed to remove the ultra-violet divergences and specifies at which scale the coupling
constant should be evaluated. This dependence is an artefact of the truncation of the
perturbative series, if we were able to compute the entire perturbative series to all or-
ders, the dependence would drop out. Therefore the dependence on the factorisation and
renormalisation scales is used as a gauge of the theoretical error due to the missing orders.

3.2 Infrared safety

To enable a meaningful comparison between theory and experiment it is important that
the observable is defined in a way that allows the perturbative prediction to be carried
out at higher orders. One requirement is that the observable should be infrared safe. By
this we mean that the value of the obervable does not change in the case of a collinear
splitting or in the case of the emission of a soft particle. Mathematically it means that
the observable O has to fullfil the following properties. For a collinear splitting of the
parton with momentum pi we need

O(p1, ..., pi, ..., pn) = O(p1, ..., zpi, (1− z)pi, ..., pn)

and in the case of a parton’s momentum pj becoming soft we require

O(p1, ..., pi, pj, pk, ..., pn) → O(p1, ..., pi, pk, ..., pn)

for pj → 0 .
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Figure 9: Example two and three jet e+e− events.

Examples of infrared unsafe observables or procedures are

• number of partons

• observables using incoming parton momentum fractions

• observables based on older jet algorithms

• using infrared unsafe observables as renormalisation or factorisation scale

It is not always easy to find out whether an observable/procedure is infrared safe, in order
to so so correctly we will need to study the details of the jet clustering algorithm and the
factorisation of the intial state in hadron collisions. The factorisation of short and long
distance effects for hadronic inital states is covered in Section 4 while Section 6 covers
details of different jet algorithms.

3.3 Event Shapes

If we consider the e+e− annihilation events shown in Fig. 9 we see a collimated bunch of
hadrons travelling in roughly the same direction as the original quarks or gluons. Often
you can “see” the jets without some fancy mathematical definition. We will come back
and consider jets in more detail when we consider hadron–hadron collisions later in the
course, in Section 6.

An alternative to defining jets is to define a more global measure of the event which
is sensitive to the structure of the event. We need a number of properties to achieve this,
the most important of which is infrared safety, i.e. if there is soft or collinear emission
the answer doesn’t change. Formally if a parton splits into two collinear partons

p → zp + (1− z)p, (29)
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Figure 10: Phase space for e+e− → qq̄g. The requirement that x3 ≤ 1 ensures that
x1 + x2 ≥ 1 by momentum conservation so that physical phase space is the upper half
plane.

or if a soft parton is emitted with momentum

p → 0, (30)

the result should not change.
After the total cross section, the simplest infrared safe observable is the thrust

T = max
~̂n

∑

i |~pi · ~̂n|
∑

i |~pi|
, (31)

where the sum is over all the final-state particles and the direction of the unit vector ~̂n,
the thrust axis, is chosen to maximize the projection of the momenta of the final-state
particles along that direction.

For a two-jet pencil-like event all the particles lie along the thrust axis giving T = 1.
For a totally spherical event the thrust can be calculated by taking a spherical distribution
of particles in the limit of an infinite number of particles giving T = 1

2
. For three partons

the thrust axis will lie along the direction of the most energetic parton, by momentum
conservation there is an equal contribution to the thrust from the other partons giving
T = max{x1, x2, x3}.

In order to calculate the differential cross section with respect to the thrust for e+e− →
qq̄g we can start from the differential cross section in Eqn. 12. In many cases when we
wish to introduce a new quantity into a differential cross section it is easier to insert the
definition using a δ-function rather than performing a Jacobian transform, in this case we
use

1 =

∫

dTδ(T −max{x1, x2, x3}), (32)
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to give
dσ

dT
= σ0CF

αS

2π

∫

dx1dx2
x2
1 + x2

2

(1− x1)(1− x2)
δ(T −max{x1, x2, x3}), (33)

where σ0 is the leading-order cross section for e+e− → qq̄. This expression can be evalu-
ated in each of the three phase-space regions shown in Fig. 10. First in the region where
x1 > x2,3

dσ

dT

∣

∣

∣

∣

x1>x2,3

= σ0CF
αS

2π

∫ T

2(1−T )

dx2
T 2 + x2

2

(1− T )(1− x2)
(34)

= σ0CF
αS

2π

1

1− T

∫ T

2(1−T )

dx2
T 2 + 1

(1− x2)
− (1 + x2),

where we have used the δ-function to integrate over x1 and the limits on x2 are given by
x2 = x1 = T for the upper limit and T = x1 = x3 = 2 − x1 − x2 = 2 − T − x2 for the
lower limit. Performing the integral gives

dσ

dT

∣

∣

∣

∣

x1>x2,3

= σ0CF
αS

2π

1

1− T

[

(T 2 + 1) ln

(

2T − 1

1− T

)

+ 4− 7T +
3

2
T 2

]

. (35)

The same result is obtained in the region x2 > x1,3 due to the symmetry of the formulae
under x1 ↔ x2.

In the final region we can take the integrals to be over x2,3 and use the δ-function to
eliminate the integral over x3 giving

dσ

dT

∣

∣

∣

∣

x3>x1,2

= σ0CF
αS

2π

∫ T

2(1−T )

dx2
(2− T − x2)

2 + x2
2

(T + x2 − 1)(1− x2)
, (36)

= σ0CF
αS

2π

∫ T

2(1−T )

dx2
1

T

[

(2− T − x2)
2 + x2

2

]

[

1

T + x2 − 1
+

1

1− x2

]

,

= σ0CF
αS

2π

2

T

[

(2− 2T + T 2) ln

(

2T − 1

1− T

)

+ 2T − 3T 2

]

,

where after the integral over x3, x1 = 2−x2−T and the limits are calculated in the same
way as before.

Putting the results from the three regions together gives

dσ

dT
= σ0CF

αS

2π

[

2

T (1− T )
(3T (T − 1) + 2) ln

(

2T − 1

1− T

)

+
3(3T − 2)(T − 2)

1− T

]

. (37)

This result clearly diverges as T → 1, indeed in this limit

1

σ0

dσ

dT
T→1−→ −CF

αS

2π

[

4

(1− T )
ln (1− T ) +

3

1− T

]

. (38)

We can use this result to define a two- and three-jet rate so that the three jet rate is

R3(τ) =

∫ 1−τ

1
2

1

σ0

dσ

dT
τ→0−→ CF

αS

2π
2 ln2 τ, (39)
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Figure 11: Thrust distribution at various centre-of-mass energies compared with Monte
Carlo simulations, taken from Ref. [9].

and the two jet rate

R2(τ) = 1− R3(τ)
τ→0−→ 1− CF

αS

2π
2 ln2 τ. (40)

Similar logarithmically enhanced terms appear at all orders in the perturbative expansion
giving an extra ln2 τ at every order in αS, i.e.

R2(τ) ≡
∫ 1

1−τ

dT
1

σ

dσ

dT

τ→0∼ 1− CF
αS

2π
2 ln2 τ +

(

CF
αS

2π

)2

2 ln4 τ + . . . (41)

Although αS is small, ln2 τ in large so the perturbative expansion breaks down. The
solution is to resum the large αn

S ln
2n τ terms to all orders giving the Sudakov Form Factor

R2(τ)
τ→0∼ exp

[

−CF
αS

2π
2 ln2 τ

]

. (42)

This is finite (zero) at τ = 0, i.e. the probability for no gluon radiation is zero. In general
the Sudakov form factor gives the probability of no radiation

P (no emission) = exp
[

−P̂naive(emission)
]

. (43)

An example of the experimental measurement of the thrust distribution is shown in
Fig. 11 compared to various Monte Carlo simulations which include resummation of these
large logarithmic contributions..
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4 Deep Inelastic Scattering

Historically measurements of deep inelastic scattering were very important for establish-
ing the nature of QCD. Nowadays they are mainly important for the measurement of
the parton distribution functions we need to calculate all cross sections for processes
with incoming hadrons. As the proton isn’t fundamental at sufficiently high energies the
scattering is from the constituent quarks and gluons.

θkµ
k′µ

xpµ

pµ

qµ = (k − k′)µ







W

Figure 12: Deep inelastic scattering kinematics.

In deep inelastic scattering processes it is conventional to use the kinematic variables
shown in Fig. 12. The struck parton carries a fraction x of the four-momentum of the
incoming hadron. The four-momentum of the exchanged boson is q and the virtuality of
the boson Q2 = −q2. Using momentum conservation

xp+ q = p′, (44)

where p′ is the 4-momentum of the scattered quark. Therefore (xp + q)2 = 0 giving

x = Q2

2p·q . Similarly the mass of the hadronic system is W 2 = (p + q)2. By definition

(k + p)2 = 2k · p = s and therefore y= p·q
p·k = Q2

xs
.

Deep inelastic scattering has Q2 ≫ M2 (deep) and W 2 ≫ M2 (inelastic), where M is
the proton mass. Historically the observation and understanding of DIS was one of the
key pieces of evidence for quarks. On general grounds the cross section has the form

d2σ

dxdQ2
=

4πα2

xQ4

[

y2xF1(x,Q
2) + (1− y)F2(x,Q

2)
]

, (45)

which parameterizes the cross section in terms of two unknown structure functions,
F1,2(x,Q

2). If we consider that the proton is a bound state of partons we can calcu-
late these structure functions.

Suppose that the probability of a given type of quark carrying a fraction η of the
proton’s momentum is fq(η) the cross section for hadron scattering can be written in
terms of those for partonic scattering

d2σ(e+ proton)

dxdQ2
=
∑

q

∫ 1

0

dηfq(η)
d2σ(e+ q(ηp))

dxdQ2
. (46)
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Figure 13: The reduced cross section, which is equivalent to F2 up to some small correc-
tions, measured by the H1 and ZEUS experiments from Ref. [10].

Taking the outgoing parton to be on-shell:

(q + ηp)2 = 2ηp · q −Q2 = 0 ⇒ η = x.

Therefore
d2σ(e+ proton)

dxdQ2
=
∑

q

fq(x)
d2σ(e+ q(xp))

dQ2
. (47)

The differential cross section for e±(k)+ q(p) → e±(k′)+ q(p′) via photon exchange which
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dominates at low Q2 for neutral current scattering is

d2σ(e+ q(xp))

dQ2
=

2πα2e2q
Q4

[

1 + (1− y)2
]

, (48)

where eq is the charge of the quark.
So in the naive parton model

2xF1(x) = F2(x), (49)

F2(x) = x
∑

q

e2qfq(x),

are functions of x only, Bjorken scaling. Bjorken scaling works reasonably well, see Fig. 13,
but the quantum corrections, lead to scaling violations.

e−

q

e−

q

e−

q

e−

q

e−

q

e−

q

Figure 14: Real and virtual corrections to DIS.

If we consider the O(αS) corrections we have the following divergent contributions:

1. soft gluon, Eg → 0;

2. gluon collinear to the final-state quark;

3. gluon collinear to the initial-state quark;

4. the virtual matrix element has a negative divergence;

corresponding to the diagrams shown in Fig. 14.
The contributions from (1), (2) and (4) are indistinguishable from the tree-level con-

figuration and the divergences cancel between the real and virtual corrections. However
(3) has momentum fraction η > x and (4) η = x so the initial-state divergences don’t
cancel.

Just as with final-state radiation in the collinear limit it can be shown that

dσq→qg → dσq→q ×
αS

2π
CF

1 + z2

1− z

dt

t

dz

z
. (50)

Here we have the unregularized DGLAP splitting function P̂q→qg, it is singular as z → 1.
The virtual contribution contains a compensating singularity at exactly z = 1. The
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regularized splitting function is defined to be the sum of real and virtual contributions3

Pqq(z) = CF
1 + z2

1− z
+ CF δ(1− z)

{

3

2
−
∫ 1

0

dz′
2

1− z′

}

, (51)

≡ CF

(

1 + z2

(1− z)+
+

3

2
δ(1− z)

)

.

The total contribution is

F2(x,Q
2) = x

∑

q

e2q

∫ 1

x

dη

η
fq(η)

[

δ

(

1− x

η

)

(52)

+
αS

2π
Pqq

(

x

η

)∫

0

dt

t
+ R̄qq

(

x

η

)]

,

where R̄qq

(

x
η

)

is a calculable finite correction.

The integral over t is infrared divergent, comes from long timescales and should be part
of the hadronic wavefunction. We therefore introduce a factorization scale µF and absorb
contributions with t < µF into the parton distribution function so that fq(η) becomes
fq(η, µ

2
F ).

F2(x,Q
2) = x

∑

q

e2q

∫ 1

x

dη

η
fq(η, µ

2
F )

[

δ

(

1− x

η

)

(53)

+
αS

2π
Pqq

(

x

η

)

ln
Q2

µ2
F

+Rqq

(

x

η

)]

.

The finite piece is dependent on exactly how we define the parton distribution function, the
factorization scheme dependence. Physical cross sections are independent of µF , however
at any finite order in perturbation theory they do depend on the factorization scale.

Recall that in perturbation theory we cannot predict αS(MZ) but we can predict its
evolution, Eqn. 27. Similarly for the PDFs

µ2
F

∂fq(x,mu2
F )

∂µ2
F

=
αS(µ

2
F )

2π

∫ 1

x

dy

y
fq(y, µ

2
F )Pqq

(

x

y

)

+ . . . (54)

5 Hadron Collisions

In hadron collisions QCD processes dominate due to strength of the strong coupling. The
cross sections for electroweak processes, W±, Z0 and Higgs production are much smaller.
The values of x and Q2 probed in hadron collisions and examples of the cross sections for
various processes are shown in Fig. 15. In this section we will look at some of the basics

3The +-prescription is defined by convolution with a well defined function, g(z), such that

∫ 1

0

dz [f(z)]
+
g(z) =

∫ 1

0

dzf(z) [(g(z)− g(1))] .
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Figure 15: The values of x and Q2 probed in hadron collisions and examples of the cross
sections for various processes taken from Ref. [11].

of the production of the Z0 boson, as a simple example of a hadron–hadron process, in
the next section we will go on and study the physics of jets.

The calculation of the cross section for the production of an s-channel resonance in
hadron–hadron collisions is described in more detail in Appendix A.3.1 where the cross
section is given in Eqn. 128. The only dependence of the cross section on the rapidity of
the Z0 boson is via the PDFs, i.e. the rapidity distribution of Z0 contains information on
the PDFs of the partons a and b. The higher the mass of the produced system the more
central it is, see Fig. 15. The Z0 boson is centrally produced in both pp̄ and pp collisions.
The experimental results, for example those from the Tevatron shown in Fig. 16, are in
good agreement with the theoretical predictions.

At leading order the transverse momentum of the gauge boson is zero. As before we
have include real and virtual corrections, as shown in Fig. 17. In the same way as DIS the
initial-state singularities must be factorized into the PDFs. At low transverse momentum
we need to resum the multiple soft emissions whereas, as with the e+e− event shapes, at
large p⊥ the fixed-order approach is more reliable. The transverse momentum of the Z0

boson at the Tevatron is shown in Fig. 18.
In hadron-hadron collisions we would like at least next-to-leading order (NLO) cal-

culations. This is the first order at which we have a reliable calculation of the cross
section. If possible we would like next-to-next-to-leading order (NNLO) calculations but
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Figure 17: Real and virtual corrections to the production of the Z0 boson.

that is much harder and takes a long time, e.g. e+e− → 3 jets was calculated at: LO in
1974 [15]; NLO in 1980 [16]; NNLO in 2007 [17]. Calculating NNLO corrections is still
extremely challenging in hadron collisions, only the Drell-Yan process and gg → H are
known. However, we need higher order calculations because while the factorization scale
uncertainty is significantly less at NLO when compared to leading order it can still be
significant, see for example the scale uncertainty on the rapidity of the Z0 boson shown
in Fig. 19.

6 Jets

While we can often see the jets in an event when we look at an event display we need
a precise definition to perform quantitative analyzes.4 Jets are normally related to the
underlying perturbative dynamics, i.e. quarks and gluons. The purpose of a jet algorithm
is to reduce the complexity of the final state, combining a large number of final-state
particles to a few jets, i.e.

{pi}
jet algorithm−→ {jl}. (55)

We need a number of properties to achieve this (Snowmass accord):

4This section is based on the excellent review Towards Jetography [6].
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Figure 18: Transverse momentum of the Z0 boson measured by the D0 experiment at the
Tevatron, taken from Ref. [13].

Figure 19: Rapidity distribution of the Z0 boson for the LHC at
√
s = 14TeV, taken

from Ref. [14].

• simple to implement in experimental analyzes and theoretical calculations;

• defined at any order in perturbation theory and gives finite cross sections at any
order in perturbation theory (i.e. infrared safe);

• insensitive to hadronization effects.

The most important of these properties is infrared safety, as with the event shapes we
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considered earlier. Provided the jet algorithm is infrared safe there are a range of different
approaches.

The two main types of jet algorithm are:

1. cone algorithms;

2. sequential recombination algorithms.

There is a long history to this subject with: theorists and e+e− experimentalists generally
preferring recombination algorithms for their better theoretical properties; hadron collider
experimentalists preferring cone algorithms for their more intuitive picture and because
applying many experimental corrections was easier. However, with the start of the LHC
we have converged on a specific recombination algorithm.

6.1 Cone Algorithms

The simplest, oldest, and most intuitively appealing idea is a cone algorithm. The most
widely used algorithms are iterative cone algorithms where the initial direction of the cone
is determined by a seed particle, i. The sum of the momentum of all the particles with a
cone of radius R, the jet radius, in the azimuthal angle φ and rapidity5 y is then used as
a new seed direction and the procedure iterated until the direction of the resulting cone
is stable. In this approach the momenta of all the particles j such that

∆R2
ij = (yi − yj)

2 + (φi − φj)
2 < R2, (56)

are summed. As these algorithms are almost exclusively used in hadron–hadron collisions
it is normal to use the kinematically variables defined in Appendix A.1.

While this may seem simple there are a lot of complications in the details of the
algorithm in particular: what should be used as the seeds; what happens when the cones
obtained from two different seeds share particles, overlap. The details of the treatment of
these issues can lead to problems with infrared safety, which can often be very subtle.

