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Worst-case evaluation complexity and

optimality of second-order methods for

nonconvex smooth optimization

Coralia Cartis1, Nicholas I. M. Gould2,3 and Philippe L. Toint4

ABSTRACT

We establish or refute the optimality of inexact second-order methods for unconstrained non-

convex optimization from the point of view of worst-case evaluation complexity, improving and

generalizing the results of [15, 19]. To this aim, we consider a new general class of inexact

second-order algorithms for unconstrained optimization that includes regularization and trust-

region variations of Newton’s method as well as of their linesearch variants. For each method in

this class and arbitrary accuracy threshold ǫ ∈ (0, 1), we exhibit a smooth objective function with

bounded range, whose gradient is globally Lipschitz continuous and whose Hessian is α−Hölder

continuous (for given α ∈ [0, 1]), for which the method in question takes at least ⌊ǫ−(2+α)/(1+α)⌋
function evaluations to generate a first iterate whose gradient is smaller than ǫ in norm. More-

over, we also construct another function on which Newton’s takes ⌊ǫ−2⌋ evaluations, but whose

Hessian is Lipschitz continuous on the path of iterates. These examples provide lower bounds on

the worst-case evaluation complexity of methods in our class when applied to smooth problems

satisfying the relevant assumptions. Furthermore, for α = 1, this lower bound is of the same

order in ǫ as the upper bound on the worst-case evaluation complexity of the cubic regularization

method and other methods in a class of methods proposed in [36] or in [65], thus implying that

these methods have optimal worst-case evaluation complexity within a wider class of second-order

methods, and that Newton’s method is suboptimal.
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1 Introduction

Newton’s method has long represented a benchmark for rapid asymptotic convergence when min-

imizing smooth, unconstrained objective functions [38]. It has also been efficiently safeguarded to

ensure its global convergence to first- and even second-order critical points, in the presence of local

nonconvexity of the objective using linesearch [64], trust-region [34] or other regularization tech-

niques [54, 63, 16]. Many variants of these globalization techniques have been proposed. These

generally retain fast local convergence under non-degeneracy assumptions, are often suitable when

solving large-scale problems and sometimes allow approximate rather than true Hessians to be

employed. We attempt to capture the common features of these methods in the description of a

general class of second-order methods, which we denote by M.α in what follows.

In this paper, we are concerned with establishing lower bounds on the worst-case evaluation

complexity of the M.α methods1 when applied to “sufficiently smooth” nonconvex minimization

problems, in the sense that we exhibit objective functions on which these methods take a large

number of function evaluations to obtain an approximate first-order point.

There is a growing literature on the global worst-case evaluation complexity of first- and

second-order methods for nonconvex smooth optimization problems (for which we provide a par-

tial bibliography with this paper). In particular, it is known [70], [61, p. 29] that steepest-descent

method with either exact or inexact linesearches takes at most2 O
(

ǫ−2
)

iterations/function-

evaluations to generate a gradient whose norm is at most ǫ when started from an arbitrary initial

point and applied to nonconvex smooth objectives with gradients that are globally Lipschitz con-

tinuous within some open convex set containing the iterates generated. Furthermore, this bound

is essentially sharp (for inexact [15] and exact [22] linesearches). Similarly, trust-region methods

that ensure at least a Cauchy (steepest-descent-like) decrease on each iteration satisfy a worst-

case evaluation complexity bound of the same order under identical conditions [53]. It follows

that Newton’s method globalized by trust-region regularization has the same O
(

ǫ−2
)

worst-case

evaluation upper bound; such a bound has also been shown to be essentially sharp [15].

From a worst-case complexity point of view, one can do better when a cubic regulariza-

tion/perturbation of the Newton direction is used [54, 63, 16, 36]—such a method iteratively

calculates step corrections by (exactly or approximately) minimizing a cubic model formed of a

quadratic approximation of the objective and the cube of a weighted norm of the step. For such a

method, the worst-case global complexity improves to be O
(

ǫ−3/2
)

[63, 16], for problems whose

gradients and Hessians are Lipschitz continuous as above; this bound is also essentially sharp

[15]. If instead powers between two and three are used in the regularization, then an “interme-

diate” worst-case complexity of O
(

ǫ−(2+α)/(1+α)
)

is obtained for such variants when applied to

functions with globally α−Hölder continuous Hessian on the path of iterates, where α ∈ (0, 1]

[19]. It is finally possible, as proposed in [65], to obtain the desired O
(

ǫ−3/2
)

order of worst-case

evaluation complexity using a purely quadratic regularization, at the price of mixing iterations

using the regularized and unregularized Hessian with iterations requiring the computation of its

left-most eigenpair.

These (essentially tight) upper bounds on the worst-case evaluation complexity of such second-

order methods naturally raise the question as to whether other second-order methods might have

1And, as an aside, on that of the steepest-descent method.
2When {ak} and {bk} are two sequences of real numbers, we say that ak = O (bk) if the ratio ak/bk is bounded.
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better worst-case complexity than cubic (or similar) regularization over certain classes of suffi-

ciently smooth functions. To attempt to answer this question, we define a general, parametrized

class of methods that includes Newton’s method, and that attempts to capture the essential

features of globalized Newton variants we have mentioned. Our class includes for example, the

algorithms discussed above as well as multiplier-adjusting types such as the Goldfeld-Quandt-

Trotter approach [46]. The methods of interest take a potentially-perturbed Newton step at each

iteration so long as the perturbation is “not too large” and the subproblem is solved “sufficiently

accurately”. The size of the perturbation allowed is simultaneously related to the parameter α

defining the class of methods and the rate of the asymptotic convergence of the method. For

each method in each α-parametrized class and each ǫ ∈ (0, 1), we construct a function with

globally α−Hölder-continuous Hessian and Lipschitz continuous gradient for which the method

takes precisely ⌈ǫ−(2+α)/(1+α)⌉ function evaluations to drive the gradient norm below ǫ. As such

counts are the same order as the worst-case upper complexity bound of regularization methods,

it follows that the latter methods are optimal within their respective α-class of methods. As α

approaches zero, the worst-case complexity of these methods approaches that of steepest descent,

while for α = 1, we recover that of cubic regularization. We also improve the examples proposed

in [15, 19] in two ways. The first is that we now employ objective functions with bounded range,

which allows refining the associated definition of sharp worst-case evaluation complexity bounds,

the second being that the new examples now have finite isolated global minimizers.