Consider a simple approach where we take all the particles to be seeds. If we have
two partons separated in (y, φ) by twice the cone radius then two jets, with the direction

a) Seed particles b) Jet Cones

Figure 20: Example of cone jets.

given by that of the original partons, are formed as shown in Fig. 20. However if there is
an additional soft gluon emission between the two jets, as shown in Fig. 21, depending on
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a) Seed particles b) Search cones c) Cone jets

Figure 21: Example of cone jets with additional soft radiation.

the approach we can get only one jet, i.e. the algorithm is unsafe. A simple solution was
to use the midpoint between all the seeds as a seed, the midpoint algorithm. This solves
the problem at this level but similar problems appear for higher multiplicities. The final
solution, for the only known infrared safe cone algorithm, SISCone, is to avoid the use of
seeds and treat overlapping jets carefully.

6.2 Sequential Recombination Algorithms

In this approach jets are constructed by sequential recombination. We define a distance
measure between two objects dij, in hadron collisions we must also define a distance
measure diB with respect to the beam direction. There are two variants of the algorithm
the inclusive where all jets are retained and exclusive where only jets above the cut-off
value of the jet measure dcut, the jet resolution scale, are kept. The algorithm proceeds
as follows:

1. the distance measure is computed for each pair of particles, and with the beam
direction in hadronic collisions, and the minimum found;

2. if the minimum value is for a final-state merging in the exclusive approach the
particles i and j are recombined into a pseudoparticle if dij ≤ dcut, while in the
inclusive algorithm they are always recombined;

3. otherwise if a beam merging is selected in the in inclusive approach the particle is
declared to be a jet, while in the exclusive approach it is discarded if diB ≤ dcut;

4. in the inclusive approach we continue until no particles remain, while in the exclusive
approach we stop when the selected merging has min{diB, dij} ≥ dcut.

In the inclusive approach the jets are all those selected from merging with the beam,
whereas in the exclusive approach the jets are all the remaining particles when the iteration
is terminated.

The choice of the distance measure, and to a lesser extent the recombination proce-
dure,6 defines the algorithm.

5Or sometimes pseudorapidity η.
6In practice the so-called “E-scheme” where the four-momenta of the particles are added to give the

pseudoparticle’s four-momentum is almost always used.
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The earliest JADE algorithm for e+e− collisions uses the distance measure

dij = 2EiEj (1− cos θij) , (57)

where Ei,j are the energies of the particles and θij the angle between them. In e+e− colli-
sions we have to use the exclusive algorithm and it is conventional to use a dimensionless
measure yij = dij/Q

2, where Q is the total energy in the event. While this choice can
easily be proved to be safe in the soft and collinear limits there are problems with the
calculation of higher order corrections.

Therefore a class of kT algorithms was developed in which the distance measure was
chosen to be the relative transverse momentum of the two particles in the collinear limit,
i.e.

dij = min{E2
i , E

2
j }θ2ij ≃ k2

⊥ij for θij → 0. (58)

In e+e− collisions the conventional choice is

dij = 2min{E2
i , E

2
j } (1− cos θij) . (59)

In hadron collisions it is best to use a choice which is invariant under longitudinal boosts
along the beam direction. The standard choice is

dij = min{p2i,⊥, p2j,⊥}
∆R2

ij

R2
, (60)

where R is the “cone-size” and pi,⊥ is the transverse momentum of particle i with respect
to the beam direction. The standard choice for the beam distance is diB = p2i,⊥. There are
other definitions, particularly of the distance dij, which are invariant under longitudinal
boosts but that in Eqn. 60 is the most common choice.

In general there is a whole class of measures defined by

dij = min{p2pi,⊥, p
2p
j,⊥}

∆R2
ij

R
, (61)

and diB = p2pi,⊥.
The parameter p = 1 for the kT algorithm and 0 for the Cambridge/Aachen algorithm.
Recently a new approach, the anti-kT algorithm, with p = −1, was proposed which

favours clustering with hard collinear particles rather than clusterings of soft particles,
as in the kT and Cambridge/Aachen algorithms. The anti-kT algorithm is still infrared
safe and gives “conical“ jets due to the angular part of the distance measure and is the
algorithm preferred by both general-purpose LHC experiments.

6.3 Jet Cross Sections

All cone jet algorithms, expect from SISCone, are not infrared safe. The best ones typi-
cally fail in processes where we consider extra radiation from three-parton configurations
while some already fail when we consider radiation from two-parton configurations, see
the summary in Table 2.
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Process Last meaningful order Known at
JetClu MidPoint

Atlas cone CMS cone
inclusive jet cross section LO NLO NLO (→ NNLO)
W±/Z0 + 1-jet cross section LO NLO NLO
3-jet cross section none LO NLO
W±/Z0 + 2-jet cross section none LO NLO
jet masses in 3-jet and none none LO
W±/Z0 + 2-jet events

Table 2: Comparisons of various cone algorithms for hadron–hadron processes. Adapted
from Ref. [6].

Examples of the jets, and their areas, formed using different algorithms on a sample
parton-level event are shown in Fig. 22. As can be seen the kT and Cambridge/Aachen
algorithms tend to cluster many soft particles giving jets with an irregular area whereas
the jets produced by the cone and anti-kT algorithms are more regular making applying
corrections for pile-up and underlying event contamination easier.

In order to study jet production in hadron collisions we need to understand both
the jet algorithm and the production of the partons which give rise to the jets. The
spin/colour summed/average matrix elements are given in Table 3. Many of these matrix
elements have t-channel dominance, typically t → 0 ⇐⇒ p2⊥ → 0. As a consequence the
parton–parton scattering cross section grows quickly as p⊥ → 0 an effect which is further
enhanced by the running of αs when using µR = p⊥ as the renormalisation scale. An
example of the p⊥ spectrum of jets for different rapidities measured using the midpoint
cone-algorithm is shown in Fig. 23.

qq′ → qq′ 4
9
ŝ2+û2

t̂2

qq̄ → q′q̄′ 4
9
t̂2+û2

ŝ2

qq̄ → gg 32
27

t̂2+û2

t̂û
− 8

3
t̂2+û2

ŝ2

qg → qg ŝ2+û2

t̂2
− 4

9
ŝ2+û2

ŝû

gg → qq̄ 1
6
t̂2+û2

t̂û
− 3

8
t̂2+û2

ŝ2

gg → gg 9
2

(

3− t̂û
ŝ2

− ŝû
t̂2
− ŝt̂

û2

)

qq̄ → gγ 8
9
t̂2+û2+2ŝ(ŝ+t̂+û)

t̂û

qg → qγ −1
3
ŝ2+û2+2t̂(ŝ+t̂+û)

ŝû

Table 3: Spin and colour summed/averaged matrix elements for 2 → 2 parton scat-
tering processes with massless partons taken from Ref. [3]. A common factor of
g4 = (4παs)

2 (QCD), g2e2e2q (photon production) has been removed.
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Figure 22: Examples of jets formed by different jet algorithms, taken from Ref. [6].
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6.4 Jet Properties

In general the computation of jet properties in hadron–hadron collisions is extremely
complicated, however for some quantities we can get estimates of various effects. The
simplest of these is to estimate the change in the p⊥ between a parton and the jet it
forms.

We can start by considering the change due to perturbative QCD radiation. Suppose
we have a quark with transverse momentum p⊥ which radiates a gluon such that the
quark carries a fraction z of its original momentum and the gluon a fraction 1 − z, as
shown in Fig. 24. In this case after the radiation the centre of the jet will be the parton

p⊥

zp⊥

(1− z)p⊥

Figure 24: Kinematics of jet branching

with the highest transverse momentum after the branching, i.e. the quark if z > 1− z or
the gluon if z < 1− z. If the other parton is at an angular distance greater θ > R it will
no longer be in the jet and the jet will have a smaller transverse momentum

δp⊥ = (1− z)p⊥ − p⊥ =− zp⊥ 1− z >z (62)

δp⊥ = zp⊥ − p⊥ =− (1− z)p⊥ z >1− z

than the original parton.
We can use the splitting probabilities given in Eqn. 18 to compute the average trans-

verse momentum loss

〈p⊥〉q = −CFαS

2π
p⊥

∫ 1

R2

dθ2

θ2

∫ 1

0

dz
1 + z2

1− z
min{1− z, z}, (63)

= −CFαS

2π
p⊥ ln

(

1

R2

)

[

∫ 1
2

0

1 + z2

1− z
z +

∫ 1

1
2

1 + z2

1− z
1− z

]

,

= −CFαS

π
p⊥ ln

(

1

R

)[

2 ln 2− 3

8

]

.

The loss of transverse momentum can be calculated for gluon jets in the same way using
the gluon splitting functions giving

〈p⊥〉g = −αS

π
p⊥ ln

(

1

R

)[

CA

(

2 ln 2− 43

96

)

+ TRnf
7

48

]

. (64)

These calculations give

〈p⊥〉q
p⊥

= −0.43αS ln
1

R
,

〈p⊥〉g
p⊥

= −1.02αS ln
1

R
.
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Figure 25: Example of various contributions to the shift of the transverse momentum,
taken from Ref. [6].

So for a jet with R = 0.4 quark and gluon jets will have 5% and 11% less transverse
momentum than the parent parton, respectively. These results are subject to significant
finite R and higher order corrections. The result will also depend on the precise details of
the recombination scheme, for example SISCONE has a different recombination scheme
where the centre of the cone is the direction of the sum of the partons and we require one
parton to fall outside the cone.

While this gives the perturbative energy loss by the jet there are other effects which
can change the transverse momentum of the jet. In particular the jet can also lose energy
in the hadronization process and can gain energy from the underlying event.

While these effects cannot be calculated from first principles we can use some simple
models to gauge the size of the effects.

One model for the effect of hadronization on event shapes in e+e− collisions, due to
Dokshitzer and Webber, is to perform a perturbative calculation and instead of stopping
the calculation at some small energy scale µI because the strong coupling becomes non-
perturbative continue the calculation into the infrared regime with a model of the strong
coupling in this regime which does not diverge. They define

A(µI) =
1

π

∫ µI

0

dk⊥αS(k⊥). (65)

This model can also be used to assess the size of the hadronization corrections for the jet
transverse momentum. The hadronization is modelled by soft gluons with k⊥ ∼ ΛQCD.
In this case the transverse momentum loss is

δp⊥ = zp⊥ − p⊥ = −(1− z)p⊥. (66)
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As before the transverse momentum loss is

〈p⊥〉q = −CF

2π
p⊥

∫

dθ2

θ2

∫

dzαS
1 + z2

1− z
(1− z). (67)

As we are dealing with soft gluons z ∼ 1 so 1+ z2 ≃ 2. In this case we will not use a fixed
value of αS but need to evaluate it at the scale of the transverse momentum of the gluon
with respect to the quark k⊥ = p⊥(1 − z)θ. We also transform the integration variables
to use k⊥ and θ giving

〈p⊥〉q = −2CF

π

∫ 1

R

dθ

θ2

∫ µI

0

dk⊥αS(k⊥) = −2CFA
R

. (68)

Using the coefficients from fits to the e+e− thrust distribution

〈δp⊥〉q ∼ −0.5GeV

R
, 〈δp⊥〉g ∼ −1GeV

R
. (69)

The hadronization correction has a 1
R
dependence on the size of the jet, unlike the ln 1

R

dependence of the perturbative radiation.
We can estimate the underlying event contribution by assuming there is ΛUE energy

per unit rapidity due to soft particles from the underlying event giving a correction to the
transverse momentum of

〈δp⊥〉 = ΛUE

∫

η2+φ2<R2

dη
dφ

2π
= ΛUE

R2

2
. (70)

This is a useful estimate although strictly the area of the jet is only πR2 for the anti-kT
algorithm.

An example of the various contributions to the shift between the partonic and jet
transverse momentum is shown in Fig. 25.

7 Electroweak Physics

The Standard Model has 18 parameters (assuming massless neutrinos):

• 6 quark and 3 charged lepton masses;

• 3 quark mixing angles and 1 phase;

• 1 strong coupling;

• 1 electromagnetic coupling and 3 boson masses, mW , mZ , mh.

All observables are a function of these 18 parameters. In principle we could choose 18 well-
measured observables and define them to be the fundamental parameters of the theory,
e.g.

α, GF , αS, MZ , Mh, mf ,
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and calculate everything else in terms of them.
For the electroweak part of the theory we need mt, mh and three other parameters to

specify everything, neglecting the masses of the other Standard Model fermions. Every-
thing else can then be calculated from these parameters, e.g.

cos θW =
mW

mZ
, e = g sin θW .

The current values of the electroweak parameters are

mW = 80.41GeV, mZ = 91.188GeV, sin2 θW = 0.231,

α(mZ) =
1

128.89
, GF = 1.16639× 10−5GeV−2.

It is common to include the Fermi constant, GF =
√
2g2

8m2
W

, from the effective theory of weak

interactions at low energies as a parameter.
Different choices for the input parameters give different values for the calculated pa-

rameters.

1. input: α(mZ), GF , sin
2 θW , extracted:

g =
4πα(mZ)

sin2 θW
= 0.6497,

mW =
g

√

4
√
2GF

= 79.98GeV, mZ =
mW

cos θW
= 91.20GeV;

2. input: mW , GF , sin
2 θW extracted:

mZ =
mW

cos θW
= 91.695GeV,

g =

√

4
√
2GFmW = 0.653, α(mZ) =

g2 sin2 θW
4π

= 1/127.51;

3. input: mZ , α(mZ), sin
2 θW extracted:

mW =
mZ

cos θW
= 79.97GeV, g =

4πα(mZ)

sin θW
= 0.6497;

4. input: mZ , mW , GF extracted:

sin2 θW = 1−
(

mW

mZ

)2

= 0.2224,

g =

√

4
√
2GFmW = 0.653, α(mZ) =

g2 sin2 θW
4π

= 1/132.42.
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This is due to the quantum corrections.
It was the great triumph of the LEP/SLD and Tevatron physics programmes that the

quantum corrections to the theory were probed. The normal choice of input parameters
is:

1. α = 1/137.035999679(94) the fine-structure constant at q2 = 0 is accurately mea-
sured, however the error on its evolution to q2 = m2

Z has greater uncertainty due to
hadronic corrections;

2. GF = 1.166367(5) × 105GeV−2 is very accurately measured in muon decay
µ− → e−νµν̄e;

3. mZ = 91.1876± 0.0021GeV from the LEP1 lineshape scan;

as these are the most accurately measured.

7.1 Quantum Corrections to Masses

+ + + . . .

Figure 26: Example quantum corrections to the gauge boson propagator.

We have already considered the running of the coupling and corrections to cross sec-
tions and other observables. However masses are also renormalized in the Standard Model.
If we consider the propagator for a massive gauge boson we get corrections of the form
shown in Fig. 26. If we omit the Lorentz structures this gives a propagator

D(q2) =
i

q2 −m2
+

i

q2 −m2
iΠ(q2)

i

q2 −m2

+
i

q2 −m2
iΠ(q2)

i

q2 −m2
iΠ(q2)

i

q2 −m2
+ . . . ,

where Π(q2) is the gauge boson self energy. This is a geometric progression, summing the
series gives

D(q2) =
i

q2 −m2

1

1− Π(q2)
q2−m2

=
i

q2 −m2 − Π(q2)
. (71)

If the particle can decay to the particles in the loop there is an imaginary part of the self
energy Π(q2) which is related to the width of the particle

ImΠ(q2) = −iqΓ(q). (72)

The real part of the self energy correction renormalizes the particle’s mass giving

D(q2) =
i

q2 −m2
R(q) + iqΓ(q)

. (73)
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Figure 27: Quantum corrections to the W± boson mass.

As we have defined to the mass of the Z0 boson to be a fundamental parameter δm2
Z = 0,

by definition.
The dominant corrections to the W mass come from top-bottom and Higgs loop cor-

rections, as shown in Fig. 27.
The correction to the W± boson mass is

δm2
W ∼ 4s2W

1− 2s2W

GF

8π2
√
2
m2

W × c2W
s2W

Nc

(

m2
t −m2

b

)

− 4s2W
1− 2s2W

GF

8π2
√
2
m2

W ×m2
W

11

3

(

ln
M2

h

m2
W

− 5

6

)

.

7.2 Electroweak Observables

A number of observables are used in the electroweak fit performed by the LEP Electroweak
Working Group (LEPEWWG):

1. the Z0 mass and width mZ , ΓZ ;

2. the hadronic cross section at the Z0 pole σ(had) ≡ 12πΓ(e+e−)Γ(had)

m2
Z
Γ2
Z

;

3. the ratio of the hadronic to leptonic partial widths of the Z0, Rℓ ≡ Γ(had)
ℓ+ℓ−

, and the
ratio of the bottom, Rb ≡ Γ(bb̄)/Γ(had), and charm, Rc ≡ Γ(cc̄)/Γ(had), quark
partial widths to the hadronic partial width of the Z0;

4. the forward-backward asymmetry for e+e− → f̄ f

A0,f
fb =

σF − σB

σF + σB
, (74)

for charged leptons, A0,ℓ
fb , bottom A0,b

fb , and charm A0,c
fb quarks;

5. the couplings of the fermions to the Z0 can be extracted from the forward-backward
asymmetry in polarized scattering at SLD

AFB
LR (f) =

σf
LF − σf

LB − σf
RF + σf

RB

σf
LF + σf

LB + σf
RF + σf

RB

=
3

4
Af . (75)

The couplings for the bottom, Ab, and charm, Ac, quarks can be extracted from
these measurements. There are a number of possible ways of extracting Aℓ;

6. sin2 θlepteff (Qfb) is extracted from the hadronic charge asymmetry;

7. the W mass, mW , and width, ΓW are measured in a range of ways;
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Figure 28: The lineshape of the Z boson and results of the precision electroweak fit taken
from the LEPEWWG.

8. the top quark mass, mt, is measured at the Tevatron.

The results of the precision electroweak fit are in good agreement with the experimental
results, as shown in Fig. 28, and for example shows that there are 3 massless neutrinos
which couple to the Z boson.

7.2.1 W mass measurements

One of the most important quantities in electroweak sector in the mass of the W± boson.
The first measurements of the W mass were in hadronic collisions. The QCD backgrounds
and resolution means that the hadronicW± decay mode cannot be used. The mass cannot
be directly reconstructed using the leptonic mode due to the unobserved neutrino. Instead
the transverse mass

M ℓν2
⊥ = 2pℓ⊥E/⊥(1− cosφℓ,miss), (76)

where pℓ⊥ is the transverse momentum of the observed lepton, E/⊥ is the missing transverse
energy and φℓ,miss is the azimuthal angle between the lepton and the direction of the
missing transverse energy, is used.

The maximum value of the transverse mass is M ℓν2
⊥ ≤ m2

W and can be used to extract
the W± mass. This approach was used by the UA1 and UA2 experiments for the original
W mass measurements and the recent results at the Tevatron, for example Fig. 29. The
endpoint is smeared by the non-zero p⊥ and width of the W boson.