The structure of the paper is as follows. Section 2 describes the parameter-dependent class

of methods and objectives of interest; Section 2.1 gives properties of the methods such as their

connection to fast asymptotic rates of convergence while Section 2.2 reviews some well-known

examples of methods covered by our general definition of the class. Section 3 then introduces

two examples of inefficiency of these methods and Section 4 discusses the consequences of these

examples regarding the sharpness and possible optimality of the associated worst-case evaluation

complexity bounds. Further consequences of our results on the new class proposed by [36] and

[65] are developed in Section 5 and 6, respectively. Section 7 draws our conclusions.

Notation. Throughout the paper, ‖·‖ denotes the Euclidean norm on IRn, I the n×n identity

matrix, and λmin(H) and λmax(H) the left- and right-most eigenvalue of any given symmetric

matrix H, respectively. The condition number of a symmetric positive definite matrix M is

denoted by κ(M)
def
= λmax(M)/λmin(M). If M is only positive-semidefinite which we denote by

M � 0, and λmin(M) = 0, then κ(0)
def
= +∞ unless M = 0, in which case we set κ(0)

def
= 1.

Positive definiteness of M is written as M ≻ 0.

2 A general parametrized class of methods and objectives

Our aim is to minimize a given C2 objective function f(x), x ∈ IRn. We consider methods that

generate sequences of iterates {xk} for which {f(xk)} is monotonically decreasing, we let

fk
def
= f(xk), gk

def
= g(xk) and Hk

def
= H(xk).

where g(x) = ∇xf(x) and H(x) = ∇xxf(x).

Let α ∈ [0, 1] be a fixed parameter and consider iterative methods whose iterations are defined

as follows. Given some x0 ∈ IRn, let

xk+1 = xk + sk, k ≥ 0, (2.1)
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where sk satisfies

(Hk +Mk)sk = −gk + rk with ‖rk‖ ≤ min [κrg‖gk‖, κrs‖Mksk‖] (2.2)

for some residual rk and constants κrg ∈ [0, 1) and κrs > 0, and for some symmetric matrix Mk

such that

Mk � 0, Hk +Mk � 0 (2.3)

and

λmin(Hk) + λmin(Mk) ≤ κλ max
{

|λmin(Hk)|, ‖gk‖
α

1+α

}

(2.4)

for some κλ > 1 independent of k. Without loss of generality, we assume that sk 6= 0. Further-

more, we require that no infinite steps are taken, namely

‖sk‖ ≤ κs (2.5)

for some κs > 0 independent of k. The M.α class of second-order methods consists of all methods

whose iterations satisfy (2.1)–(2.5). The particular choices Mk = λkI and Mk = λkNk (with Nk

symmetric, positive definite and with bounded condition number) will be of particular interest in

what follows3. Note that the definition of M.α just introduced generalizes that of M.α in [19].

Typically, the expression (2.2) for sk is derived by minimizing (possibly approximately) the

second-order model

mk(s) = fk + gTk s+
1

2
sT (Hk + βkMk)s, with βk

def
= βk(s) ≥ 0 and βk ≤ 1 (2.6)

of f(xk + s)—possibly with an explicit regularizing constraint—with the aim of obtaining a suf-

ficient decrease of f at the new iterate xk+1 = xk + sk compared to f(xk). In the definition

of an M.α method however, the issue of (sufficient) objective-function decrease is not explicitly

addressed/required. There is no loss of generality in doing so here since although local refinement

of the model may be required to ensure function decrease, the number of function evaluations

to do so (at least for known methods) does not increase the overall worst-case evaluation com-

plexity by more than a constant multiple and thus does not affect quantitatively the worst-case

bounds derived; see for example, [15, 17, 53] and also Section 2.2. Furthermore, the examples of

inefficiency proposed in Section 3 are constructed in such a way that each iteration of the method

automatically provides sufficient decrease of f .

Having defined the classes of methods we shall be concerned with, we now specify the problem

classes that we shall apply the methods in each class to, in order to demonstrate slow convergence.

Given a method in M.α, we are interested in minimizing functions f that satisfy

A.α f : IRn → IR is twice continuously differentiable and bounded below, with gradient g

being globally Lipschitz continuous on IRn with constant Lg, namely,

‖g(x) − g(y)‖ ≤ Lg‖x− y‖, for all x, y ∈ IRn; (2.7)

and the Hessian H being globally α−Hölder continuous on IRn with constant LH,α, i.e.,

‖H(x)−H(y)‖ ≤ LH,α‖x− y‖α, for all x, y ∈ IRn. (2.8)

✷

3Note that (2.4) is slightly more general than a maybe more natural condition involving λmin(Hk +Mk) instead

of λmin(Hk) + λmin(Mk).
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The case when α = 1 in A.α corresponds to the Hessian of f being globally Lipschitz continuous.

Moreover, (2.7) implies (2.8) when α = 0, so that the A.0 class is that of twice continuously

differentiable functions with globally Lipschitz continuous gradient. Note also that (2.7) and the

existence of H(x) imply that

‖H(x)‖ ≤ Lg (2.9)

for all x ∈ IRn [61, Lemma 1.2.2], and that every function f satisfying A.α with α > 1 must be

quadratic. As we will see below, it turns out that we could weaken the conditions defining A.α

by only requiring (2.7) and (2.8) to hold in an open set containing all the segments [xk, xk + sk]

(the “path of iterates”), but these segments of course depend themselves on f and the method

applied.

The next subsection provides some background and justification for the technical condition

(2.4) by relating it to fast rates of asymptotic convergence, which is a defining feature of second-

order algorithms. In Section 2.2, we then review some methods belonging to M.α.

2.1 Properties of the methods in M.α

We first state inclusions properties for M.α and A.α.

Lemma 2.1

1. Consider a method of M.α1 for α1 ∈ [0, 1] and assume that it generates bounded

gradients. Then it belongs to M.α2 for α2 ∈ [0, α1].

2. A.α1 implies A.α2 for α2 ∈ [0, α1], with LH,α2
= max[LH,α1

, 2Lg].

Proof. By assumption, ‖gk‖ ≤ κg for some κg ≥ 1. Hence, if ‖gk‖ ≥ 1,

‖gk‖
α1

1+α1 ≤ κ
α1

1+α1
g ≤ κg ≤ κg‖gk‖

α2
1+α2 (2.10)

for any α2 ∈ [0, α1]. Moreover, (2.10) also holds if ‖gk‖ ≤ 1, proving the first statement of

the lemma. Now we obtain from (2.9), that, if ‖x− y‖ > 1, then

‖H(x) −H(y)‖ ≤ ‖H(x)‖+ ‖H(y)‖ ≤ 2Lg ≤ 2Lg‖x− y‖α

for any α ∈ [0, 1]. When ‖x− y‖ ≤ 1, we may deduce from (2.8) that, if α1 ≥ α2, then (2.8)

with α = α1 implies (2.8) with α = α2. This proves the second statement. ✷

Observe if a method is known to be globally convergent in the sense that ‖gk‖ → 0 when k → ∞,

then it obviously generates bounded gradients and thus the globally convergent methods of M.α1

are included in M.α2 (α2 ∈ [0, α1]).

We next give a sufficient, more concise, condition on the algorithm-generated matrices Mk

that implies the bound (2.4).
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Lemma 2.2 Let (2.2) and (2.3) hold. Assume also that the algorithm-generated matrices

Mk satisfies

λmin(Mk) ≤ κλ‖sk‖α, for some κλ > 1 and α ∈ [0, 1] independent of k. (2.11)

Then (2.4) holds with κλ
def
= 2κ

1

1+α

λ (1 + κrg).

Proof. Clearly, (2.4) holds when λmin(Hk +Mk) = 0. When λmin(Hk +Mk) > 0 and hence

Hk +Mk ≻ 0, (2.2) implies that

‖sk‖ ≤ ‖gk‖+ ‖rk‖
λmin(Hk +Mk)

≤ (1 + κrg)‖gk‖
λmin(Hk) + λmin(Mk)

. (2.12)

This and (2.11) give the inequality

ψ(λmin(Mk)) ≤ 0 with ψ(λ)
def
= λ

1

α (λ+ λmin(Hk))− κ
1

α
λ (1 + κrg)‖gk‖. (2.13)

Now note that ψ(0) = ψ(−λmin(Hk)) = −κ
1

α
λ (1 + κrg)‖gk‖ and thus

ψ(λ1,k) < 0 with λ1,k = max{0,−λmin(Hk)}. (2.14)

Moreover, the form of ψ(λ) implies that ψ(λ) is strictly increasing for λ ≥ λ1,k. Define now

λ2,k
def
= −λmin(Hk) + 2max

{

|λmin(Hk)|, κ
1

1+α

λ (1 + κrg)
α

1+α ‖gk‖
α

1+α

}

> λ1,k. (2.15)

Suppose first that λmin(Hk) < 0 and |λmin(Hk)| ≥ κ
1

1+α

λ (1+κrg)
α

1+α ‖gk‖
α

1+α . Then one verifies

that λ2,k = 3|λmin(Hk)| and

ψ(λ2,k) = (3|λmin(Hk)|)
1+α
α − (3|λmin(Hk)|)

1

α |λmin(Hk)| − κ
1

1+α

λ (1 + κrg)
α

1+α ‖gk‖

= 2 · 3 1

α |λmin(Hk)|
1+α
α − κ

1

1+α

λ (1 + κrg)
α

1+α ‖gk‖ > 0

Suppose now that λmin(Hk) ≥ 0 and |λmin(Hk)| ≥ κ
1

1+α

λ (1 + κrg)
α

1+α ‖gk‖
α

1+α . Then λ2,k =

λmin(Hk) and

ψ(λ2,k) = (λmin(Hk))
1+α
α + (λmin(Hk))

1

α |λmin(Hk)| − κ
1

1+α

λ (1 + κrg)
α

1+α ‖gk‖ > 0.

Thus we deduce that ψ(λ2,k) > 0 whenever |λmin(Hk)| ≥ κ
1

1+α

λ (1+κrg)
α

1+α ‖gk‖
α

1+α . Moreover

the same inequality obviously holds if |λmin(Hk)| < κ
1

1+α

λ (1+κrg)
α

1+α ‖gk‖
α

1+α because ψ(λ) is

increasing with λ. As a consequence, ψ(λ2,k) > 0 in all cases. We now combine this inequality,

(2.14) and the monotonicity of ψ(λ) for λ ≥ λ1,k to obtain that either λmin(Mk) ≤ λ1,k < λ2,k
or λmin(Mk) ∈ [λ1,k, λ2,k) because of of (2.13). Thus λmin(Mk) ≤ λ2,k, which, due to (2.15)

and κλ > 1, implies (2.4). ✷
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Thus a method satisfying (2.1)–(2.5) and (2.11) belongs to M.α, but not every method in M.α

needs to satisfy (2.11). This latter requirement implies the following property regarding the

length of the step generated by methods in M.α satisfying (2.11) when applied to functions

satisfying A.α.