A major result of the LEP2 programme was the study of the production of pairs of
electroweak gauge bosons, W+W− and Z0Z0. The mass of the W can be extracted in
two ways:
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Figure 29: The transverse mass of the W at the Tevatron taken from Ref. [19].

1. measuring the cross section near the threshold

σ ∼ G2
Fm

2
W

2π

√

1− 4m2
W

s
, (77)

which is clean theoretical but limited by statistics, see Fig. 30;

2. reconstructing the mass from the W decay products above threshold.

7.2.2 ρ parameter

In principle we should compare the full predictions of the Standard Model, or any model of
new physics, with all the electroweak observables. However it is often useful, particularly
in new physics models as corrections from new particles can lead to large corrections, to
consider the ρ parameter. Naively

ρ =
m2

W

m2
Z cos2 θW

= 1, (78)

connects the Z0 and W± masses with the weak mixing angle. The dominant loop correc-
tions to it from self energies give

∆ρ =
3GFm

2
W

8
√
2π2

[

m2
t

m2
W

− sin2 θW
cos2 θW

(

ln
m2

H

m2
W

− 5

6

)

+ . . .

]

.

This relates mW , mt, and mH . For a long time, mt was most significant uncertainty in
this relation; by now, mW has more than caught up.
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Figure 30: Cross section for the pair production of W+W− close to threshold from the
LEPEWWG.

8 Higgs Boson

The details of the Higgs mechanism with the SM are covered in the Standard model
course. In this section we summarise the properties of the Standard Model Higgs Boson
that are important for hadron collider measurements.

The SM contains spin-1 gauge bosons and spin-1
2
fermions. Massless fields ensure

gauge invariance under SU(2)L ×U(1)Y and renormalizability. While we could introduce
mass terms “by hand”, i.e.

L ∝ m2
AA

µAµ +mf (Ψ̄RΨL + Ψ̄LΨR), (79)

this violates gauge invariance. Under the gauge transformation, Aµ → Aµ + 1
g
∂µθ, the

mass term AµAµ gives terms proportional to the gauge transformation parameter θ, i.e.
the gauge boson mass term is not gauge invariant. As the fields ΨL and ΨR transform
differently under SU(2)L under the gauge transformation of the left-handed fermion field
the fermion mass term is not gauge invariant.

Adding these mass terms by hand is obviously a bad idea. Instead we add a complex
scalar doublet under the SU(2)L gauge group which introduces an additional four degrees
of freedom. This scalar field can be coupled gauge invariantly to the gauge bosons, i.e.

LΦA = (DµΦ)(DµΦ). (80)

173



Figure 31: The Higgs boson potential.

A gauge-invariant interaction term with fermions can also be included7

LΦΨ = gfΨ̄LΦΨR + h.c.. (81)

In addition we need the Higgs potential

V(Φ) = λ
(

Φ†Φ
)2

+ µ2Φ†Φ. (82)

For µ2 < 0 this potential has an infinite number of equivalent minima,

|Φ| =
√

−µ2

2λ
≡ v√

2
, (83)

as shown in Fig. 31. We expand around one of these minima giving one radial and three
circular modes. The circular modes are “gauged away” −→ “eaten” by gauge bosons to
give them mass via the vacuum expectation value (vev) the minimum of the potential.

From the structure above:

(DµΦ)
2 −→ g2v2

4
WµW

µ −→ M2
W = g2v2

4
;

gfΨ̄LΦΨR −→ gf
v√
2
Ψ̄LΦΨR −→ mf =

gfv√
2
;

λ(|Φ|2 − v2/2)2 −→ λv2H2 −→ M2
H = 2λv2.

This gives a fixed relation between the mass of the particles and their coupling to (sur-
viving) scalar Higgs boson.

8.1 Unitarity

While in the Standard Model introducing the Higgs boson is the only way to give mass
to the particles in a gauge invariant manner there are other arguments for the existence
of the Higgs boson and it is interesting to ask what would happen if the Higgs boson did
not exist.

7While we can use Φ to couple to the down-type fermions we need to use iσ2Φ
∗ to couple to the

up-type fermions in a gauge invariant manner.
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Figure 32: Feynman diagrams for WW scattering via gauge boson exchange.

If we consider W+W− → W+W− scattering, via the Feynman diagrams shown in
Fig. 32, in the high energy limit the matrix element is

M = g2
s

8M2
W

(

1− 4M2
W

s

)

(1 + cos θ). (84)

So without the Higgs boson the cross section

σ ∼ s

M4
W

, (85)

for s ≫ MW .
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Figure 33: Higgs boson contributions to WW scattering.

This violates unitarity, so we need something to cancel the bad high energy behaviour
of the cross section. We can arbitrarily invert a particle to cure this. This particle must
be a scalar, suppose it has coupling, λ, to W+W−. This gives a contribution, via the
Feynman diagrams in Fig. 33,

M = λ2

[

− s

8M4
W

(1 + cos θ)− M2
H

4M4
W

{

s

s−M2
H

+
t

t−M2
H

}]

. (86)

This cancels the bad high energy behaviour if λ = gMW , i.e. the Higgs coupling to theW±

boson. If we repeat the same procedure for WW → ZZ we need a coupling gZZH ∝ gmZ

and for WW → f f̄ we need a coupling gff̄H ∝ gmf , i.e. the Higgs boson couplings to
the Z0 boson and Standard Model fermions.

So even if there was no Higgs boson we are forced to introduce a scalar interaction
that couples to all particles proportional to their mass.

8.2 Higgs Measurements

To study the properties of the recently discovered Higgs boson we should focus our at-
tention on,

• channels with a high signal rate;

• and a low background rate.
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Decay mode Partial Width, Γ

H → f f̄ GFMH

8π
√
2
· 2m2

fNc

(

1− 4m2
f

m2
H

)
3
2

H → W+W− GFMH

8π
√
2
·m2

H

(

1− 4m2
W

m2
H

+
12m4

W

m4
H

)(

1− 4m2
W

m2
H

)
1
2

H → ZZ GFMH

8π
√
2
·m2

H
m2

W

2m2
Z

(

1− 4m2
Z

m2
H

+
12m4

Z

m4
H

)(

1− 4m2
Z

m2
H

)
1
2

H → γγ GFMH

8π
√
2
·m2

H

(

α
4π

)2 ·
(

4
3
NcQ

2
t

)2
(2mt > mH)

H → gg GFMH

8π
√
2
·m2

H

(

αs

4π

)2 ·
(

2
3

)2
(2mt > mH)

H → V V ∗ more complicated, but important for mH . 2mV

Table 4: Partial widths for various Higgs decay modes.

Unfortunately the channels with the highest signal rate often have the largest back-
grounds. We need to be able to trigger on a given signal. Good mass resolution for
the mass of the Higgs boson and its decay products can help to suppress backgrounds.
We should also try and measure things that are well understood theoretically.

In order to consider the signals we need to understand how the Higgs boson is produced
and then decays in hadron–hadron collisions.

The analytic results for the partial widths for various Higgs boson decay modes are
given in Table 4 and the branching ratios are plotted as a function of the mass of the
Higgs boson in Fig. 34. For mH < 2mW the Higgs boson is quite narrow, ΓH = O(MeV),
while for mH > 2mW the Higgs boson becomes obese, ΓH(mH = 1TeV) ≈ 0.5 TeV.
At large mH the decay into vector boson pairs, W+W− and Z0Z0, is dominant with
ΓH→WW : ΓH→ZZ ≈ 2 : 1, while for small mH the decay into bottom quark pairs is
dominant,

As the Higgs boson likes to couple to heavy objects (top, W , Z) there are a range of
important Higgs production processes where the Higgs boson couples to heavy particles.
The Feynman diagrams for the important processes are shown in Fig. 35 while the cross
sections for the important processes are shown in Fig. 36 as a function of the Higgs boson
mass.

The relative importantance of different channels depend on the collider energy and
the initial state (e.g. pp or pp̄). At the Tevatron typical channels used for searches were:

• gg → H → W+W− → ℓℓ′ + E/⊥ this was the “golden plated” channel because
although there is no mass peak the background can be reduced by using quantities,
such as the angle between the leptons, which differ in the signal and background
due to the different W boson production mechanisms;

• qq̄ → ZH → ℓℓbb̄ the key ingredient for this process is the b-tagging efficiency and
mass resolution for jets in order to suppress the QCD backgrounds;

• qq̄′ → WH → ℓνbb̄ has similar features to qq̄ → ZH → ℓℓbb̄;

• qq̄′ → ZH → E/⊥ + bb̄ the key feature is again the b-tagging efficiency and mass
resolution for jets in order to suppress the QCD backgrounds;
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Figure 34: Branching ratios for the Higgs boson as a function of the Higgs boson mass,
taken from Ref. [20], calculation by M. Spira.

• qq̄′ → W±H → W±W+W− in this case there is the possibility of same sign lepton
production which has a low background together with the decay of remaining W to
hadrons in order to increase the cross section.

Typical channels at the LHC include:

• gg → H → ZZ → 4µ, 2e2µ which is the “Golden plated” channel for mH > 140
GeV, the key ingredient is the excellent resolution of the Z mass peak from the
leptonic decay;

• gg → H → W+W− → ℓℓ′ + E/⊥ is similar to the Tevatron analysis but with better
statistics due to the larger production cross section;

• gg → H → γγ since Nature determined that the Higgs boson should have a mass
around 120 GeV this is the easiest way to detect a Higgs boson in a collider ex-
periemnt. Although the branching ratio is small, the key ingredient is the mass
resolution for photon pairs and a veto on photons from π0 decays;

• VBF→ H → ττ an important mode for determining couplings to the EW sector of
the SM. The key ingredient is that QCD backgrounds are reduced by requiring a
rapidity gap between the two tagging jets;

• VBF→ H → WW as for VBF→ H → ττ ;

• VBF→ H → bb̄ is in principle similar to the other VBF modes but it is hard to
trigger on pure QCD-like objects (jets).

177



Gluon Fusion

W±, Z0

Higgs-Strahlung

Quark-associated

W±, Z0

W±, Z0

Weak vector boson fusion (VBF)

Figure 35: Feynman diagrams for important Higgs boson production processes.
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Figure 36: Higgs production cross sections at hadron colliders taken from Ref. [20],
calculation by M. Spira.

8.3 The effective Higgs coupling to gluons

The loop induced coupling of gluons to the Higgs boson via a massive quark loop is one
of the most important ingredients for Higgs studies at a proton-proton collider. Quan-
tum corrections to this process can be extremely large but computations with the full
dependence on the quark mass are extremely difficult.

For low transverse momenta, and inclusive quantities like the total cross section, it
is popular to compute the quantum corrections in an effective field theory in the limit
that the top quark mass is infinitely heavy, mt → ∞. The Lagrangian of the heavy quark
Higgs effective theory (HEFT) proceeds through a dimension-five operator with the Higgs
coupling directly to gluons and is derived via expansion in mH/mt,

LHEFT = cHEFT
1

4
HGa,µνGa

µν (87)

where cHEFT = αs

3πv
+ O(α2

s) for a Higgs vacuum expectation value v. It is possible to
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Figure 37: The triangle Feynamn diagram for gg → H via a haevy quark loop can be
used to extract the Wilson coefficient in the heavy quark effective Higgs Lagrangian.

extract the value of cHEFT by considering to large mass limit of the triangle diagram in
Figure 37. While the ratio of mH/mt is not particularly small the approximation often
does a good job at matching data when the complete results for leading order are used
as a normalisation. As the transverse momentum of the produced Higgs boson increases
the approximation will break down.

Computations within this effective theory are now available for the total cross section
gg → H through to N3LO [21, 22]. Figure 38 shows the convergence of the total cross-
section by studying the dependence on the renormalisation and factorisation scale µ =
µR = µF . Futher details on the approximation and other topics can be found in references
[5, 23].

8.4 Extended Higgs Sectors

While current measurements show no significant deviations from a minimal SM Higgs
sector adding a single Higgs doublet is the simplest choice for the Higgs sector. Many
theoretically attractive models like SUSY naturally have a larger Higgs sector. However,
we need to be careful to respect constraints from flavour changing neutral currents (FCNC)
and the electroweak precision data.

8.4.1 The Two Higgs Doublet Model

The simplest extension to the Standard Model is the Two Higgs Doublet Model (THDM).
In this model there are two Higgs doublets. There are a number of variants on the
model depending on whether or not CP is conserved and how the Higgs bosons couple

Figure 38: The scale dependence of the total cross section for Higgs production through
gluon fusion up to N3LO in QCD. Figure taken from Ref. [22].

179



to the fermions. The most interesting variant (called Type-II) is that which occurs (in a
constrained variant) in SUSY models. In the general version of the Type-II model there
are ∼ 10 new parameters, whereas in the constrained SUSY version there are only two
mA0 and tanβ. There are indirect constraints from rare processes, e.g. kaon and bottom
mixing and decays, precision EW data and cosmology.

As there are two doublets there as two vevs: v1,2. They are constrained by the re-
quirement

v21 + v22 = v2 ≈ (246GeV)2, (88)

in order to give the correct gauge boson masses as in the Standard Model. There is an
additional parameter tan β = v2/v1. In the Type-II mode the H1 doublet gives mass to
up-type fermions while the H2 doublet gives mass to down-type fermions. Both doublets
couple and give mass to the gauge bosons. After electroweak symmetry breaking there are
five scalar boson mass eigenstates, two neutral scalars h0, H0, one neutral pseudoscalar A0,
and two charged scalars H±. The coupling of all the Higgs bosons to the vector bosons are
reduced. The couplings to the fermions are enhanced (up-type) and suppressed (down-
type) as tan β increases. At tree level the masses are related by

m2
H± = m2

A0 +m2
W , m2

H0 +m2
h0 = m2

A0
+m2

Z . (89)

At tree level in SUSY mh0 ≤ MZ however there are large quantum corrections (mh0 .

140GeV).

9 Beyond the Standard Model Physics

As discussed in Section 7 the Standard Model has 18 free parameters, although in principle
we should also include the Θ parameter of QCD. We now need more parameters to
incorporate neutrino masses. Despite the excellent description of all current experimental
data there are still a number of important questions the Standard Model does not answer.

• What are the values of these parameters?

• Why is the top quark so much heavier that the electron?

• Why is the Θ parameter so small?

• Is there enough CP-violation to explain why we are here, i.e. the matter-antimatter
asymmetry of the universe?

• What about gravity?

While these are all important questions there is no definite answer to any of them.
There are however a large number of models of Beyond the Standard Model (BSM)

physics which motivated by trying to address problems in the Standard Model. Given the
lack of any experimental evidence of BSM physics the field is driven by theoretical and
ascetic arguments, and unfortunately fashion.
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All models of BSM physics predict either new particles or differences from the Standard
Model, otherwise they cannot be distinguished experimentally from the Standard Model.
There are a number of ways of looking for BSM effects:

Collider Experiments if the theory contains new particles these should be produced
in collider experiments and decay to give Standard Model particles, currently the
searches at the energy frontier are at the LHC general-purpose detectors ATLAS
and CMS;

Precision Experiments measure something predicted by the Standard Model to very
high accuracy and compare the results with the theoretical prediction, examples
include the LEP/SLD precision measurements at the Z0 pole and the anomalous
magnetic moment, g − 2, of the muon;

Rare Decays or Processes measure the cross section or decay rate for some process
which the Standard Model predicts to be small (or zero). Examples include: neutron
electric dipole moment experiments, proton decay experiments, neutrino mixing
experiments, rare B and kaon decay and CP-violation experiments (BELLE, BaBar,
NA48/62, LHCB).

In many ways these approaches are complimentary. Some effects, e.g CP-violation,
are best studied by dedicated experiments but if the result of these experiments differs
from the SM there should be new particles which are observable at collider experiments.

We will consider the collider signals of BSM physics in detail but only look at the
constraints from low-energy physics as we look at various models. The most important
low energy constraints are flavour changing neutral currents and proton decay. Often
other constraints, e.g. from astrophysics and cosmology are also considered.

9.1 Models

We will briefly review some of the more promising models and then look at the implica-
tions of these models for collider physics taking a pragmatic view looking at the different
possible signatures rather than the details of specific models.

There are a wide range of models: grand unified theories; Technicolor; supersymme-
try; large extra dimensions; small extra dimensions; little Higgs models; unparticles . . ..
Depending on which model builder you talk to they may be almost fanatical in their belief
that one of these models is realized in nature.

9.1.1 Grand Unified Theories

The first attempts to answer the problems in the Standard Model were Grand Unified
Theories (GUTs.) The basic idea is that the Standard Model gauge group SU(3)c ×
SU(2)L × U(1)Y is the subgroup of some larger gauge symmetry. The simplest group is
SU(5), which we will consider here, other examples include SO(10). SU(5) has 52−1 = 24
generators which means there are 24 gauge bosons. In the Standard Model there are 8
gluons and 4 electroweak gauge bosons (W±, W 0, B0 ⇒ W±, γ, Z0). Therefore there

are 12 new gauge bosons X± 4
3 and Y ± 1

3 . The right-handed down type quarks and left
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handed leptons form a 5̄ representation of SU(5). The rest of the particles form a 10
representation of the gauge group

gluons

W±








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d
d
d
ec

ν̄e


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

R
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
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

0 uc −uc −u −d
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uc −uc 0 −u −d
u u u 0 −ec

d d d ec 0













L

. (90)

In this model there are two stages of symmetry breaking. At the GUT scale the
SU(5) symmetry is broken and the X and Y bosons get masses. At the electroweak
scale the SU(2) × U(1) symmetry is broken as before. There are three problems with
this theory: the couplings do not unify at the GUT scale; why is the GUT scale higher
than the electroweak scale; and proton Decay. We will come back to the first two of these
questions.

d̄

u

e+
u

d π0

XProton

Figure 39: Proton Decay in a Grand Unified theory.

Proton Decay Grand unified theories predict the decay of the proton via the exchange
of the X and Y bosons, as shown in Fig. 39. We would expect this decay rate to go like

Γ(p → π0e+) ∼
M5

p

M4
X

, (91)

where MX is the mass of the X boson and Mp the mass of the proton, on dimensional
grounds.