Lemma 2.3 Assume that an objective function f satisfying A.α is minimized by a method

satisfying (2.1), (2.2), (2.11) and such that the conditioning of Mk is bounded in that

κ(Mk) ≤ κκ for some κκ ≥ 1. Then there exists κs,α > 0 independent of k such that,

for k ≥ 0,

‖sk‖ ≥ κs,α‖gk+1‖
1

1+α . (2.16)

Proof. The triangle inequality provides

‖gk+1‖ ≤ ‖gk+1 − (gk +Hksk)‖+ ‖gk +Hksk‖. (2.17)

From (2.1), gk+1 = g(xk+sk) and Taylor expansion provides gk+1 = gk+
∫ 1
0 H(xk+τsk)skdτ .

This and (2.8) now imply

‖gk+1 − (gk +Hksk)‖ ≤
∥

∥

∥

∥

∫ 1

0
[H(xk + τsk)−H(xk)]dτ

∥

∥

∥

∥

· ‖sk‖ ≤ LH,α(1 + α)−1‖sk‖1+α,

so that (2.17) and (2.2) together give that

‖gk+1‖ ≤ LH,α(1 + α)−1‖sk‖1+α + (1 + κrs)‖Mk‖ ‖sk‖.

If Mk 6= 0, this inequality and the fact that κ(Mk) is bounded then imply that

‖gk+1‖ ≤ LH,α(1 + α)−1‖sk‖1+α + κ(Mk)(1 + κrs)λmin(Mk) ‖sk‖,

while we may ignore the last term on the right-hand side if Mk = 0. Hence, in all cases,

‖gk+1‖ ≤ LH,α(1 + α)−1‖sk‖1+α + κκ(1 + κrs)λmin(Mk) ‖sk‖,

where we used that κ(Mk) ≤ κκ by assumption. This bound and (2.11) then imply (2.16)

with κs,α
def
= [LH,α(1 + α)−1 + κκ(1 + κrs)κλ]

− 1

1+α . ✷

Property (2.16) will be central for proving (in Appendix A2) desirable properties of a class of

methods belonging to M.α. In addition, we now show that (2.16) is a necessary condition for

fast local convergence of methods of type (2.2), under reasonable assumptions; fast local rate of

convergence in a neighbourhood of well-behaved minimizers is a “trademark” of what is commonly

regarded as second-order methods.
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Lemma 2.4 Let f satisfy assumptions A.α. Apply an algorithm to minimizing f that

satisfies (2.1) and (2.2) and for which

‖Mk‖ ≤ κλ, k ≥ 0, for some κλ > 0 independent of k. (2.18)

Assume also that convergence at linear or faster than linear rate occurs, namely,

‖gk+1‖ ≤ κc‖gk‖1+α, k ≥ 0, (2.19)

for some κc > 0 independent of k, with κc ∈ (0, 1) when α = 0. Then (2.16) holds.

Proof. Let

0 ≤ αk
def
=

‖sk‖
‖gk+1‖

1

1+α

, k ≥ 0. (2.20)

From (2.19) and the definition of αk in (2.20), we have that, for k ≥ 0,

(1− κrg)
‖sk‖
αk

≤ κc,α(1− κrg)‖gk‖ ≤ κc,α‖gk + rk‖
= κc,α‖(Hk +Mk)sk‖ ≤ κc,α‖Hk +Mk‖ · ‖sk‖,

where κc,α
def
= κ

1

1+α
c and where we used (2.2) to obtain the first equality. It follows that

‖Hk +Mk‖ ≥ (1− κrg)

αkκc,α
, k ≥ 0. (2.21)

The bounds (2.9) and (2.18) imply that {Hk +Mk} is uniformly bounded above for all k,

namely,

‖Hk +Mk‖ ≤ κhl, k ≥ 0, (2.22)

where κhl
def
= Lg + κλ. Now (2.21) and (2.22) give that αk ≥ 1/(κhlκc,α) > 0, for all k ≥ 0,

and so it follows from (2.20), that (2.16) holds with κs,α
def
= (1− κrg)/(κc1κc,α). ✷

It is clear from the proof of Lemma 2.4 that (2.19) is only needed asymptotically, that is for all

k sufficiently large; for simplicity, we have assumed it holds globally.

Note that letting α = 1 in Lemma 2.4 provides a necessary condition for quadratically con-

vergent methods satisfying (2.1), (2.2) and (2.18). Also, similarly to the above proof, one can

show that if superlinear convergence of {gk} to zero occurs, then (2.16) holds with α = 0 for all

κs,α > 0, or equivalently, ‖gk+1‖/‖sk‖ → 0, as k → ∞.

Summarizing, we have shown that (2.16) holds for a method in M.α if (2.11) holds and κ(Mk)

is bounded, or if linear of faster asymptotic convergence takes place for unit steps.

2.2 Some examples of methods that belong to the class M.α

Let us now illustrate some of the methods that either by construction or under certain conditions

belong to M.α. This list of methods does not attempt to be exhaustive and other practical
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methods may be found to belong to M.α.

Newton’s method [38]. Newton’s method for convex optimization is characterised by finding

a correction sk that satisfies Hksk = −gk for nonzero gk ∈ Range(Hk). Letting

Mk = 0, rk = 0 and βk = 0 (2.23)

in (2.2) and (2.6), respectively, yields Newton’s method. Provided additionally that both gk ∈
Range(Hk) and Hk is positive semi-definite, sk is a descent direction and (2.3) holds. Since (2.4)

is trivially satisfied in this case, it follows that Newton’s method belongs to the class M.α, for

any α ∈ [0, 1], provided it does not generate infinite steps to violate (2.5). As Newton’s method is

commonly embedded within trust-region or regularization frameworks when applied to nonconvex

functions, (2.5) will in fact, hold as it is generally enforced for the latter methods. Note that

allowing ‖rk‖ > 0 subject to the second part of (2.2) then covers inexact variants of Newton’s

method.

Regularization algorithms [54, 61, 17]. In these methods, the step sk from the current iterate

xk is computed by (possibly approximately) globally minimizing the model

mk(s) = fk + gTk s+
1

2
sTHks+

σk
2 + α

‖s‖2+α, (2.24)

where the regularization weight σk is adjusted to ensure sufficient decrease of f at xk + sk.