There are limits on the proton lifetime from water Čerenkov experiments. The decay
of the proton will produce an electron which is travelling faster than the speed of light
in water. This will give Čerenkov radiation, just as the electron produced in the weak
interaction of a neutrino does. This is used to search for proton decay. As there is no
evidence of proton decay there is limit of

τP ≥ 1.6× 1032 years (92)

on the proton lifetime. This means MX > 1016−17GeV which is larger than preferred by
coupling unification. Proton decay gives important limits on other models.
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Figure 40: Quantum correction to the Higgs mass from a fermion loop.

9.1.2 Hierarchy Problem

The vast majority of new physics models are motivated by considering the hierarchy
problem, i.e. why is the electroweak scale is so much less than the GUT or Planck (where
gravity becomes strong) scales? It is more common to discuss the technical hierarchy
problem which is related to the Higgs boson mass. If we look at the Higgs mass there
are quantum corrections from fermion loops such as that shown in Fig. 40. This gives a
correction to the Higgs mass,

δM2
Hf = i

|gf |2
4

∫

d4k

(2π)4
tr [(k6 +p6 +mf )(k6 +mf)]

[

(k + p)2 −m2
f

] [

k2 −m2
f

] , (93)

where p is the four-momentum of the Higgs boson, k the four-momentum flowing in the
loop, gf the coupling of the Higgs boson to the fermion and mf the fermion mass. We
need to introduce an ultra-violet cut-off, Λ, to regularize the integral giving

δM2
Hf =

|gf |2
16π2

[

−2Λ2 + 6m2
f ln (Λ/mf)

]

. (94)

So either the Higgs mass is the GUT/Planck scale or there is a cancellation

M2
H = M2

Hbare + δM2
H , (95)

of over 30 orders of magnitude to have a light Higgs boson.
This worries a lot of BSM theorists, however there are values of the Higgs boson mass

for which the Standard Model could be correct up to the Planck scale. The Higgs boson
mass is m2

H = λv2. There are two constraints on the mass: the coupling should be
perturbative, λ . 1; the vacuum must be non-trivial, λ → 0 is forbidden. As can be seen
in Fig. 41 there is an island of stability in the middle where the Standard Model can be
valid to the Planck scale.

Many solutions to the hierarchy problem have been proposed. They come in and
out of fashion and occasionally new ones are proposed. Examples include: Technicolor;
supersymmetry; extra dimensions; and little Higgs models.

9.1.3 Technicolor

Technicolor is one of the oldest solutions to the hierarchy problem. The main idea is
that as the problems in the theory come from having a fundamental scalar particle they
can be solved by not having one. The model postulates a new set of gauge interactions
Technicolor, which acts on new technifermions. We think of this interaction like QCD,
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Figure 41: Region of stability for the Standard Model Higgs boson.

although different gauge groups have been considered. The technifermions form bound
states, the lightest being technipions. Using the Higgs mechanism these technipions give
the longitudinal components of theW± and Z bosons, and hence generate the gauge boson
masses. There must also be a way to generate the fermions masses, Extended Technicolor.
It has proved hard to construct realistic models which are not already ruled out. For
many years Technicolor fell out of fashion, however following the introduction of little
Higgs models there has been a resurgence of interest and the new walking Technicolor
models look more promising.

9.1.4 Supersymmetry

If there is a scalar loop in the Higgs propagator, as shown in Fig. 42. We get a new

H0 H0

S

Figure 42: New scalar boson loop in the Higgs boson propagator.

contribution to the Higgs mass,

δM2
HS =

λs

16π2

(

Λ2 − 2M2
S ln (Λ/MS)

)

, (96)

where MS is the mass of the new scalar particle. If there are two scalars for every fermion,
with the same mass and λs = |gf |2 the quadratic dependence cancels. Theorists like to
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SM particle Spin SUSY particle Spin
Electron 1/2 Selectron 0
Neutrino 1/2 Sneutrino 0

Up 1/2 Sup 0
Down 1/2 Sdown 0
Gluon 1 Gluino 1/2
Photon 1 Photino 1/2

Z 1 Zino 1/2 Neutralinos
Higgs 0 Higgsino 1/2
W+ 1 Wino 1/2 Charginos
H+ 0 Higgsino 1/2

Table 5: Particle content of the Minimal Supersymmetric Standard Model.

have symmetries to explain cancellations like this, Supersymmetry (SUSY). For every
fermionic degree of freedom there is a corresponding bosonic degree of freedom: all the
SM fermions have two spin-0 partners; all the SM gauge bosons have a spin-1

2
partner.

The full particle content of the theory is given in Table 5. In SUSY models we need to
have two Higgs doublets to give mass to both the up- and down-type quarks in a way
which is invariant under the supersymmetric transformations.

There are major two reasons, in addition to the solution of the hierarchy problem, to
favour SUSY as an extension of the SM.

Coleman-Mandula theorem If we consider any extension to the Poincaré group any
new generators which transform as bosons lead to a trivial S-matrix, i.e. scattering
only through discrete angles. Later Haag, Lopuszanski and Sohnius showed that
SUSY is the only possible extension of the Poincaré group which doesn’t give a
trivial S-matrix.

SUSY coupling unification In SUSY GUTS the additional SUSY particles change the
running of the couplings and allow the couplings to truly unify at the GUT scale, as
shown in Fig. 43. However, with increasingly accurate experimental measurements
of the strong coupling this is no longer quite true.

In the modern view of particle physics we construct a theory by specifying the particle
content and symmetries. All the terms allowed by the symmetries are then included in
the Lagrangian. If we do this in supersymmetric models we naturally get terms which do
not conserve lepton and baryon number. This leads to proton decay as shown in Fig. 44.
Proton decay requires that both lepton and baryon number conservation are violated. The
limits on the proton lifetime lead to very stringent limits on the product of the couplings
leading to proton decay.

λ′
11k · λ′′

11k . 2 · 10−27. (97)

Only natural way for this to happen is if some symmetry requires that one or both
couplings are zero. Normally a multiplicatively conserved symmetry R-parity

Rp = (−1)3B+L+2S , (98)
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Figure 43: Coupling constant unification in the Standard and Minimal Supersymmetric
Standard Models.
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Figure 44: Proton decay in supersymmetric models.

such that Standard Model Particles have Rp = +1 and SUSY particles have Rp = −1, is
introduced which forbids both terms.

Alternatively symmetries can be imposed which only forbid the lepton or baryon
number violating terms. The simplest SUSY extension of the Standard Model has Rp

conservation and is called the Minimal Supersymmetric Standard Model (MSSM). The
multiplicative conservation of R-parity has two important consequences: SUSY particles
are only pair produced; the lightest SUSY particle is stable, and therefore must be neutral
on cosmological grounds. It is therefore a good dark matter candidate.

So far we haven’t dealt with the biggest problem in SUSY. Supersymmetry requires
that the SUSY particles have the same mass as their Standard Model partner and the
SUSY partners have not been observed. SUSY must therefore be a broken symmetry in
such a way that the Higgs mass does not depend quadratically on the ultraviolet cut-off,
called soft SUSY breaking. This introduces over 120 parameters into the model. Many
of these parameters involve either flavour changing or CP-violating couplings and are
constrained by limits on flavour changing neutral currents.

Flavour Changing Neutral Currents In the Standard Model the only interactions
which change change the quark flavour are those with the W± boson. So any processes
which change the flavour of the quarks, but not the charge, Flavour Changing Neutral
Currents (FCNCs), must be loop mediated.

There are two important types: those which change the quark flavour with the emission
of a photon, i.e. b → sγ; those which give meson-antimeson mixing, e.g. B − B̄ mixing.
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Figure 45: Feynman diagram for neutral kaon mixing in the Standard Model.
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Figure 46: Feynman diagrams for the decay of the neutral kaon to µ+µ− and γγ in the
Standard Model.

Both are important in the Standard Model and in constraining possible new physics
models.

In the Standard Model flavour changing neutral currents are suppressed by the Glashow-
Iliopoulos-Maiani (GIM) mechanism. If we consider neutral Kaon mixing, as shown in
Fig. 45, and the rare Kaon decays K0

L → µ+µ− and K0
L → γγ, as shown in Fig. 46.

Considering only two generations for simplicity all these diagrams go like

1

M2
W

m2
u −m2

c

M2
, (99)

times a factor due to the Cabibbo mixing angle where M is the largest mass left after
the removal of one W propagator, i.e. MW for K0 − K̄0 mixing and K0

L → µ+µ−, and
mc for K0

L → γγ. This suppression is called the GIM mechanism and explains why
Γ(K0

L → µ+µ−) ∼ 2 × 10−5Γ(K0
L → γγ). The current experimental results are in good

agreement with the SM. This often proves a problem in BSM physics as there are often
new sources of FCNCs.

In SUSY theories the SUSY partners also give contributions to FCNCs, as shown in
Fig. 47. In this case the diagrams proportional to the mass difference of the squarks.

d

s̄

s

d̄

K0 K̄0ũ, c̃, t̃ ũ, c̃, t̃

χ̃−

χ̃+

Figure 47: An example supersymmetric contribution to neutral kaon mixing.

Provide the SUSY breaking masses are flavour independent this is not a problem, as the
mass differences are the same as the SM. It is also not a problem if there is no flavour
mixing in the model. In general both these things are possible and must be considered.

SUSY Breaking What are the 120 SUSY breaking parameters? In general there are:
SUSY breaking masses for the scalars; SUSY breaking masses for the gauginos; A terms
which mix three scalars; mixing angles and CP-violating phases. We need a model of
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Figure 3.0.1: Examples of mass spectra in mSUGRA, GMSB and AMSB models for

tan � = 3, sign� > 0. The other parameters are m

0

= 100 GeV, m

1=2

= 200 GeV for

mSUGRA; M

mess

= 100 TeV, N

mess

= 1, � = 70 TeV for GMSB; and m

0

= 200 GeV,

m

3=2

= 35 TeV for AMSB.

with the high luminosity available at Tesla. It is vital to have highly polarised elec-

trons and it is very desirable to have polarised positrons as well. It is assumed that

polarisations of P

�

= 80% for electrons and P

+

= 60% for positrons are achievable.

A proper choice of polarisations and center of mass energy helps disentangle the var-

ious production channels and suppress background reactions. Electron polarisation is

essential to determine the weak quantum numbers, couplings and mixings. Positron

polarisation provides additional important information [4]: (i) an improved precision

on parameter measurements by exploiting all combinations of polarisation; (ii) an in-

creased event rate (factor 1.5 or more) resulting in a higher sensitivity to rare decays

and subtle e�ects; and (iii) discovery of new physics, e.g. spin 0 sparticle exchange. In

general the expected background is dominated by decays of other supersymmetric par-

ticles, while the Standard Model processes like W

+

W

�

production can be kept under

control at reasonably low level.

The most fundamental open question in SUSY is how supersymmetry is broken

and in which way this breaking is communicated to the particles. Here three di�erent

schemes are considered: the minimal supergravity (mSUGRA) model, gauge mediated

(GMSB) and anomaly mediated (AMSB) supersymmetry breaking models. The phe-

nomenological implications are worked out in detail. The measurements of the sparticle

properties, like masses, mixings, couplings, spin-parity and other quantum numbers,

Figure 48: Examples of the mass spectra in different SUSY breaking models.

where these parameters come from in order to do any phenomenological or experimental
studies. We therefore use models which predict these parameters from physics at higher
energy scales, i.e. the GUT or Planck scale. In all these models SUSY is broken in a
hidden sector. The models differ in how this SUSY breaking is transmitted to the visible
sector, i.e. the MSSM particles.

SUGRA SUSY breaking is transmitted via gravity. All the scalar (M0) and gaug-
ino (M1/2) masses are unified at the GUT scale. The A and B terms are also universal.
The known value of MZ is used to constrain the µ and B parameters leaving tan β = v1/v2
as a free parameter. There are five parameters which give the mass spectrum: M0, M1/2,
tan β, sgnµ, A. The gluino mass is correlated with M1/2 and slepton mass with M0.

GMSB In gauge mediated SUSY breaking (GMSB) the flavour-changing neutral cur-
rent problem is solved by using gauge fields instead to gravity to transmit the SUSY
breaking. The messenger particles, X , transmit the SUSY breaking. The simplest choice
is a complete SU(5) 5 or 10 of particles transmitting the SUSY breaking to preserve
the GUT symmetry. The fundamental SUSY breaking scale . 1010GeV is lower than
in gravity mediated models. The gaugino masses occur at one-loop, Mg̃ ∼ αsNXΛ while
the scalar masses occur at two-loop, Mq̃ ∼ α2

s

√
NXΛ, where Λ is the breaking scale and

NX the number of messenger fields. The true LSP is the almost massless gravitino. The
lightest superpartner is unstable and decays to gravitino and can be neutral, e.g. χ̃0

1, or
charged, e.g. τ̃1.

AMSB The superconformal anomaly is always present and can give anomaly mediated
SUSY breaking (AMSB). This predicts the sparticle masses in terms of the gravitino mass,
M3/2. The simplest version of the model predicts tachyonic particles so another SUSY
breaking mechanism is required to get a realistic spectrum, e.g. adding universal scalar
masses (M0). The model has four parameters M0, M3/2, tan β and sgnµ. In this model
the lightest chargino is almost degenerate with the lightest neutralino.
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The mass spectrum in the models is different, as shown in Fig. 48. The main differences
are: the mass splitting between gluino and electroweak gauginos; the mass splitting of
the squarks and sleptons; and the nature of the LSP.

Muon g-2 Another important low energy constraint on BSM physics is the anomalous
magnetic moment of the muon. The magnetic moment of any fundamental fermion is

µ = g
( e

2m

)

S, (100)

where g is the g-factor, m the mass and S the spin of the particle. The Dirac equation
predicts g = 2. However there are quantum corrections, as shown in Fig. 49, which lead
to an anomalous magnetic moment, g − 2.

γγ

µ−

µ+

Figure 49: Vertex correction contributing to the anomalous muon magnetic moment in
the Standard Model.

There are also quark loops in the photon propagator, as shown in Fig. 50. This is a low
energy process so we can not use perturbative QCD. Instead we must use the measured
e+e− total cross section and the optical theorem to obtain the corrections which leads to
an experimental error on the theoretical prediction. In many BSM theories, for example

γ γ

Figure 50: Quark loop in the photon propagator which contributes to the anomalous
muon magnetic moment in the Standard Model.

in SUSY, there are additional corrections from diagrams, such as that shown in Fig. 51.

µ̃

µ̃

χ̃0
i

γ

µ+

µ−

Figure 51: Example of a SUSY correction to the muon magnetic moment.

The original experimental result disagreed with the SM at 2.6σ, but there was an error
in the sign in one of the terms in the theoretical calculation reducing the significance to
about 1.4σ. However if you measure enough quantities some of them should disagree with
the prediction by more the 1 sigma (about 1/3), and some by 2 sigma (4.6%) or 3 sigma
(0.3%). This is why we define a discovery to be 5 sigma (6 × 10−5%), so this is nothing
to worry about.
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Figure 52: Standard Model Feynman diagrams for Bs → µ+µ−.

Rare B decays There is an amazing consistency of the current flavour physics mea-
surements. However, many new physics models can have a similar pattern in their flavour
sector, the new physics model must have this otherwise it is experimentally excluded.
However, there can still be new physics in rare processes (like B+ → τ+ντ ) and CP-
asymmetries. One promising examples is the decay Bs → µ+µ−. There are two Standard
Model contributions from box and penguin diagrams as shown in Fig. 52. Both of these
are suppressed by VtbV

∗
ts giving a Standard Model branching ratio

BR
(SM)
Bs,d→µµ ≈ 10−9. (101)

This gives a simple leptonic final state with minor theoretical uncertainties but a huge
background so the mass resolution is paramount, the expected mass resolution for the
LHC experiments is given in Table 6.

Exp. ATLAS CMS LHCb
σm (MeV) 77 36 18

Table 6: Expected mass resolution for Bs → µ+µ−.

In the MSSM, however, the amplitude involves three powers of tan2 β, so that

BR
(MSSM)
Bs→µµ ∝ tan6 β, (102)

which leads to an enhancement over the SM value by up to three orders of magnitude.

9.1.5 Extra Dimensions

Many theorists believe there are more than 4 dimensions, for example string theories can
only exist in 10/11 dimensions. The hierarchy problem can be solved (redefined?) in
these models in one of two ways.

1. There is a large extra dimension with size ∼ 1mm. In this case

M2
Planck ∼ Mn+2Rn, (103)

where MPlanck is the observed Planck mass, M is the extra-dimensional Planck mass
and R the radius of the additional n dimensions. In this case the Planck mass is of
order 1 TeV so there is no hierarchy problem. However the hierarchy in the sizes of
the dimensions must be explained.
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2. Small extra dimensions in which case the extra dimension is warped. The model
has two branes, we live on one and the other is at the Plank scale. The Higgs VEV
is suppressed by a warp factor, exp(−krcπ), where rc is the compactification radius
of the extra dimension, and k a scale of the order of the Planck scale.

We can consider what happens in extra-dimensional models by studying a scalar field
in 5-dimensions. In this case the equation of motion for the scalar field is

(

∂2

∂t2
−∇2

5 +m2

)

Φ(x, y, z, x5, t) = 0, (104)

where

∇2
5 =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+

∂2

∂x2
5

(105)

is the 5-dimensional Laplace operator. If the 5-th dimension is circular we can Fourier
decompose the field,

Φ(x, y, z, x5, t) =
∑

n

Φn(x, y, z, t) exp(inx5/R). (106)

The equation of motion therefore becomes,

∑

n

(

∂2

∂t2
−∇2

4 +m2 +
n2

R2

)

Φn(x, y, z, t). (107)

This gives a Kaluza-Klein (KK) tower of states with mass splitting ∼ 1/R. There are
a number of different models.

Large Extra Dimensions Only gravity propagates in the bulk, i.e. in the extra di-
mensions. We therefore only get Kaluza-Klein excitations of the graviton. In large extra
dimensional models the mass splitting between the KK excitations is small and all the
gravitons contribute to a given process. Phenomenologically there are deviations from
the SM prediction for SM processes.

Small Extra Dimensions Again only gravity propagates in the bulk so there are only
KK excitations of the graviton. In this case the mass splitting is large leading to resonant
graviton production.

Universal Extra Dimensions Another alternative is to let all the Standard Model
fields propagate in the bulk, Universal Extra Dimensions (UED). All the particles have
Kaluza-Klein excitations. It is possible to have a Kaluza-Klein parity, like R-parity in
SUSY. The most studied model has one extra dimension and a similar particle content to
SUSY, apart from the spins. There are also some 6-dimensional models.
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Figure 53: Drell-Yan mass spectrum including unparticle exchange taken from Ref. [24].