We assume here that the minimization of (2.24) is carried accurately enough to ensure that

∇ssmk − (s) = Hk + σk‖s‖I is positive semidefinite, which is always possible because of [16,

Theorem 3.1]. The scalar α is the same fixed parameter as in the definition of A.α and M.α, so

that for each α ∈ [0, 1], we have a different regularization term and hence what we shall call an

(2 + α)-regularization method. For α = 1, we recover the cubic regularization (ARC) approach

[54, 72, 63, 16, 17]. For α = 0, we obtain a quadratic regularization scheme, reminiscent of the

Levenberg-Morrison-Marquardt method [64]. For these (2 + α)-regularization methods, we have

α ∈ [0, 1], Mk = σk‖sk‖αI, and βk =
2

2 + α
(2.25)

in (2.2) and (2.6). If scaling the regularization term is considered, then the second of these relation

is replaced by Mk = σk‖sk‖αNk for some fixed scaling symmetric positive definite matrix having

a bounded condition number. Note that, by construction, κ(Mk) = 1. Since α ≥ 0, we have

0 ≤ βk ≤ 1 which is required in (2.6). A mechanism of successful and unsuccessful iterations and

σk adjustments can be devised similarly to ARC [16, Alg. 2.1] in order to deal with steps sk that

do not give sufficient decrease in the objective. An upper bound on the number of unsuccessful

iterations which is constant multiple of successful ones can be given under mild assumptions on

f [17, Theorem 2.1]. Note that each (successful or unsuccessful) iteration requires one function-

and at most one gradient evaluation.

We now show that for each α ∈ [0, 1], the (2+α)−regularization method based on the model

(2.24) satisfies (2.5) and (2.4) when applied to f in A.α, and so it belongs to M.α.
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Lemma 2.5 Let f satisfy A.α with α ∈ (0, 1]. Consider minimizing f by applying an

(2+α)-regularization method based on the model (2.24), where the step sk is chosen as the

global minimizer of the local α−model, namely of mk(s) in (2.6) with the choice (2.25), and

where the regularization parameter σk is chosen to ensure that

σk ≥ σmin, k ≥ 0, (2.26)

for some σmin > 0 independent of k. Then (2.5) and (2.11) hold, and so the (2 + α)-

regularization method belongs to M.α.

Proof. (see Appendix A2 for details) The same argument that is used in [16, Lem.2.2] for

the α = 1 case (see also Appendix A2) provides

‖sk‖ ≤ max







(

3(2 + α)Lg

4σk

)

1

α

,

(

3(2 + α)‖gk‖
σk

)

1

1+α







, k ≥ 0, (2.27)

so long as A.α holds, which together with (2.26), implies

‖sk‖ ≤ max







(

3(2 + α)Lg

4σmin

)

1

α

,

(

3(2 + α)‖gk‖
σmin

)

1

1+α







, k ≥ 0. (2.28)

The assumptions A.α, that the model is minimized globally imply that the α ≤ 1 analog of

[16, Corollary 2.6] holds, which gives ‖gk‖ → 0 as k → ∞, and so {‖gk‖}, k ≥ 0, is bounded

above. The bound (2.5) now follows from (2.28).

Using the same techniques as in [16, Lemma 5.2] that applies when f satisfies A.1, it is easy to

show for the more general A.α case that σk ≤ cσ max(σ0, LH,α) for all k, where cσ is a constant

depending solely on α and algorithm parameters. It then follows from (2.25) that (2.11) holds

and therefore that the (2 + α)-regularization method belongs to M.α for α ∈ (0, 1]. ✷

We cannot extend this result to the α = 0 case unless we also assume that Hk is positive semi-

definite. If this is the case, further examination of the proof of [16, Lem.2.2] allows us to remove

the first term in the max in (2.28), and the remainder of the proof is valid.

We note that bounding the regularization parameter σk away from zero in (2.26) appears

crucial when establishing the bounds (2.5) and (2.4). Requiring (2.26) implies that the Newton

step is always perturbed, but does not prevent local quadratic convergence of ARC [17].

Goldfeld-Quandt-Trotter-type (GQT) methods [46]. Let α ∈ (0, 1]. These algorithms set

Mk = λkI, where

λk =

{

0, when λmin(Hk) ≥ ωk‖gk‖
α

1+α ;

−λmin(Hk) + ωk‖gk‖
α

1+α , otherwise,
(2.29)

in (2.2), where ωk > 0 is a parameter that is adjusted so as to ensure sufficient objective decrease.

(Observe that replacing α
1+α by 1 in the exponent of ‖gk‖ in (2.29) recovers the original method of

Goldfeld et al. [46].) It is straightforward to check that (2.3) holds for the choice (2.29). Thus the
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GQT approach takes the pure Newton step whenever the Hessian is locally sufficiently positive

definite, and a suitable regularization of this step otherwise. The parameter ωk is increased by a

factor, say γ1 > 1, and xk+1 left as xk whenever the step sk does not give sufficient decrease in

f (i.e., iteration k is unsuccessful), namely when

ρk
def
=

fk − f(xk + sk)

fk −mk(sk)
≤ η1, (2.30)

where η1 ∈ (0, 1) and

mk(s) = fk + gTk s+
1

2
sTHks (2.31)

is the model (2.6) with βk = 0. If ρk > η1, then ωk+1 ≤ ωk and xk+1 is constructed as in (2.1).

Note that the choice (2.29) implies that (2.4) holds, provided ωk is uniformly bounded above.

We show that the latter, as well as (2.5), hold for functions in A.α.

Lemma 2.6 Let f satisfy A.α with α ∈ (0, 1]. Consider minimizing f by applying a GQT

method that sets λk in (2.2) according to (2.29), measures progress according to (2.30), and

chooses the parameter ωk and the residual rk to satisfy, for k ≥ 0,

ωk ≥ ωmin k ≥ 0. and rTk sk ≤ 0. (2.32)

Then (2.5) and (2.4) hold, and so the GQT method belongs to M.α.