9.1.6 Little Higgs Models

In little Higgs models the Higgs fields are Goldstone bosons associated with breaking
a global symmetry at a high scale, ΛS. The Higgs fields acquire a mass and become
pseudo-Goldstone bosons via symmetry breaking at the electroweak scale. The Higgs
fields remain light as they are protected by the approximate global symmetry. The model
has heavy partners for the photon, Z0, W± bosons and the top quark as well as extra
Higgs bosons. The non-linear σ-model used for the high energy theory is similar to the
low energy effective theory of pions which can be used to describe QCD, or in Technicolor
models. This similarity with Technicolor models is one of the reasons for the resurgence
of Technicolor models in recent years.

The original Little Higgs models had problems with electroweak constraints. The
solution is to introduce a discrete symmetry called T-parity, analogous to R-parity in
SUSY models. This solves the problems with the precision electroweak data and provides
a possible dark matter candidate. This model has a much large particle content than
the original Little Higgs model and is more SUSY-like with a partner for each Standard
Model particle.

9.1.7 Unparticles

In these models a new sector at a high energy scale with a non-trivial infrared (IR) fixed
point is introduced. This sector interacts with the Standard Model via the exchange of
particles with a large mass scale leading to an effective theory

CUΛ
dBZ

−dU
U

Mk
U

OSMOU , (108)

where: dU is the scaling dimension of the unparticle operator OU ; MU is the mass scale
for the exchanged particles; OSM is the Standard Model operator; dBZ

is the dimension
of the operator in the high energy theory; k gives the correct overall dimension of the
interaction term. This leads to new operators which give deviations from the Standard
Model predictions for various observables.
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Figure 54: Jet p⊥ spectrum for various numbers of extra dimensions in the ADD model
taken from Ref. [25].

9.2 Beyond the Standard Model Signatures

Before we go on and consider the signals of models of new physics in great detail it is
worthwhile considering what we expect to see in general. Most models of new physics
predict either the existence of more particles than the Standard Model or new operators
which give deviations from the Standard Model predictions. The signatures of the model
depend on either how these particles are produced and decay or the type of deviations
expected. In any study of BSM physics the most important thing is to understand the
Standard Model backgrounds. Often the signal is at the tail of some distribution and the
limits of our ability to calculate or simulate it.

9.2.1 Deviations from the Standard Model

There can be deviations from what is expected in the Standard Model due to: compos-
iteness; exchanging towers of Kaluza-Klein gravitons in large extra dimension models;
unparticle exchange; . . . . This tends to give changes in the shapes of spectra. Therefore
in order to see a difference you need to know the shape of the Standard Model prediction.

Example I: High p⊥ jets One possible signal of compositeness is the production of
high p⊥ jets. At one point there was a disagreement between theory and experiment at
the Tevatron. However, this was not due to new physics but too little high-x gluon in
the PDFs. Now as well as looking in the p⊥ spectra at central rapidities where we expect
to see a signal of BSM physics we also look at high rapidity as a disagreement at both
central and high rapidities is more likely to be due to the parton distribution functions.
An example of the jet p⊥ spectrum at a range of rapidities is shown in Fig. 23.

Example II: Unparticles Many models predict deviations in the Drell-Yan mass spec-
tra, for example in an unparticle model with the exchange of virtual spin-1 unparticles,
see Fig. 53. However, we need to be careful as higher order weak corrections which can
also change the shape are often neglected.
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Figure 55: CDF results for monojet production taken from Fermilab wine and cheese
seminar by K. Burkett.

Example III: PDF uncertainty or new physics In the ADD model of large extra
dimensions there are changes in the shape of the jet p⊥ and dijet mass spectra due to the
exchange of KK towers of gravitons and their destructive interference with SM, as shown
in Fig. 54.

9.2.2 Monojets

There are a range of models which predict monojet signals with the production of a
quark or gluon which is recoiling against either: a stable neutral particle; a tower of KK
gravitons in large extra dimension models; unparticles; . . . .

Example IV: Mono-jets at the Sp̄pS In Ref. [26] the UA1 collaboration reported:
5 events with E⊥,miss > 40 GeV and a narrow jet; 2 events with E⊥,miss > 40 GeV and a
neutral EM cluster. They could “not find a Standard Model explanation”, and compared
their findings with a calculation of SUSY pair-production [27]. They deduced a gluino
mass larger than around 40 GeV. In Ref. [28], the UA2 collaboration describes similar
events, also after 113 nb−1, without indicating any interpretation as strongly as UA1. In
Ref. [29] S. Ellis, R. Kleiss, and J. Stirling calculated the backgrounds to that process
more carefully, and showed agreement with the Standard Model.

There are many different Standard Model electroweak backgrounds and a careful com-
parison shows they are currently in agreement with the Standard Model, see Fig. 55.

9.2.3 New Particle Production

In general there are two cases for models in which new particles are produced.

1. The model has only a few new particles, mainly produced as s-channel resonances.
Examples include: Z-prime models; little Higgs models; small extra dimension mod-
els, . . . .

2. The model has a large number of new particles. Examples include: SUSY; UED;
little Higgs models with T-parity, . . . .
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Figure 56: Example of resonant graviton production at the LHC for
√
s = 14GeV taken

from Ref. [30].

In the first type of model the main signal is the production of s-channel resonances while
in the second class of models the signals are more varied and complex.

9.2.4 Resonance Production

The easiest and cleanest signal in hadron collisions is the production of an s-channel
resonance which decays to e+e− or µ+µ−. Resonances in this and other channels are
possible in: Little Higgs models; Z ′ models; UED; Small Extra Dimensions. Backgrounds
can be remove using sideband subtraction.

Example V: Resonant Graviton Production The best channel, e+e−, gives a reach
of order 2 TeV depending on the cross section for the LHC running at

√
s = 14GeV. Other

channels µ+µ−, gg, and W+W− are possible. If the graviton is light enough the angular
distribution of the decay products can be used to measure the spin of the resonance. An
example of the dilepton mass spectrum in this model is shown in Fig. 56.

A lot of models predict hadronic resonances. This is much more problematic due
to the mass resolution which smears out narrow resonances and the often huge QCD
backgrounds. Although background subtraction can be used the ratio of the signal to
background is often tiny, for example Fig. 57 shows the measured Z → bb̄ peak at the
Tevatron. 57
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Figure 57: Dijet mass spectrum for bottom quark jets at the Tevatron taken from Ref. [31].

9.2.5 SUSY-like models

Most of the other models are “SUSY”-like, i.e. they contain: a partner of some kind
for every Standard Model particle; often some additional particles such as extra Higgs
bosons; a lightest new particle which is stable and a dark matter candidate.

A lot of new particles should be produced in these models. While some particles may be
stable,8 the the majority of these particles decay to Standard Model particles. Therefore
we expect to see: charged leptons; missing transverse energy from stable neutral particles
or neutrinos; jets from quarks, perhaps with bottom and charm quarks; tau leptons; Higgs
boson production; photons; stable charged particles. It is worth noting that seeing an
excess of these does not necessarily tell us which model has been observed.

The archetypal model containing large numbers of new particles which may be ac-
cessible at the LHC is SUSY. Other models are UED and the Little Higgs Model with
T-parity. However, in practice UED is mainly used as a straw-man model for studies
trying to show that a potential excess is SUSY.

Two statements which are commonly made are: the LHC will discover the Higgs
boson; the LHC will discover low-energy SUSY if it exists. The first is almost certainly
true, however the second is only partially true.

In hadron collisions the strongly interacting particles are dominantly produced. There-
fore in SUSY squark and gluino production has the highest cross section, for example via
the processes shown in Fig. 58.

8i.e. the decay length of the particle is such that the majority of the particles escape from the detector
before decaying. In practice this happens for lifetimes greater than 10−7s.
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Figure 58: Example SUSY particle production processes.

Figure 59: Example strong SUSY particle decays.

Figure 60: Example weak SUSY particle decays.

These particles then decay in a number of ways. Some of them have strong decays to
other strongly interacting SUSY particles, for example via the processes shown in Fig. 59.
However the lightest strongly interaction SUSY particle, squark or gluino, can only decay
weakly, as shown in Fig. 60. The gluino can only have weak decays with virtual squarks
or via loop diagrams. This is the main production mechanism for the weakly interacting
SUSY particles.

The decays of the squarks and gluinos will produce lots of quarks and antiquarks.
The weakly interacting SUSY particles will then decay giving more quarks and leptons.
Eventually the lightest SUSY particle which is stable will be produced. This behaves like
a neutrino and gives missing transverse energy. So the signal for SUSY is large numbers
of jets and leptons with missing transverse energy. This could however be the signal for
many models containing new heavy particles.
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Figure 61: Expected limits in SUSY parameter space for searches using jets and missing
transverse energy and jets, leptons and missing transverse energy for the LHC running at√
s = 14TeV taken from Ref. [32].

Figure 62: Expected limits in SUSY parameter space for searches using jets, leptons and
missing transverse energy for the LHC running at

√
s = 14TeV taken from Ref. [32].

All SUSY studies fall into two categories: search studies which are designed to show
SUSY can be discovered by looking for a inclusive signatures and counting events; mea-
surement studies which are designed to show that some parameters of the model, usually
masses, can be measured.

There is a large reach looking for a number of high transverse momentum jets and
leptons, and missing transverse energy, see Figs. 61 and 62. It is also possible to have the
production of the Z0 and Higgs bosons and top quarks. In many cases the tau lepton
may be produced more often than electrons or muons.

Once we observe a signal of SUSY there are various approaches to determine the
properties of the model. The simplest of these is the effective mass

Meff =

n
∑

i=1

pjet⊥i+ 6ET , (109)
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Figure 63: Correlation of the Meff variable with the SUSY mass scale in various SUSY
models taken from Ref. [33].

which is strongly correlated with the mass of strongly interacting SUSY particles and can
be used to measure the squark/gluino mass to about 15%, see Fig. 63.

The analyzes we have just looked at are those that are used to claim the LHC will
discover SUSY but this is not really what they tell us. They don’t really discover SUSY.
What they see is the production of massive strongly interacting particles, this does not
have to be SUSY, it could easily be something else. In order to claim that a signal is SUSY
we would need to know more about it. SUSY analyzes tend to proceed by looking for
characteristic decay chains and using these to measure the masses of the SUSY particles
and determine more properties of the model.

Given most of the searches are essentially counting experiments it is important to
understand the Standard Model backgrounds which can be challenging, see Fig. 64.

9.2.6 Model Independent Searches

A popular approach in recent years has been to use experimental data to place constraints
on general signatures of new physics parametrised by additional operators suppressed by
a scale Λ,

Leff = LSM +
∑

i

1

Λdi−4
ciOi. (110)
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Figure 64: Backgrounds in inclusive SUSY searches.

where Oi are a set of dimension di operators with Wilson coefficients ci. The Wilson
coeffcients ci = ci(µR) run as functions of the renormalisation group scale µR.

Effective field theories: Even if we restrict ourselves to dimension-6 operators
in our expansion the total number of Wilson coefficients is extremely large. Since we
are only interested in operators that contribute to on-shell observables we can reduce
to a set of independent operators by systematically using the equations of motion for
each field and integration-by-parts identities. Nevertheless the number of independent
dimension-6 operators for SU(3)×SU(2)L×U(1)Y with 3 fermion generations is 3045 [34].
Constraining the Wilson coefficients will be a major challenge even with the large amount
of new data coming from the LHC. In addition the expansion in the scale Λ must be
carefully compared to the energy scales present in the observable. The EFT expansion
will only be valid if Λ ≫ Q2 so that it may not be applicable to events with large transverse
energy - which would hope to be of greatest senstivity to new phenomena.

Simplified Models: While not completely model independent, identifying a limited
set of additional operators and interactions that can parameterise potential new physics in
particular observables is a useful technique. This intermediate point between a complete
EFT and a specfic model reduces the number of free parameters to a manageable level
and at the same time retaining sensitivity to large classes of theories. Some further details
and additional references can be found in [35].

A Kinematics and Cross Sections

A.1 Kinematics

The basic language of all phenomenology is that of relativistic kinematics, in particular
four-vectors. In hadron collisions because we do not know what fraction of the beam
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momenta is transferred to the partonic system it is preferable to use quantities, such
as the transverse momentum, p⊥, with respect to the beam direction which are invariant
under longitudinal boosts along the beam direction to describe the kinematics. In addition
to the transverse momentum we use the rapidity, y, and massless pseudorapidity, η,

y =
1

2
ln

E + pz
E − pz

massless−→ η = − ln tan
θ

2
, (111)

because rapidity differences are invariant under longitudinal boosts. Particles with small
rapidities are produced at an angle close to 900 degrees to the beam direction while
particles with large positive (negative) rapidities are travelling in the forward (backward)
beam direction. The pseudorapidity is more often used experimentally as it is related to
the measured scattering angle.

The four-momentum can by written as

pµ = (E, px, py, pz) = (m⊥ cosh y, p⊥ cosφ, p⊥ sinφ,m⊥ sinh y), (112)

where m2
⊥ = p2⊥ + m2. The one-particle phase-space element can also be rewritten in

terms of y and p⊥ as

d4p

(2π)4
δ(p2 −m2)θ(E) =

d3p

(2π)22E
=

dyd2p⊥
2(2π)3

. (113)

A.2 Cross Sections

The starting point of all collider physics calculations is the calculation of the scattering
cross section. The cross section for a 2 → n scattering processes, a+ b → 1...n, is

dσ =
(2π)4

4
√

(pa · pb)2 −m2
am

2
b

dΦn(pa + pb; p1 . . . pn)|M|2, (114)

where pa,b and pi=1,...,n are the momenta of the incoming and outgoing particles, respec-
tively. The matrix element squared |M|2 is summed/averaged over the spins and colours
of the outgoing/incoming particles. The n-particle phase-space element is

dΦn(pa + pb; p1 . . . pn) = δ4

(

pa + pb −
n
∑

i=1

pi

)

n
∏

i=1

d3pi
(2π)32Ei

, (115)

where Ei is the energy of the ith particle. It is conventional to define s = (pa + pb)
2. For

massless incoming particles 4
√

(pa · pb)2 −m2
am

2
b = 2s.

Although modern theoretical calculations involve ever higher multiplicity final states
in these lectures we will primarily deal with 2 → 2 scattering processes in which case

dΦ2(pa + pb; p1, p2) = δ4 (pa + pb − p1 − p2)
d3p1

(2π)32E1

d3p2
(2π)32E2

, (116)

= δ (Ea + Eb − E1 −E2)
1

(2π)64E1E2

|p1|2d|p1|d cos θdφ,

=
1

8π(2π)4
|p1|√
s
d cos θ,
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where |p1| is the magnitude of the three-momenta of either of the outgoing particles and
θ and φ are the polar and azimuthal scattering angles, respectively. The cross section

dσ =
1

16πs

|p1|√
s
d cos θ|M|2. (117)

In is conventional to describe the scattering process in terms of the Mandelstam variables

s = (pa + pb)
2, t = (pa − p1)

2, u = (pa − p2)
2. (118)

There are only two independent Mandelstam variables

s+ t + u = m2
1 +m2

2 +m2
a +m2

b
massless−→ 0. (119)

In terms of these variables

dσ =
1

16πs2
dt|M|2. (120)

A.3 Cross Sections in Hadron Collisions

In hadron collisions there is an additional complication as the partons inside the hadrons
interact. The hadron–hadron cross section is

dσAB =
∑

ab

∫ 1

0

dx1dx2fa/A(x1, µ
2
F )fb/B(x2, µ

2
F )σ̂ab(ŝ, µ

2
F , µ

2
R), (121)

where x1,2 are momentum fractions of the interacting partons with respect to the incoming
hadrons, ŝ = x1x2s, σ̂ab(ŝ, µ

2
F , µ

2
R) is the parton-level cross section for the partons a and b

to produce the relevant final state, fa/A(x, µ
2
F ) is the parton distribution function (PDF)

giving the probability of finding the parton a in the hadronA, and similarly for fb/B(x, µ
2
F ).

The factorization and renormalisation scales are µF and µR, respectively.
In hadron collisions we usually denote the variables for partonic process with ˆ, e.g.

ŝ, t̂ and û for the Mandelstam variables.

A.3.1 Resonance production (2 → 1 processes)

The simplest example of a hadronic cross section is the production of an s-channel res-
onance, for example the Z0 or Higgs bosons. We assume that the incoming partons are
massless so that the 4-momenta of the incoming partons are:

pa,b = x1,2(E, 0, 0, ±E), (122)

where E is beam energy in the hadron–hadron centre-of-mass system of collider such that
s = 4E2. The Breit-Wigner cross section, e.g. for Z production, is

σ̂qq̄→Z0→µ+µ− =
1

N2
C

12πŝ

M2
Z

Γqq̄Γµ+µ−

(ŝ−M2
Z)

2 +M2
ZΓ

2
Z

. (123)

In the limit that the width is a lot less than the mass

1

(ŝ−M2
Z)

2 +M2
ZΓ

2
Z

≈ π

MZΓZ
δ(ŝ−M2

Z), (124)
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the narrow width limit. In this case the partonic centre-of-mass system is constrained to
have ŝ = M2

Z . The rapidity ŷ of the partonic system and ŝ are related to the momentum
fractions x1,2 by

ŝ = x1x2, s and ŷ =
1

2
ln

x1 + x2 + x1 − x2

x1 + x2 − x1 + x2
=

1

2
ln

x1

x2
. (125)

Inverting these relationships we obtain

x1,2 =

√

ŝ

s
e±ŷ and ŷ =

1

2
ln

x2
1s

ŝ
≤ ln

2E√
ŝ
= ŷmax. (126)

This allows us to change the variables in the integration using

sdx1dx2 = dŝdŷ, (127)

giving the differential cross section

dσAB→Z0→µ+µ−

dŷ
=
∑

a,b=qq̄

x1fq/A(x1, µ
2
F )x2fq̄/B(x2, µ

2
F )

12π2

N2
CM

3
Z

Γqq̄Bµ+µ− . (128)

A.3.2 2 → 2 Scattering Processes

For most 2 → 2 scattering processes in hadron–hadron collisions it is easier to work in
terms of the rapidities y3, y4 and transverse momentum, p⊥, of the particles. We introduce
average (centre-of-mass) rapidity and rapidity difference,

ȳ = (y3 + y4)/2 and y∗ = (y3 − y4)/2, (129)

which are related to the Bjorken x values by

x1,2 =
p⊥√
2

(

e±y3 + e±y4
)

=
p⊥
2
√
s
e±ȳ cosh y∗. (130)

Therefore

ŝ = M2
12 = 4p2⊥ cosh y∗ and t̂, û = − ŝ

2
(1∓ tanh y∗) .