Note that the second part of (2.32) merely requires that sk is not longer that the line minimum

of the regularized model along the direction sk, that is 1 ≤ argminτ≥0mk(τsk).

Proof. Let us first show (2.5). Since ωk > 0, and gk + rk 6= 0 until termination, the choice

of λk in (2.29) implies that λk + λmin(Hk) > 0, for all k, and so (2.2) provides

sk = −(Hk + λkI)
−1(gk + rk), (2.33)

and hence,

‖sk‖ ≤ ‖(Hk + λkI)
−1‖ · ‖gk + rk‖ =

(1 + κrg)‖gk||
λk + λmin(Hk)

, k ≥ 0. (2.34)

It follows from (2.29) and the first part of (2.32) that, for all k ≥ 0,

λk + λmin(Hk) ≥ ωk‖gk‖
α

1+α ≥ ωmin‖gk‖
α

1+α , (2.35)

This and (2.34) further give

‖sk‖ ≤ (1 + κrg)‖gk‖
1

1+α

ωmin
, k ≥ 0. (2.36)

As global convergence assumptions are satisfied when f in A.α [34, 46], we have ‖gk‖ → 0 as

k → ∞ (in fact, we only need the gradients {gk} to be bounded). Thus (2.36) implies (2.5).

Due to (2.29), (2.4) holds if we show that {ωk} is uniformly bounded above. For this, we first

need to estimate the model decrease. Taking the inner product of (2.2) with sk, we obtain

that

−gTk sk = sTkHksk + λk‖sk‖2 − rTk sk.
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Substituting this into the model decrease, we deduce also from (2.6) with βk = 0 that

fk −mk(sk) = −gTk sk − 1

2
sTkHksk = 1

2
sTkHksk + λk‖sk‖2 − rTk sk ≥ ( 1

2
λmin(Hk) + λk) ‖sk‖2.

where we used the second part of (2.32) to obtain the last inequality. It is straightforward to

check that this and (2.35) now imply

fk −mk(sk) ≥ 1

2
ωk‖gk‖

α
1+α · ‖sk‖2. (2.37)

We show next that iteration k is successful for ωk sufficiently large. From (2.30) and second-

order Taylor expansion of f(xk + sk), we deduce

|ρk − 1| =
∣

∣

∣

∣

f(xk + sk)−mk(sk)

fk −mk(sk)

∣

∣

∣

∣

≤ |Hk −H(ξk)| · ‖sk‖2
2(fk −mk(sk))

≤ LH,α‖sk‖2+α

2(fk −mk(sk))
.

This and (2.37) now give

|ρk − 1| ≤ LH,α‖sk‖α

ωk‖gk‖
α

1+α

≤ LH,α

ωα
minωk

, (2.38)

where to obtain the last inequality, we used (2.36). Due to (2.30), iteration k is successful

when |ρk − 1| ≤ 1 − η1, which from (2.38) is guaranteed to hold whenever ωk ≥ LH,α

ωα
min

(1−η1)
.

As on each successful iteration we set ωk+1 ≤ ωk, it follows that

ωk ≤ ω
def
= max

{

ω0,
γ1LH,α

ωα
min(1− η1)

}

, k ≥ 0, (2.39)

where the max term addresses the situation at the starting point and the γ1 factor is included

in case an iteration was unsuccessful and close to the bound. This concludes proving (2.4).

✷

Trust-region algorithms [34]. These methods compute the correction sk as the global solution

of the subproblem

minimize fk + gTk s+
1

2
sTHks subject to ‖s‖ ≤ ∆k, (2.40)

where ∆k is an evolving trust-region radius that is chosen to ensure sufficient decrease of f at

xk + sk. The resulting global minimizer satisfies (2.2)–(2.3) [34, Corollary 7.2.2] with Mk = λkI

(or Mk = λkNk if scaling is considered) and rk = 0. The scalar λk is the Lagrange multiplier of

the trust-region constraint, satisfies

λk ≥ max{0,−λmin(Hk)} (2.41)

and is such that λk = 0 whenever ‖sk‖ < ∆k (and then, sk is the Newton step) or calculated

using (2.2) to ensure that ‖sk‖ = ∆k. The scalar βk = 0 in (2.6). The iterates are defined

by (2.1) whenever sufficient progress can be made in some relative function decrease (so-called

successful iterations), and they remain unchanged otherwise (unsuccessful iterations) while ∆k

is adjusted to improve the model (decreased on unsuccessful iterations, possibly increased on

successful ones). The total number of unsuccessful iterations is bounded above by a constant

multiple of the successful ones plus a (negligible) term in log ǫ [53, page 23] provided ∆k is not
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increased too fast on successful iterations. One successful iteration requires one gradient and one

function evaluation while an unsuccessful one only evaluates the objective.

The property (2.5) of M.α methods can be easily shown for trust-region methods, see Lemma

2.7. It is unclear however, whether conditions (2.4) or (2.11) can be guaranteed in general for

functions in A.α. The next lemma gives conditions ensuring a uniform upper bound on the

multiplier λk, which still falls short of (2.4) in general.

Lemma 2.7 Let f satisfy assumptions A.0. Consider minimizing f by applying a trust-

region method as described in [34, Algorithm 6.1.1], where the trust-region subproblem is

minimized globally to compute sk and where the trust-region radius is chosen to ensure that

∆k ≤ ∆max, k ≥ 0, (2.42)

for some ∆max > 0. Then (2.5) holds. Additionally, if

‖gk+1‖ ≤ ‖gk‖, for all k sufficiently large, (2.43)

then λk ≤ λmax for all k and some λmax > 0, and λmin(Mk) is bounded.

Proof. Consider the basic trust-region algorithm as described in [34, Algorithm 6.1.1], using

the same notation. Since the global minimizer sk of the trust-region subproblem is feasible

with respect to the trust-region constraint, we have ‖sk‖ ≤ ∆k, and so (2.5) follows trivially

from (2.42).

Clearly, the upper bound on λk holds whenever λk = 0 or λk = −λmin(Hk) ≤ Lg. Thus it

is sufficient to consider the case when λk > 0 and Hk + λkI ≻ 0. The first condition implies

that the trust-region constraint is active, namely ‖sk‖ = ∆k [34, Corollary 7.2.2]. The second

condition together with (2.2) implies, as in the proof of Lemma 2.2, that (2.12) holds. Thus

we deduce

∆k ≤ ‖gk‖
λk + λmin(Hk)

,

or equivalently,

λk ≤ ‖gk‖
∆k

− λmin(Hk) ≤
‖gk‖
∆k

+ Lg, k ≥ 0. (2.44)

It remains to show that

{‖gk‖/∆k} is bounded above independently of k. (2.45)

By [34, Theorem 6.4.2], we have that there exists c ∈ (0, 1) such that the implication holds

∆k ≤ c‖gk‖ =⇒ ∆k+1 ≥ ∆k, i.e., k is successful. (2.46)

(Observe that the Cauchy model decrease condition [34, Theorem 6.3.3] is sufficient to obtain

the above implication.) Let γ1 ∈ (0, 1) denote the largest factor we allow ∆k to be decreased

by (during unsuccessful iterations). Using a similar argument to that of [34, Theorem 6.4.3],

we let k ≥ k0 be the first iterate such that

∆k+1 < cγ1‖gk+1‖, (2.47)



Worst-case evaluation complexity and optimality of second-order methods 13

where k0 is the iteration from which onwards (2.43) holds. Then since ∆k+1 ≥ γ1∆k and

from (2.43) we have that ∆k < c‖gk‖. This and (2.46) give

∆k+1 ≥ ∆k ≥ cγ1‖gk‖ ≥ cγ1‖gk+1‖,

where to obtain the second and third inequalities, we used the hypothesis and (2.43), respec-

tively. We have reached a contradiction with our assumption that k + 1 is the first iteration

greater than k0 such that (2.47) holds. Hence there is no such k and we deduce that

∆k ≥ min {∆k0 , cγ1‖gk‖} for all k ≥ k0. (2.48)

Note that since gk remains unchanged on unsuccessful iterations, (2.43) trivially holds on such

iterations. Since the assumptions of [34, Theorem 6.4.6] are satisfied, we have that ‖gk‖ → 0,

as k → ∞. This and (2.48) imply (2.45). The desired conclusion then follows from (2.44). ✷

Note that if (2.19) holds for some α ∈ [0, 1], then (2.43) is satisfied, and so Lemma 2.7 shows that

if (2.19) holds, then (2.18) is satisfied. It follows from Lemma 2.4 that fast convergence of trust-

region methods for functions in A.α alone is sufficient to ensure (2.16), which in turn is connected

to our definition of the class M.α. However, the properties of the multipliers (in the sense of (2.4)

for any α ∈ [0, 1] or even (2.16)) remain unclear in the absence of fast convergence of the method.

Based on our experience, we are inclined to believe that generally, the multipliers λk are at best

guaranteed to be uniformly bounded above, even for specialized, potentially computationally

expensive, rules of choosing the trust-region radius.

As the Newton step is taken in the trust-region framework satisfying (2.2) whenever it is within

the trust region and gives sufficient decrease in the presence of local convexity, the A.1- (hence

A.α-) example of inefficient behaviour for Newton’s method of worst-case evaluation complexity

precisely ǫ−2 can be shown to apply also to trust-region methods [15] (see also [53]).

Linesearch methods [38, 64]. We finally consider methods using a linesearch to control im-

provement in the objective at each step. Such methods compute xk+1 = xk + sk, k ≥ 0, where

sk is defined via (2.2) in which Mk is chosen so that Hk + Mk, the Hessian of the selected

quadratic model mk(s), is “sufficiently” positive definite, and rk = (1−µk)gk, yielding a stepsize

µk ∈ [1 − κrg, 1] which is calculated so as to decrease f (the linesearch); this is always possible

for sufficiently small µk (and hence sufficiently small κrg.) The precise definition of ”sufficient

decrease” depends on the particular linesearch scheme being considered, but we assume here that

µk = 1 is acceptable whenever mk(sk) = f(xk + sk).

In other words, we require the unit step to be acceptable when the model and the true objective

function match at the trial point. Because the minimization of the quadratic model along the

step always ensure that mk(sk) = f(xk) + 1

2
gksk, the above condition says that sk must be

acceptable with µk = 1 whenever f(xk + sk) = f(xk) + 1

2
gksk. This is for instance the case

for the Armijo and Goldstein linesearch conditions4, two standard linesearch techniques. As

a consequence, the corresponding linesearch variants of Newton’s method and of the (2 + α)-

regularization methods also belong to M.α (with βk = 1 for all k), and the list is not exhaustive.

Note that linesearch methods where the search direction is computed inexactly are also covered

by setting rk = gk − µk(gk + wk) for some “error vector” wk, provided the second part of (2.2)

still holds.
4With reasonable algorithmic constants, see Appendix A1.
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3 Examples of inefficient behaviour

After reviewing the methods in M.α, we now turn to showing they can converge slowly when

applied to specific functions with fixed range5 and the relevant degree of smoothness.

3.1 General methods in M.α

Let α ∈ [0, 1] and ǫ ∈ (0, 1) be given and consider an arbitrary method in M.α. Our intent is

now to construct a univariate function fM.α
ǫ (x) satisfying A.α such that

fM.α
ǫ (0) = 1, fM.α

ǫ (x) ∈ [a, b] for x ≥ 0, (3.1)

for some constants a ≤ b independent of ǫ and α, and such that the method will terminate in

exactly

kǫ,α =
⌈

ǫ−
2+α
1+α

⌉

(3.2)

iterations (and evaluations of f , g and H).