The partonic cross section, assuming all the particles are massless, is

σ̂ab→12 =
1

2ŝ

∫

d3p1
(2π)32E1

d3p2
(2π)32E2

|Mab→12|2(2π)4δ4(pa + pb − p1 − p2), (131)

=
1

2ŝ2

∫

d2p⊥
(2π)2

|Mab→12|2 .

Therefore once we include the PDFs, sum over a, b, and integrate over x1,2 the hadronic
cross section is

σAB→12 =
∑

ab

∫

dy1dy2d
2p⊥

16π2s2
fa(x1, µF )fb(x2, µF )

x1x2

|Mab→12|2 ,

including the factor 1/(1 + δ12) for identical final-state particles.
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B Flavour Physics

While most of the interactions in the Standard Model preserve the flavour of quarks and
leptons the interaction of fermions with the W boson can change the flavour of the quarks
and violate CP-conservation.

In order to understand the interactions of the quarks with the W boson we first need
to consider the generation of quark masses in the Standard Model. The masses of the
quarks come from the Yukawa interaction with the Higgs field

L = −Y d
ijQ

I
Liφd

I
Rj − Y u

ijQ
I
Liǫφ

∗uI
Rj + h.c., (132)

where Y u,d are complex 3 × 3 matrices, φ is the Higgs field, i, j are generation indices,
Qi

L are the left-handed quark doublets and, dIR and uI
R are the right down- and up-type

quark singlets. When the Higgs field acquires a vacuum expectation value 〈φ〉 = (0, v√
2
)

we get the mass terms for the quarks.
The physical states come from diagonalizing Y u,d using 4 unitary 3× 3 matrices, V u,d

L,R

Mf
diag = V f

L Y
fV f†

R

v√
2
. (133)

The interaction of the W± and the quarks is given by

LW = − g√
2

[

d̄ILγ
µW−

µ uI
L + ūI

Lγ
µW+

µ dIL
]

. (134)

The interaction with the mass eigenstates, fM
L = V f

L f
I
L, is

LW = − g√
2

[

d̄ML γµW−
µ V †

CKMu
M
L + ūM

L γµW+
µ VCKMd

M
L

]

, (135)

where the Cabibbo-Kobayashi-Maskawa (CKM) matrix

VCKM ≡ V u
LCV d†

L =





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



 , (136)

is a 3× 3 unitary matrix.
The CKM matrix can be parameterized in terms of three mixing angles, (θ12, θ13, θ23)

and one phase, δ,

VCKM =





c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13



 , (137)

where sij = sin θij and cij = cos θij . As experimentally s13 ≪ s23 ≪ s12 ≪ 1 it is
convenient to use the Wolfenstein parameterization: s12 = λ; s23 = Aλ2; and s13e

iδ =
Aλ3 (ρ+ iη).
In which

VCKM =





1− 1
2
λ2 λ Aλ3 (ρ− iη)

−λ 1− 1
2
λ2 Aλ2

Aλ3 (1− ρ− iη) −Aλ2 1



 +O(λ4). (138)
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Figure 65: Unitary triangle.

If we assume that the neutrinos are massless there is no mixing for leptons. We now
know that the neutrinos have small masses so there is mixing in the lepton sector. The
analogy of the CKM matrix is the Maki-Nakagawa-Sakata (MNS) matrix UMNS.

A number of unitarity triangles can be constructed using the properties of the CKM
matrix. The most useful one is

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0, (139)

which can be represented as a triangle as shown in Fig. 65. The area of all the unitary
triangles is 1

2
J , where J is the Jarlskog invariant, a convention-independent measure of

CP-violation,
J = Im{VudVcsV

∗
usV

∗
cd}. (140)

There are a large number of measurements which constrain the parameters in the
unitarity triangle. They all measure different combinations of the parameters and over-
constrain the location of the vertex of the unitarity triangle.

The magnitudes of the CKM elements control the lengths of the sides:

1. |Vud| is accurately measured in nuclear beta decay;

2. |Vcd| can be measured using either semi-leptonic charm meson decays or using neu-
trino DIS cross sections;

3. |Vub| is measured using inclusive and exclusive semi-leptonic B meson decays to light
mesons B → Xuℓν̄ or B → πℓν̄;

4. |Vcb| is measured using inclusive and exclusive semi-leptonic B meson decays to
charm mesons B → XCℓν̄ or B → Dℓν̄.

The CKM matrix elements which give the length of the remaining side can only be
measured in loop-mediated processes. The most important of these, FCNCs, have already
been discussed in the context of BSM physics in Section 9.1.4. These also gives rise to
B − B̄ mixing and oscillations, via the Feynman diagrams shown in Fig. 66.
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s oscillations.

The oscillation probability is

Poscillation =
e−Γt

2

[

cosh

(

∆Γt

2

)

+ cos (∆mt)

]

, (141)

where Γ is the average width of the mesons, ∆Γ is the width difference between the mesons
and ∆m is the mass difference of the mesons. For both Bd and Bs mesons the ∆m term
dominates. From the box diagram

∆mq = −
G2

Fm
2
W ηBmBq

BBq
f 2
Bq

6π2
S0

(

m2
t

m2
W

)

(V ∗
tqVtb)

2. (142)

The decay constant fBq
can be measured from leptonic decays Bq → ℓ+νℓ but BBq

comes
from lattice QCD results. The QCD correction ηB ∼ O(1).

The B-factories have studied B0 − B̄0 mixing in great detail giving

∆md = 0.507± 0.005ps−1. (143)

It is important to measure both Bd− B̄d and Bs− B̄s mixing as some hadronic uncer-
tainties cancel in the ratio. The rate is ∝ |VtsV

∗
tb|2 due to the GIM mechanism. However,

the high oscillation frequency makes Bs − B̄s mixing tricky to observe. The Tevatron
observation relied on tagging the flavour of the B meson at production by observing an
associated kaon from the fragmentation. The final result is

∆ms = 17.77 ± 0.10(stat) ± 0.07(sys), (144)

|Vtd||Vts| = 0.2060 ± 0.0007(exp) ± 0.008(theo).

The only source of CP-violation in the Standard Model is the complex phase in the
CKM matrix. In order to see any effect we need at least two diagrams for the process
with different CP-phases. There are three possibilities: CP-violation in the decay (direct);
CP-violating in the mixing (indirect); CP-violation in the interference between decay and
mixing. Example amplitudes are shown in Fig. 67.

The simplest type of CP-violation is direct CP-violation. This is the only possible type
of CP-violation for charged mesons and is usually observed by measuring an asymmetry

Af± ≡ Γ(M− → f−)− Γ(M+ → f+)

Γ(M− → f−) + Γ(M+ → f+)

CP conserved−→ 0. (145)

If CP-symmetry holds, then |KL〉 = 1√
2
(|K0〉 + |K̄0〉) would be a CP-eigenstate with

|KL〉 = |K̄L〉. If we take |M〉 = |KL〉 and |f〉 = |π−e+νe〉 the corresponding CP-
asymmetry is ACP = (0.327 ± 0.012)%, which means that KL is not a CP-eigenstate
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Figure 67: Examples of tree and penguin mediated processes, taken from Ref. [8].

and there is CP-violation. There are many possible modes which measure different com-
inations of the angles in the unitarity triangle. The observed flavour and CP-violation is
consistent with the Standard Model, i.e. the description by the CKM matrix, see Fig. 68.

There is one final area of flavour physics which is important. The matter in the
universe consists of particles and not antiparticles. There are three Sakharov conditions
required for this to happen:

1. baryon number violation;

2. C-symmetry and CP-symmetry violation;

3. interactions out of thermal equilibrium.

There are non-perturbative effects in the SM which violate baryon number. However, the
amount of CP-violation in the quark sector is not enough to give the observed matter-
antimatter asymmetry, there might be more in the lepton sector, otherwise we need a new
physics source of CP-violation.

C Color algebra

The color factors CF and CA correspond to the factors one gets for emitting a gluon off
a quark or gluon line respectively.

The color factor for the splitting of a gluon into a quark-antiquark pair is given by TR.
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Figure 68: Experimental measurement of the unitarity triangle taken from Ref. [8].

One can compute color factors using a set of pictorial rules (see [36] for more details.)
All these rules follow from the properties of the SU(3) color group.

T a
ijT

a
jk =

1

2

(

δilδjk −
1

Nc
δijδkl

)

The three-gluon vertex can be rewritten as:

ifabc = 2
(

Tr
[

T aT bT c
]

− Tr
[

T aT cT b
])

.
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Here is an example of a calculation of a color factor with the pictorial method.

We have used the fact that a closed fermion loop with no gluon attachments amounts to
a factor of Nc, while a closed gluon loop would give a factor of N2

c − 1.

A gluon loop on a gluon line can be written as the same line without the loop but with
a factor of Nc.
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Dark Matter: From production to detection

David G. Cerdeño1

IPPP, Durham University

These notes are a write-up of lectures given at the HEP Summer School, which
took place at the University of Lancaster in September, 2015.

1 Motivation for Dark Matter

The existence of a vast amount of dark matter (DM) in the Universe is supported by many astro-
physical and cosmological observations. The latest measurements indicate that approximately a
27% of the Universe energy density is in form of a new type of non-baryonic cold DM. Given that
the Standard Model (SM) of particle physics does not contain any viable candidate to account for
it, DM can be regarded as one of the clearest hints of new physics.

1.1 Evidence for Dark Matter

Astrophysical and Cosmological observations have provided substantial evidence that point towards
the existence of vast amounts of a new type of matter, that does not emit or absorb light. All
astrophysical evidence for DM is solely based on gravitational effects (either trough the observation
of dynamical effects, deflection of light by gravitational lensing or measurements of the gravitational
potential of galaxy clusters), which cannot be accounted for by just the observed luminous matter.
The simplest way to solve these problems is the inclusion of more matter (which does not emit
light - and is therefore dark in the astronomical sense2). Modifications in the Newtonian equation
relating force and accelerations have also been suggested to address the problem at galactic scales,
but this hypothesis is insufficient to account for effects at other scales (e.g., cluster of galaxies) or
reproduce the anisotropies in the CMB.

No known particle can play the role of the DM (we will later argue that neutrinos contribute to
a small part of the DM). Thus, this is one of the clearest hints for Physics Beyond the Standard
Model and provides a window to new particle physics models. In the following I summarise some
of the main pieces of evidence for DM at different scales.

I recommend completing this section with the first chapters of Ref. [1] and the recent article [2].

1 Email: davidg.cerdeno@gmail.com
2Since dark matter does not absorb light, a more adequate name would have been transparent matter.

217



Figure 1: Left) Vera Rubin. Right) Rotation curve of a spiral galaxy, where the contribution from
the luminous disc and dark matter halo is shown by means of solid lines.

1.1.1 Galactic scale

Rotation curves of spiral galaxies Rotation curves of spiral galaxies are probably the best-
known examples of how the dynamical properties of astrophysical objects are affected by DM.
Applying Gauss Law to a spiral galaxy (one can safely ignore the contribution from the spiral arms
and assume a spherical distribution of matter in the bulge) leads to a simple relation between the
rotation velocity of objects which are gravitationally bound to the galaxy and their distance to the
galactic centre:

v =

√
GM(r)

r
, (1)

where M(r) is the mass contained within the radius r. In the outskirts of the galaxy, where we
expect that M does not increase any more, we would therefore expect a decay vrot ∝ r−1/2.

Vera Rubin’s observations of rotation curves of spiral galaxies [3, 4] showed a very slow decrease
with the galactic radius. The careful work of Bosma [5], van Albada and Sancisi [6] showed that this
flatness could not be accounted for by simply modifying the relative weight of the diverse galactic
components (bulge, disc, gas), a new component was needed with a different spatial distribution
(see Fig. 1).

Notice that the flatness of rotation curves can be obtained if a new mass component is introduced,
whose mass distribution satisfies M(r) ∝ r in eq.(1). This is precisely the relation that one expects
for a self-gravitational gas of non-interacting particles. This halo of DM can extend up to ten times
the size of the galactic disc and contains approximately an 80% of the total mass of the galaxy.

Since then, flat rotation curves have been found in spiral galaxies, further strengthening the DM
hypothesis. Of course, our own galaxy, the Milky Way is no exception. N-body simulations have
proved to be very important tools in determining the properties of DM haloes. These can be
characterised in terms of their density profile ρ(r) and the velocity distribution function f(v).
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Figure 2: Left) Coma cluster and F. Zwicky, who carried out measurements of the peculiar velocities
of this object. Right) Modern techniques [7], based on gravitational lensing, allow for a much more
precise determination of the total mass of this object.

Observations of the local dynamics provide a measurement of the DM density at our position
in the Galaxy. Up to substantial uncertainties, the local DM density can vary in a range ρ0 =
0.2 − 1 GeV cm−3. It is customary to describe the DM halo in terms of a Spherical Isothermal
Halo, in which the velocity distribution follows a Maxwell-Boltzmann law, but deviations from this
are also expected. Finally, due to numerical limitations, current N-body simulations cannot predict
the DM distribution at the centre of the galaxy. Whereas some results suggest the existence of a
cusp of DM in the galactic centre, other simulations seem to favour a core. Finally, the effect of
baryons is not easy to simulate, although substantial improvements have been recently made.

1.1.2 Galaxy Clusters

Peculiar motion of clusters. Fritz Zwicky studied the peculiar motions of galaxies in the Coma
cluster [8, 9]. Assuming that the galaxy cluster is an isolated system, the virial theorem can be
used to relate the average velocity of objects with the gravitational potential (or the total mass of
the system).

As in the case of galaxies, this determination of the mass is insensitive to whether objects emit
any light or not. The results can then be contrasted with other determinations that are based on
the luminosity. This results in an extremely large mass-to-light ratio, indicative of the existence of
large amounts of missing mass, which can be attributed to a DM component.

Modern determinations through weak lensing techniques provide a better gravitational determina-
tion of the cluster masses [10, 7] (see Fig. 2). I recommend reading through Ref.[9] for a derivation
of the virial theorem in the context of Galaxy clusters.
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Figure 3: Left) Deep Chandra image of the Bullet cluster. Green lines represent mass contours
from weak lensing. Right) Dark filament in the system Abell 222/223, reconstructed using weak
lensing.

Dynamical systems. The Bullet Cluster (1E 0657-558) is a paradigmatic example of the effect
of dark matter in dynamical systems. It consists of two galaxy clusters which underwent a col-
lision. The visible components of the cluster, observed by the Chandra X-ray satellite, display a
characteristic shock wave (which gives name to the whole system). On the other hand, weak-lensing
analyses, which make use of data from the Hubble Space Telescope, have revealed that most of the
mass of the system is displaced from the visible components. The accepted interpretation is that
the dark matter components of the clusters have crossed without interacting significantly (see e.g.,
Ref. [11, 12]).

The Bullet Cluster is considered one of the best arguments against MOND theories (since the
gravitational effects occur where there is no visible matter). It also sets an upper bound on the
self-interaction strength of dark matter particles.

DM filaments. Observations of the distribution of luminous matter at large scales have shown
that it follows a filamentary structure. Numerical simulations of structure formation with cold DM
have been able to reproduce this feature. To date, it is well understood that DM plays a fundamental
role in creating that filamentary network, gravitationally trapping the luminous matter. Recently,
the comparison of the distribution of luminous matter in the Abell 222/223 supercluster with weak-
lensing data has shown the existence of a dark filament joining the two clusters of the system. That
filament, having no visible counterpart, is believed to be made of DM.

1.1.3 Cosmological scale

Finally, DM has also left its footprint in the anisotropies of the Cosmic Microwave Background
(CMB). The analysis of the CMB constitutes a primary tool to determine the cosmological param-
eters of the Universe. The data obtained by dedicated satellites in the past decades has confirmed
that we live in a flat Universe (COBE), dominated by dark matter and dark energy (WMAP),
whose cosmological abundances have been determined with great precision (Planck).
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Figure 4: Left) Contribution to the energy density for each of the components of the Universe.
Right) Planck temperature map.

The abundance of DM is normally expressed in terms of the cosmological density parameter, defined
as ΩDMh

2 = ρDM/ρc where ρc is the critical density necessary to recover a flat Universe and
h = 0.7 is the normalised Hubble parameter. The most recent measurements by the Planck satellite,
combined with data obtained from Supernovae (that trace the Universe expansion) yield

ΩCDMh
2 = 0.1196± 0.0031 . (2)

Given that Ω ≈ 1, this means that dark matter is responsible for approximately a 26% of the
Universe energy density nowadays. Even more surprising is the fact that another exotic component
is needed, dark energy, which makes up approximately the 69% of the total energy density (see
Fig. 4).

1.2 Dark Matter properties

1.2.1 Neutral

It is generally argued that DM particles must be electrically neutral. Otherwise they would scatter
light and thus not be dark. Similarly, constrains on charged DM particles can be extracted from
unsuccessful searches for exotic atoms. Constraints on heavy millicharged particles are inferred
from cosmological and astrophysical observations as well as direct laboratory tests [13, 14, 15]. Mil-
licharged DM particles scatter off electrons and protons at the recombination epoch via Rutherford-
like interactions. If millicharged particles couple tightly to the baryonphoton plasma during the
recombination epoch, they behave like baryons thus affecting the CMB power spectrum in several
ways [13, 14]. For particles much heavier than the proton, this results in an upper bound of its
charge ε [14]

ε ≤ 2.24× 10−4 (M/1 TeV)1/2 . (3)

Similarly, direct detection places upper bounds on the charge of the DM particle [16]

ε ≤ 7.6× 10−4 (M/1 TeV)1/2 . (4)
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1.2.2 Nonrelativistic

Numerical simulations of structure formation in the Early Universe have become a very useful tool
to understand some of the properties of dark matter. In particular, it was soon found that dark
matter has to be non-relativistic (cold) at the epoch of structure formation. Relativistic (hot) dark
matter has a larger free-streaming length (the average distance traveled by a dark matter particle
before it falls into a potential well). This leads to inconsistencies with observations.

However, at the Galactic scale, cold dark matter simulations lead to the occurrence of too much
substructure in dark matter haloes. Apparently this could lead to a large number of subhaloes
(observable through the luminous matter that falls into their potential wells). It was argued that if
dark matter was warm (having a mass of approximately 2−3 keV) this problem would be alleviated.

Modern simulations, where the effect of baryons is included, are fundamental in order to fully
understand structure formation in our Galaxy and determine whether dark matter is cold or warm.

1.2.3 NonBaryonic

The results of the CMB, together with the predictions from Big Bang nucleosynthesis, suggest
that only 4 − 5% of the total energy budget of the universe is made out of ordinary (baryonic)
matter. Given the mismatch of this with the total matter content, we must conclude that DM is
non-baryonic.

Neutrinos. Neutrinos deserve special mention in this section, being the only viable non-baryonic
DM candidate within the SM. Neutrinos are very abundant particles in the Universe and they are
known to have a (very small) mass. Given that they also interact very feebly with ordinary matter
(only through the electroweak force) they are in fact a component of the DM. There are, however
various arguments that show that they contribute in fact to a very small part.

First, neutrinos are too light. Through the study of the decoupling of neutrinos in the early universe
we can compute their thermal relic abundance. Since neutrinos are relativistic particles at the time
of decoupling, this is in fact a very easy computation (we will come back to this in Section 2.2.1),
and yields

Ωνh
2 ≈

∑
imi

91 eV
. (5)

Using current upper bounds on the neutrino mass, we obtain Ωνh
2 < 0.003, a small fraction of the

total DM abundance.

Second, neutrinos are relativistic (hot) at the epoch of structure formation. As mentioned above, hot
DM leads to a different hierarchy of structure formation at large scales, with large objects forming
first and small ones occurring only after fragmentation. This is inconsistent with observations.
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1.2.4 Long-lived

Possibly the most obvious observation is that DM is a long-lived (if not stable) particle. The
footprint of DM can be observed in the CMB anisotropies, its presence is essential for structure
formation and we can feel its gravitational effects in clusters of galaxies and galaxies nowadays.

Stable DM candidates are common in models in which a new discrete symmetry is imposed by
ensuring that the DM particle is the lightest with an exotic charge (and therefore its decay is
forbidden). This is the case, e.g., in Supersymmetry (when R-parity is imposed), Kaluza-Klein
scenarios (K-parity) or little Higgs models.

However, stability is not required by observation. DM particles can decay, as long as their lifetime
is longer than the age of the universe. Long-lived DM particles feature very small couplings.
Characteristic examples are gravitinos (whose decay channels are gravitationally suppressed) or
axinos (which decays through the axion coupling).

2 Freeze Out of Massive Species

In this section we will address the computation of the relic abundance of dark matter particles,
making special emphasis in the case of thermal production in the Early Universe.

2.1 Cosmological Preliminaries

This section does not intend to be a comprehensive review on Cosmology, but only an introduction
to some of the elements that we will need for the calculation of Dark Matter freeze-out.

We can describe our isotropic and homogeneous Universe in terms of the Friedman- Lemâıtre-
Robertson-Walker (FLRW) metric, which is exact solution of Einstein’s field equations of general
relativity

ds2 = dt2 − a2(t)

(
dr2

1− kr2
+ r2(dθ2 + sin θdφ2)

)
= gµνdx

µdxν . (6)

The constant k = {−1, 0,+1} corresponds to the spatial curvature, with k = 0 corresponding to a
flat Universe (the choice we will be making in these notes). Remember that the affine connection,
defined as

Γµνλ =
1

2
gµσ(gσν, λ+ gσλ,ν − gνλ,σ) , (7)

is greatly simplified, since most of the derivatives vanish.

In the following we are going to work with a radiation-dominated Universe. Notice that matter-
radiation equality only occurs very late (when the Universe is approximately 60 kyr) and dark
matter freeze-out occurs before BBN. The Hubble parameter for a radiation-dominated Universe
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reads

H = 1.66 g
1/2
∗

T 2

MP
, (8)

where MP = 1.22× 1019 GeV.

It is customary to define the dimensionless parameter x = m/T (where m is a mass parameter that
we will later associate to the DM mass) and extract the explicit x dependence from the Hubble
parameter to define H(m) as follows

H(m) = 1.66 g
1/2
∗

m2

MP
= Hx2 . (9)

In this section we will try to compute the time evolution of the number density of dark matter
particles, in order to be able to compute their relic abundance today and what this implies in the
interaction strength of dark matter particles. The phase space distribution function f describes
the occupancy number in phase space for a given particle in kinetic equilibrium, and distinguishes
between fermions and bosons.

f =
1

e(E−µ)/T ± 1
, (10)

where the (−) sign corresponds to bosons and the (+) sign to fermions. E is the energy and µ the
chemical potential. For species in chemical equilibrium, the chemical potential is conserved in the
interactions. Thus, for processes such as i+ j ↔ c+ d we have µi +µj = µc +µd. Notice then that
all chemical potentials can be expressed in terms of the chemical potentials of conserved quantities,
such as the baryon chemical potential µB. The number of independent chemical potentials corre-
sponds to conserved particle numbers. This implies, for example, that given a particle with µi, the
corresponding antiparticle would have the opposite chemical potential −µi. For the same reason,
since the number of photons is not conserved in interactions, µγ = 0

Using the expression of the phase space distribution function (10), and integrating in phase space, we
can compute a series of observables in the Universe. In particular, the number density of particles,
n, the energy density, ρ, and pressure, p, for a dilute and weakly-interacting gas of particles with
g internal degrees of freedom read

n =
g

(2π)3

∫
f(p) d3p, (11)

ρ =
g

(2π)3

∫
E(p) f(p) d3p, (12)

p =
g

(2π)3

∫
|p|2

3E(p)
f(p) d3p. (13)

It is customary (and very convenient) to define densities normalised by the time dependent volume
a(t)−3. The reason for this is that in the absence of number changing processes, the density
remains constant with time evolution (or redshift). Notice that since the evolution of the Universe is
isoentropic, the entropy density s = S/a3 has precisely that dependence. Applying this prescription
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to the number density of particles, we define the yield as a fraction of the number density and the
entropy density as

Y =
n

s
. (14)

Notice that, in the absence of number-changing processes, the yield remains constant. The evolution
of the entropy density as a function of the temperature is given by 3

s =
2π2

45
g∗sT

3 , (15)

where the effective number of relativistic degrees of freedom for entropy is

g∗s =
∑

bosons

g

(
Ti
T

)3

+
7

8

∑
fermions

g

(
Ti
T

)3

. (16)

Remember also that we can express the energy density as

ρ =
π2

30
g∗T

4 , (17)

in terms of the relativistic number of degrees of freedom

g∗ =
∑

bosons

g

(
Ti
T

)4

+
7

8

∑
fermions

g

(
Ti
T

)4

. (18)

In these two equations, T is the temperature of the plasma (in equilibrium) and Ti is the effective
temperature of each species.

Solving the integral in eq. (11) explicitly for relativistic and non-relativistic particles, and expressing
the results in terms of the Yield results in the following expressions.

• relativistic species

n =
geff
π2

ζ(3)T 3 , (19)

where geff = g for bosons and geff = 3
4g for fermions4. Then, using eq. (14), the Yield at

equilibrium reads

Yeq =
45

2π4
ζ(3)

geff
g∗s
≈ 0.278

geff
g∗s

. (20)

• non-relativistic species

n = geff

(
mT

2π

)3/2

e−m/T . (21)

Then the Yield at equilibrium reads

Yeq =
45

2π4

(π
8

)1/2 geff
g∗s

(m
T

)3/2
e−m/T . (22)

3To arrive at this equation, one can calculate s = (p + ρ)/T for fermions and bosons, using the corresponding
expression for the phase space distribution function.

4We are using here the approximation E ≈ |~p| in the relativistic limit, and the integrals
∫∞
0
p2/(ep−1)dp = 2ζ(3),

and
∫∞
0
p2/(ep + 1)dp = 3ζ(3)/2, in terms or Riemann’s Zeta function. Remember also that ζ(3) ≈ 1.202.
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Exercise: It is easy to estimate the value of the Yield that we need in order to
reproduce the correct DM relic abundance, Ωh2 ≈ 0.1, since

Ωh2 =
ρχ
ρc
h2 =

mχnχh
2

ρc
=
mχY∞s0h

2

ρc
, (23)

where Y∞ corresponds to the DM Yield today and s0 is todays entropy density. We
can assume that the Yield did not change since DM freeze-out and therefore

Ωh2 =
mχYfs0h

2

ρc
. (24)

Using the measured value s0 = 2970 cm−3, and the value of the critical density
ρc = 1.054×10−5 h2 GeV cm−3, as well as Plancks result on the DM relic abundance,
Ωh2 ≈ 0.1, we arrive at

Yf ≈ 3.55× 10−10

(
1 GeV

mχ

)
. (25)

In Figure 5 represent the yield as a function of x for non-relativistic particles, us-
ing expression (22). As we can observe, the above range of viable values for Yf
correspond to xf ≈ 20.
Notice that this is a crude approximation and we will soon be making a more careful
quantitative treatment.

2.2 Time evolution of the number density

The evolution of the number density operator can be computed by applying the covariant form of
Liuvilles operator to the corresponding phase space distribution function. Formally speaking, we
have

L̂[f ] = C[f ], (26)

where L̂ is the Liouville operator, defined as

L̂ = pµ
∂

∂xµ
− Γµσρp

σpρ
∂

∂pµ
, (27)

and C[f ] is the collisional operator, which takes into account processes which change the number of
particles (e.g., annihilations or decays). In the expression above, gravity enters through the affine
connection, Γµσρ.

One can show that in the case of a FRW Universe, for which f(xµ, pµ) = f(t, E), we have

L̂ = E
∂

∂t
− Γ0

σρp
σpρ

∂

∂E

= E
∂

∂t
−H|p|2 ∂

∂E
. (28)
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Figure 5: Equilibrium yield as a function of the dimensionless variable, x, for non-relativistic
particles. The green band represents the freeze-out value, Yf , for which the correct thermal relic
abundance is achieved (for masses of order 1-1000 GeV.

Integrating over the phase space we can relate this to the time evolution of the number density

g

(2π)3

∫
L̂[f ]

E
d3p =

g

(2π)3

∫
C[f ]

E
d3p , (29)

Exercise: We can show that

g

(2π)3

∫
L̂[f ]

E
d3p =

dn

dt
+ 3Hn . (30)

Regarding the collisional operator, it encodes the microphysical description in terms of Particle
Physics, and incorporates all number-changing processes that create or deplete particles in the
thermal bath. For simplicity, let us concentrate in annihilation processes, where SM particles
(A, B) can annihilate to form a pair of DM particles (labelled 1, 2), or vice-versa (A, B ↔ 1, 2).
The phase space corresponding to each particle is defined as

dΠi =
gi

(2π)3

d3pi

2Ei
, (31)
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from where

g

(2π)3

∫
C[f ]

E
d3p = −

∫
dΠAdΠBdΠ1dΠ2(2π)4δ(pA + pB − p1 − p2)[

|M12→AB|2f1f2(1± fA)(1± fB)− |MAB→12|2fAfB(1± f1)(a± f2)
]

= −
∫
dΠAdΠBdΠ1dΠ2(2π)4δ(pA + pB − p1 − p2)[

|M12→AB|2f1f2 − |MAB→12|2fAfB
]
. (32)

The terms (1±fi) account for the viable phase space of the produced particles, taking into account
whether they are fermions (−) or bosons (+). Assuming no CP violation in the DM sector (T
invariance) |M12→AB|2 = |MAB→12|2 ≡ |M|2. Also, energy conservation in the annihilation
process allows us to write EA + EB = E1 + E2, thus,

fAfB = feqA f
eq
B = e−

EA+EB
T = e−

E1+E1
T = feq1 feq2 . (33)

In the first equality we have just used the fact that SM particles are in equilibrium. This eventually
leads to

g

(2π)3

∫
C[f ]

E
d3p = −〈σv〉

(
n2 − n2

eq

)
, (34)

where we have defined the thermally-averaged cross-section as

〈σv〉 ≡ 1

n2
eq

∫
dΠAdΠBdΠ1dΠ2(2π)4δ(pA + pB − p1 − p2)|M|2feq1 feq2 . (35)

Collider enthusiasts would realise that this expression is similar to that of a cross-section, but we
have to consider that the “initial conditions” do not correspond to a well-defined energy, but rather
we have to integrate to the possible energies that the particles in the thermal bath may have. This
explains the extra integrals in the phase space of incident particles with a distribution function
given by feq1 feq2 . We are thus left with the familiar form of Boltzmann equation,

dn

dt
+ 3Hn = −〈σv〉

(
n2 − n2

eq

)
. (36)

Notice that this is an equilibrium-restoring equation. If the right-hand-side of the equation dom-
inates, then n traces its equilibrium value n ≈ neq. However, when Hn > 〈σv〉n2, then the
right-hand-side can be neglected and the resulting differential equation dn/n = −3da/a implies
that n ∝ a−3. This is equivalent to saying that DM particles do not annihilate anymore and their
number density decreases only because the scale factor of the Universe increases.

It is also customary to define the dimensionless variable 5

x =
m

T
. (37)

5It is important to point that this definition of x is not universal; some authors use T/m and care should be taken
when comparing results from different sources in the literature.
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Exercise: Using the yield defined in equation (14) we can simplify Boltzmann
equation. Notice that

dY

dt
=

d

dt

(n
s

)
=

d

dt

(
a3n

a3s

)
=

1

a3s

(
3a2ȧn+ a3dn

dt

)
=

1

s

(
3Hn+

dn

dt

)
. (38)

Here we have used that the expansion of the Universe is iso-entropic and thus a3s
remains constant. Also we use the definition of the Hubble parameter H = ȧ

a . This
allows us to rewrite Boltzmann equation as follows

dY

dt
= −s〈σv〉

(
Y 2 − Y 2

eq

)
. (39)

Now, since a ∝ T−1 and s ∝ T 3,

d

dt
(a3s) = 0→ d

dt
(aT ) = 0→ d

dt

(a
x

)
= 0 , (40)

which in turns leads to
dx

dt
= Hx , (41)

and thus
dY

dt
=
dY

dx

dx

dt
=
dY

dx
Hx . (42)

Using the results of Example (2.2) we can express Boltzmann equation (36) as

dY

dx
=
−sx〈σv〉
H(m)

(
Y 2 − Y 2

eq

)
=
−λ〈σv〉
x2

(
Y 2 − Y 2

eq

)
, (43)

where we have used the expression of the entropy density (15) in the last line and defined

λ ≡ 2π2

45

MP g∗s

1.66 g
1/2
∗

m

≈ 0.26
g∗s

g
1/2
∗

MP m . (44)

Eq. (43) is a Riccati equation, without closed analytical form. Thus, to calculate its solutions we
have to rely on numerical methods. However, it is possible to solve it approximately.

2.2.1 Freeze out of relativistic species

The freeze-out of relativistic species is easy to compute, since the yield (20) has no dependence
on xf . Neutrinos are a paradigmatic example of relativistic particles and one must in principle
consider their contribution to the total amount of dark matter (after all, they are dark).
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Since neutrinos decouple while they are still relativistic, their yield reads

Yeq ≈ 0.278
geff
g∗s

. (45)

Neutrinos decouple at a few MeV, when the species that were still relativistic are e±, γ, ν and ν̄.
Thus, the number of relativistic degrees of freedom is g∗ = g∗s = 10.75. For one neutrino family,
the effective number of degrees of freedom is geff = 3g/4 = 3/2. Using these values, the relic
density today an be written as

Ωh2 =

∑
imνiY∞s0h

2

ρc

≈
∑

imνi

91 eV
. (46)

Notice that in order for neutrinos to be the bulk of dark matter, we would need
∑

imνi ≈ 9 eV ,
which is much bigger than current upper limits (for example, obtained from cosmological observa-
tions). Notice, indeed, that if we consider the current bound

∑
imνi ≤ 0.3 eV we can quantify the

contribution of neutrinos to the total amount of dark matter, resulting in Ωh2 ≤ 0.003. This is less
than a 3% of the total dark matter density.

2.2.2 Freeze out of non-relativistic species

We can define the quantity

∆Y ≡ Y − Yeq . (47)

Boltzmann equation (43) is now easier to solve, at least approximately, as follows

• For early times, 1 < x� xf , the yield follows closely its equilibrium value, Y ≈ Yeq, and we
can assume that d∆Y /dx = 0. We then find

∆Y = −
dYeq
dx

Yeq

x2

2λ〈σv〉
. (48)

Thus, at freeze-out we obtain

∆Yf ≈
x2
f

2λ〈σv〉
, (49)

where in the last line we have used that for large enough x, using eq. (22) implies
dYeq
dx ≈ −Yeq.

• For late times, x � xf , we can assume that Y � Yeq, and thus ∆Y∞ ≈ Y∞, leading to the
following expression,

d∆Y

dx
≈ −λ〈σv〉

x2
∆2
Y , (50)
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This is a separable equation that we integrate from the freeze-out time up to nowadays.
In doing so, it is customary to expand the thermally averaged annihilation cross section in
powers of x−1 as 〈σv〉 = a+ b

x .∫ ∆Y∞

∆Yf

d∆Y

∆2
Y

= −
∫ x∞

xf

λ〈σv〉
x2

dx . (51)

Taking into account that x∞ � xf , this leads to

1

∆Y∞
=

1

∆Yf

+
λ

xf

(
a+

b

2xf

)
. (52)

The term 1/∆Yf is generally ignored (if we are only aiming at a precision up to a few per
cent [17]) . We can check that this is a good approximation using the previously derived (49)
for xf ≈ 20 (which, as we saw in Fig. 5 is the value for which the equilibrium Yield has the
right value). This leads to

∆Y∞ = Y∞ =
xf

λ
(
a+ b

2xf

) . (53)

The relic density can now be expressed in terms of this result as follows

Ωh2 =
mχ Y∞ s0h

2

ρc

≈ 10−10 GeV−2

a+ b
40

≈ 3× 10−27 cm3 s−1

a+ b
40

. (54)

This expression explicitly shows that for larger values of the annihilation cross section, smaller
values of the relic density are obtained.

2.2.3 WIMPs

Equation (54) implies that in order to reproduce the correct relic abundance, dark matter particles
must have a thermally averaged annihilation cross section (from now on we will shorten this to
simply annihilation cross section when referring to 〈σv〉) of the order of 〈σv〉 ≈ 3× 10−26 cm3 s−1.

We can now consider a simple case in which dark matter particles self-annihilate into Standard
Model ones through the exchange (e.g., in an s-channel) of a gauge boson. It is easy to see that if
the annihilation cross section is of order 〈σv〉 ∼ G2

Fm
2
WIMP , where GF = 1.16× 10−5 GeV−2, then

the correct relic density is obtained for masses of the order of ∼ GeV.

2.3 Computing the DM annihilation cross section

In the previous sections we have derived a relation between the thermally averaged annihilation cross
section and the corresponding dark matter relic abundance. This is very useful, since it provides
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an explicit link with particle physics. A central point in that calculation was the expansion in
velocities of the thermally averaged annihilation cross section.

〈σv〉 = 〈a+ bv2 + cv4 + . . .〉 = a+
3

2

b′

x
+

15

8

c

x2
+ . . . . (55)

Notice that in the expressions of the previous section we have defined b ≡ 3b′/2. As we also
mentioned before, DM candidates tend to decouple when xf ≈ 20. For this value, the rms velocity
of the particles is about c/4, thus corrections of order x−1 can in general not be ignored (they can
be of order 5− 10%). Moreover, some selection rules can actually lead to a = 0 for some particular
annihilation channels and in that case 〈σv〉 is purely velocity-dependent.

It is important to define correctly the relative velocity that enters the above equation. In Ref. [17]
an explicitly Lorentz-invariant formalism is introduced where

g1

∫
C[f1]

d3p1

2π3E1
= −

∫
〈σv〉Møl(dn1dn2− dneq1 dn

eq
2 ) , (56)

where 〈σv〉Møln1n2 is invariant under Lorentz transformations and equals vlabn1,labn2,lab in the rest
frame of one of the incoming particles. In our case the densities and Møller velocity refer to the
cosmic comoving frame. In terms of the particle velocities ~vi = ~pi/Ei,

vMøl =
[
|~v1 − ~v2|2 + |~v1 × ~v2|2

]1/2
. (57)

The thermally-averaged product of the dark matter pair-annihilation cross section and their relative
velocity 〈σvMøl〉 is most properly defined in terms of separate thermal baths for both annihilating
particles [17, 18],

〈σvMøl〉(T ) =

∫
d3p1d

3p2 σvMøl e
−E1/T e−E2/T∫

d3p1d3p2e−E1/T e−E2/T
, (58)

where p1 = (E1,p1) and p2 = (E2,p2) are the 4-momenta of the two colliding particles, and T is
the temperature of the bath. The above expression can be reduced to a one-dimensional integral
which can be written in a Lorentz-invariant form as [17]

〈σvMøl〉(T ) =
1

8m4
χTK

2
2 (mχ/T )

∫ ∞
4m2

χ

ds σ(s)(s− 4m2
χ)
√
sK1

(√
s

T

)
, (59)

where s = (p1 + p2)2 and Ki denote the modified Bessel function of order i. In computing the relic
abundance [19] one first evaluates eq. (59) and then uses this to solve the Boltzmann equation. The
freeze out temperature can be computed by solving iteratively the equation

xf = ln

(
mχ

2π3

√
45

2g∗GN
〈σvMøl〉(xf )x

−1/2
f

)
(60)

where g∗ represents the effective number of degrees of freedom at freeze-out (
√
g∗ ≈ 9). As explained

in the previous section, one finds that the freeze-out point xf ≡ mχ/Tf is approximately xf ∼ 20.

The procedure can be simplified if we consider that the annihilation cross section can be expanded
in plane waves. For example, consider the dark matter annihilation process χχ → ij and assume
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that the thermally averaged annihilation cross section can be expressed as 〈σv〉ij ≈ aij + bijx. It
can then be shown that the coefficients aij and bij can be computed from the corresponding matrix
element. For example,

aij =
1

m2
χ

(
Nc

32π
β(s,mi,mj)

1

2

∫ 1

−1
d cos θCM |Mχχ→ij |2

)
s=4m2

χ

, (61)

where θCM denotes the scattering angle in the CM frame, Nc = 3 for q̄q final states and 1 otherwise,
and

β(s,mi,mj) =

(
1− (mi +mj)

2

s

)1/2(
1− (mi −mj)

2

s

)1/2

(62)

The contribution for each final state is calculated separately.

2.3.1 Special cases

The derivation of equation (54) relied on the expansion of 〈σv〉 in terms of plane waves. This
expansion can be done when 〈σv〉 varies slowly with the energy (we can express this in terms of
the centre of mass energy s). However, there are some special cases in which this does not happen
and which deserve further attention.

• Annihilation thresholds

A new annihilation channel χ + χ → A + B opens up when 2mχ ≈ mA + mB. In this case
the expansion in velocities of 〈σv〉 diverges (at the threshold energy) and it is no longer a
good approximation [17]. Notice in particular that below the threshold, the expression of
aij in Equation (61) is equal to zero (as it is only evaluated for s > 4m2

χ). A qualitative
way of understanding this is of course that DM particles have a small velocity, which is here
approximated to zero. In the limit of zero velocity, the total energy available is determined
by the DM mass.

However, we are here ignoring that a fraction of DM particles (given by their thermal distribu-
tion in the Early Universe) have a kinetic energy sufficient to annihilate into heavier particles
(above the threshold). In other words, 〈σv〉 is different from zero below the corresponding
thresholds. A very good illustration of this effect is shown in Ref. [17] and is here reproduced
in Fig. 6.

The thin solid line corresponds to the approximate expansion in velocities and shows that not
only 〈σv〉 is zero below the threshold, but also diverges at the threshold, thereby not leading
to a good solution. Expression (59), represented by a thick solid line, still provides a good
solution .

• Resonances

The annihilation cross section is not a smooth function of s in the vicinity of an s-channel
resonance. Thus, the velocity expansion of 〈σv〉 will fail (although once more, expression (59)
still provides a good solution). For a Breit-Wigner resonance (due to a particle φ) we have

σ =
4πw

p2
BiBf

m2
φΓ2

φ

(s−m2
φ)2 +m2

φΓ2
φ

, (63)
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Figure 6: Relativistic thermal average near a threshold (thick solid line) compared to the result fro
the expansion in powers of x−1 (thin line). Figure from Ref. [17].

in terms of the centre of mass momentum p = 1/2(s − 4m2)1/2 and the statistical factor
w = (2J + 1)/(2S + 1)2. The quantities Bi,f correspond to the branching fractions of the
resonance into the initial and final channel.

We can define the kinetic energy per unit mass in the lab frame, ε, as

ε =
(E1,lab −m) + (E2,lab −m)

2m
=

2− 4m2

4m2
, (64)

and rewrite the expression for σ in the lab frame (we want to use Equation (3.21) in Ref. [17]
to compute 〈σvMøl〉). Summing to all final states, and using vlab = 2ε1/2(1 + ε)1/2/(1 + 2ε),
we obtain

σvlab =
8πw

m2
bφ(ε)

γ2
φ

(ε− ε2φ)2 + γ2
φ

, (65)

with the definitions b(ε) = Bi(1 − Bi)(1 + ε)1/2/(ε1/2(1 + 2ε), γφ = mφΓφ/4m
2, and εφ =

(m2
φ − 4m2)/4m2.

It can be shown that in the case of a very narrow resonance, γφ � 1, the expression above
can be approximated as

σvlab =
8πw

m2
bφ(ε)πγφδ(ε− εφ) , (66)

the relativistic formula for the thermal average then reads [17]

〈σvMøl〉 =
16πw

m2

x

K2
2 (x)

πγφε
1/2
φ (1 + 2eφ)K1(2x

√
1 + εφ)bφ(eφ)θ(εφ) . (67)

Notice that εφ > 0 when m < 2mφ, i.e., when the mass of the DM is not enough to enter the
resonance. The reason is easy to understand. Only through the extra kinetic energy provided
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Figure 7: Relativistic thermal average in a resonance (thick solid line) compared to the result fro
the expansion in powers of x−1 (thin line). Figure from Ref. [17].

by the thermal bath, the resonance condition can be satisfied. However, when the mass of
the DM exceeds the resonance condition, the kinetic energy only takes us further away from
the resonant condition and the thermalised cross section tends to vanish. In other words, the
centre of mass rest energy exceeds mφ/2. This can be seen in Figure 7.

For a large width the expression has to be computed numerically and can be found in [17].

• Coannihilations

When deriving Boltzmann equation (36) we have only considered one exotic species, but this
needs not be the case. In fact, in most particle models for DM, there are more exotic species
that we need to take into account. Notice that, in principle, this would lead to a system of
coupled Boltzmann equations. If we label exotic species as χi, with i = 0, 1 . . . k, and SM
particles as A, B, we have to consider all number changing processes for each species,

(i) χi + χj → A+B

(ii) χi +A→ χj +B

(iii) χj → χi +A

If we consider the (usual) case in which the DM is protected by a symmetry (e.g., in the
case of Supersymmetric theories) and that the exotic particles all must decay eventually into
the lightest one χ0, then, we must only trace the evolution of the total number density of
exotic species, n =

∑k
i=0 ni. Under this assumption, processes (ii) and (iii) do not need to be

considered, as they do not change the number of exotics. This is correct as long as the rate
of these is faster than the expansion of the Universe.

Regarding process (i) we have to be aware that the cross section σij is going to appear
multiplied by the corresponding number densities, ninj . Now, we are considering the case
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in which both particles i and j are non-relativistic and as a consequence, ni,j are Boltzmann
suppressed, ni,j/e

−mi,j/T . Thus, unless mj ≈ mi, the abundance of χj is negligible and only
the process χi + χj → A+B is important (and we are back to the case of a single exotic).

However, when mj ≈ mi, there can be coannihilation effects and particle j may serve as a
channel through which particles i can be more effectively depleted. This is the case, e.g., of
the stau and the neutralino in supersymmetric theories.

3 Direct Dark Matter Detection

3.1 Computation of the Dark Matter detection rate

3.1.1 DM flux

We can easily estimate the flux of DM particles through the Earth. The DM typical velocity is of
the order of 300 km s−1 ∼ 10−3 c. Also, the local DM density is ρ0 = 0.3 GeV cm−3, thus, the DM
number density is n = ρ/m.

φ =
vρ

m
≈ 107

m
cm−2 s−1 (68)

These particles interact very weakly with SM particles.

3.1.2 Kinematics

Direct DM detection is based on the search of the scattering between DM particles and nuclei
in a detector. This process is obly observable through the recoiling nucleus, with an energy ER.
DM particles move at non-relativistic speeds in the DM halo. Thus, the dynamics of their elastic
scattering off nuclei are easily calculated. In particular, the recoiling energy of the nucleus is given
by

ER =
1

2
mχ v

2 4mχmN

(mχ +mN )2

1 + cos θ

2
(69)

It can be checked that for DM particles with a mass of the order of 100 GeV, this leads to recoil
energies of approximately ER ∼ 100 keV. Notice also that the maximal energy transfer occurs on
a head-on-collision and when the DM mass is equal to the target mass. In such a case

EmaxR =
1

2
mχ v

2 =
1

2
mχ × 10−6 =

1

2

( mχ

1 GeV

)
keV (70)

where we have used that in a DM halo the typical velocity is v ∼ 10−3c.

Experiments must therefore be very sensitive and be able to remove an overwhelming background
of ordinary processes which lead to nuclear recoils of the same energies.
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3.2 The master formula for direct DM detection

The total number of detected DM particles, N , can be understood as the product of the DM flux
(which is equal to the DM number density, n, times its speed, v), times the effective area of the
target (i.e., the number of targets NT times the scattering cross-section, σ), all of this multiplied
by the observation time, t,

N = t n v NT σ . (71)

We will be interested in determining the spectrum of DM recoils, i.e., the energy dependence of the
number of detected DM particles. Thus,

dN

dER
= t n v NT

dσ

dER
. (72)

Now, the DM velocity is not unique, and in fact DM particles are described by a local velocity
distribution, f(~v), where ~v is the DM velocity in the reference frame of the detector. We therefore
have to integrate to all possible DM velocities, with their corresponding probability density,

dN

dER
= t nNT

∫
vmin

vf(~v)
dσ

dER
d~v , (73)

where
vmin =

√
mχER/2µ2

χN (74)

is the minimum speed necessary to produce a DM recoil of energy ER, in terms of the WIMP-
nucleus reduced mass, µχN . Using n = ρ/mχ and NT = MT /mN (where MT is the total detector
mass and mN is the mass of the target nuclei), and defining the experimental exposure ε = tMT ,
we arrive at the usual expression for the DM detection rate

dN

dER
= ε

ρ

mχmN

∫
vmin

vf(~v)
dσ

dER
d~v . (75)

3.2.1 The scattering cross section

The scattering takes place in the non-relativistic limit. The cross section is therefore approximately
isotropic (angular terms being suppressed by v2/c2 ∼ 10−6. This implies that

dσ

d cos θ∗
= constant =

σ

2
(76)

On the other hand,

ER = EmaxR

1 + cos θ∗

2
→ dER

d cos θ∗
=
EmaxR

2
(77)

From this, we can see that

dσ

dER
=

dσ

d cos θ∗
d cos θ∗

dER
=

σ

EmaxR

=
mN

2µ2
χN

σ

v2
(78)
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Notice finally that the momentum transfer from WIMP interactions reads (remember that we are
considering non-relativistic processes and thus we neglect the kinetic energy of the nucleus)

q =
√

2mN ER (79)

and is typically of the order of the MeV. The equivalent de Broglie length would be λ ∼ 2π~/p ∼
10 − 100 fm. For light nuclei, the DM particle sees the nucleus as a whole, without substructure,
only for heavier nuclei we have to take into account a suppression form factor. The nuclear form
factor, F 2(ER), accounts for the loss of coherence

dσ

dER
=

mN

2µ2
χN

σ0

v2
F 2(ER) (80)

Finally, the scattering cross section receives different contributions, depending on the microscopic
description of the interaction.

In the end, we can
dN

dER
= ε

ρ

2mχ µ2
χN

σ0 F
2(ER)

∫
vmin

f(~v)

v
d~v . (81)

The inverse mean velocity

η(vmin) =

∫
vmin

f(~v)

v
d~v . (82)

is the main Astrophysical input.

3.2.2 The importance of the threshold

From the kinematics of the DM-nucleus interaction, we see that, for a given recoil energy ER, we
require a minimal velocity of DM particles, given by expression (74).

Thus, given that experiments are only sensitive to DM interactions above a certain energy threshold,
ET , this means that we are only probing a part of the WIMP velocity distribution function (for
a given DM mass). Conversely, given that DM particles have a maximum velocity in the halo
(otherwise they become unbound and escape the galaxy), the experimental energy threshold is a
limitation to explore low-mass WIMPs.

Exercise: Consider a germanium experiment and a xenon experiment with a
threshold of 2 keV. Given the escape velocity in a typical isothermal halo, vesc =
554 km s−1, determine the minimum DM mass that these experiments can probe.

This is the reason that experiments loose sensitivity for small masses.
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3.2.3 Velocity distribution function

It is customary to consider the Isothermal Spherical Halo, which assumes that the Milky Way (MW)
halo is an isotropic, isothermal sphere with density profile ρ ∝ r−2. The velocity distribution, in
the galactic rest frame, for such a halo reads

fgal(~v) =
1

(2πσ)3/2
e−

|~v|2

2σ2 , (83)

where the one-dimensional velocity dispersion, σ, is related to the circular speed, vc, as σ = vc/
√

2.
The canonical values are vc = 220km s−1, with a statistical error of order 10% (see references in
[20])

Now, in order to use it for direct detection experiments we need to carry out a Galilean transfor-
mation ~v → ~v + ~vE , such that

f(~v) = fgal(~v + ~vE(t)). (84)

where ~vE(t) is the velocity of the Earth with respect to the Galactocentric rest frame.

~vE(t) = ~vLRF + ~v� + ~vorbit(t) (85)

Notice that vE includes contributions from the speed of the Local Standard of Rest vLSR, the
peculiar velocity of the Sun with respect to vLSR, and the Earths velocity around the Sun, which
has an explicit time dependence.

Notice that if we work with the SHM, the angular integration in the computation of direct detection
rates can be easily done as follows∫

f(~v)

v
d3v =

∫
dφ

∫
d cos θ

∫
dv v

1

(2πσ2)3/2
e−

|~v|2+|~vE |2

2σ2 e
|~v| |~vE | cos θ

σ2

= 2π

∫
dv v

2σ2

|v||~vE |(2πσ)3/2
e−

|~v|2+|~vE |2

2σ2 sinh

(
|~v| |~vE |
σ2

)
=

∫
dv

√
2√

πσ|~vE |
e−

|~v|2+|~vE |2

2σ2 sinh

(
|~v| |~vE |
σ2

)
(86)

3.3 Coherent neutrino scattering

Solar neutrinos might leave a signal in DD experiments, either through their coherent scattering
with the target nuclei or through scattering with the atomic electrons.

In general, the number of recoils per unit energy can be written

dR

dER
=

ε

mT

∫
dEν

dφν
dEν

dσν
dER

, (87)

where ε is the exposure and mT is the mass of the target electron or nucleus. If several isotopes
are present, a weighted average must be performed over their respective abundances.

239



The SM neutrino-electron scattering cross section is

dσνe
dER

=
G2
Fme

2π

[
(gv + ga)

2 + (88)

(gv − ga)2

(
1− ER

Eν

)2

+ (g2
a − g2

v)
meER
E2
ν

]
,

where GF is the Fermi constant, and

gv;µ,τ = 2 sin2 θW −
1

2
; ga;µ,τ = −1

2
, (89)

for muon and tau neutrinos. In the case νe + e → νe + e, the interference between neutral and
charged current interaction leads to a significant enhancement:

gv;e = 2 sin2 θW +
1

2
; ga;e = +

1

2
. (90)

The neutrino-nucleus cross section in the SM reads

dσνN
dER

=
G2
F

4π
Q2
vmN

(
1− mNER

2E2
ν

)
F 2(ER), (91)

where F 2(ER) is the nuclear form factor, for which we have taken the parametrisation given by
Helm [21]. Qv parametrises the coherent interaction with protons (Z) and neutrons (N = A− Z)
in the nucleus:

Qv = N − (1− 4 sin θW )Z. (92)

3.4 Inelastic scattering of DM particles

WIMPs can also have inelastic scattering off nuclei [22]. The WIMP needs to have sufficient speed
to interact with the nucleus and promote to an excited state (with energy separation δ)

1

2
µχNv

2 > δ (93)

This leads to the condition

vmin =

√
1

2mN ER

(
mN ER
µχN

+ δ

)
(94)

Therefore, the main effect at a given experiment is to limit the sensitivity only to a part of the
phase space of the halo. This favours heavy nuclei (since they can transfer more energy to the
outgoing WIMP) and can account for observation in targets such as iodine (DAMA/LIBRA) while
avoiding observation in lighter ones such as Ge (CDMS)
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