We start by defining the sequences fk, gk and Hk for k = 0, . . . , kǫ,α by

fk = 1− 1

2
kǫ

2+α
1+α , gk = −2 ǫ fk and Hk = 4 ǫ

α
1+α f2k . (3.3)

They are intended to specify the objective function, gradient and Hessian values at successive

iterates generated by the chosen method in M.α, according to (2.1) and (2.2) for some choice

of multipliers {λk} = {Mk} = {λmin(Mk)} satisfying (2.3) and (2.4). In other words, we impose

that fk = fM.α
ǫ (xk), gk = ∇fM.α

ǫ (xk) and Hk = ∇2fM.α
ǫ (xk) for k ∈ K def

= {0, . . . , kǫ,α}. Note

that fk, |gk| and Hk are monotonically decreasing and that, using (3.2),

fk ∈ [ 1
2
, 1] for k ∈ K. (3.4)

In addition, (2.3) and (2.4) impose that, for k ∈ K,

0 ≤ λk + 4ǫ
α

1+α f2k ≤ κλ max[4ǫ
α

1+α f2k , (2ǫfk)
α

1+α ] = 4κλǫ
α

1+α f2k .

yielding that

λk ∈
[

0, 4(κλ − 1)ǫ
α

1+α f2k

]

, (3.5)

As a consequence, we obtain, using both parts of (2.2), that, for k ∈ K,

sk = θk
ǫ

1

1+α

2fk
for some θk ∈

[

1− κrg
κλ

, 1 + κrg

]

. (3.6)

Note that our construction imposes that

mk(sk) = fk + gksk + 1

2
gksk + 1

2
sk(Hk + βkλk)sk

= fk + gksk + 1

2
sk[−gk + rk + (βk − 1)λksk]

≥ fk − 1

2
|gk|sk − 1

2
κrg|gk|sk + 1

2
θ2k(κλ − 1)(βk − 1)ǫ

2+α
1+α

≥ fk − 1

2
θkǫ

2+α
1+α [1 + κrg + θk(1− βk)(κλ − 1)]

≥ fk − 1

2
ǫ
2+α
1+α (1 + κrg)

2[1 + (1− βk)(κλ − 1)]

≥ fk − 1

2
ǫ
2+α
1+α (1 + κrg)

2κλ

(3.7)

5At variancewith the examples proposed in [15, 19].
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where we have used (2.2), (3.3), (3.6), (3.5) and βk ≤ 1. Hence, again taking (3.3) into account,

fk − fk+1

fk −mk(sk)
≥

1

2
ǫ
2+α
1+α

1

2
ǫ
2+α
1+ακλ(1 + κrg)2

=
1

(1 + κrg)2κλ
∈ (0, 1), (3.8)

and sufficient decrease of the objective function automatically follows. Moreover, given (3.4), we

deduce from (3.6) that |sk| ≤ 1 for k ∈ K and (2.5) holds with κs = 1, as requested for a method

in M.α. It also follows from (2.1) and (3.6) that, if x0 = 0,

sk > 0 and xk =
k−1
∑

i=0

si, k = 0, . . . , kǫ,α. (3.9)

We therefore conclude that the sequences {fk}kǫ,αk=0, {gk}
kǫ,α
k=0, {Hk}kǫ,αk=0, {λk}

kǫ,α−1
k=0 and {sk}kǫ,α−1

k=0

can be viewed as produced by our chosen method in M.α, and, from (3.3), that termination

occurs precisely for k = kǫ,α, as desired.

We now construct the function fM.α
ǫ (x) for x ∈ [0, xkǫ,α ] using Hermite interpolation. We set

fM.α
ǫ (x) = pk(x− xk) + fk+1 for x ∈ [xk, xk+1] and k = 0, . . . , kǫ,α − 1, (3.10)

where pk is the polynomial

pk(s) = c0,k + c1,ks+ c2,ks
2 + c3,ks

3 + c4,ks
4 + c5,ks

5,

with coefficients defined by the interpolation conditions

pk(0) = fk − fk+1, pk(sk) = 0;

p′k(0) = gk, p′k(sk) = gk+1;

p
′′

k(0) = Hk, p
′′

k(sk) = Hk+1,

(3.11)

where sk is defined in (3.6). These conditions yield the following values for the coefficients

c0,k = fk − fk+1, c1,k = gk, c2,k = 1

2
Hk; (3.12)

with the remaining coefficients satisfying







s3k s4k s5k
3s2k 4s3k 5s4k
6sk 12s2k 20s3k













c3,k
c4,k
c5,k






=







∆fk − gksk − 1

2
sTkHksk

∆gk −Hksk
∆Hk






,

where

∆fk = fk+1 − fk, ∆gk = gk+1 − gk and ∆Hk = Hk+1 −Hk.

Hence we obtain after elementary calculations that

c3,k = 10∆fk
s3k

− 4∆gk
s2k

+ ∆Hk
2sk

− 10gk
s2k

− Hk
sk

;

c4,k = −15∆fk
s4k

+ 7∆gk
s3k

− ∆Hk

s2k
+ 15gk

s3k
+ Hk

2s2k
;

c5,k = 6∆fk
s5k

− 3∆gk
s4k

+ ∆Hk

2s3k
− 6gk

s4k
;

(3.13)
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Figure 3.1: fM.α
ǫ (x) (left) and its first (center) and second (right) derivatives as a function of

x for α = 1

2
and ǫ = 5.10−2 (top: x ∈ [0, xkǫ,α ]; bottom: x ∈ [0, x10]). Horizontal dotted lines

indicate values of −ǫ and ǫ in the central top graph.

The top three graphs of Figure 3.1 on this page illustrate the global behaviour of the resulting

function fM.α
ǫ (x) and of its first and second derivatives for x ∈ [0, xkǫ,α ], while the bottom ones

show more detail of the first 10 iterations. The figure is constructed using ǫ = 5.10−2 and α = 1

2
,

which then yields that kǫ,α = 148. In addition, we set λk = 1

10
|gk|

α
1+α for k = 0, . . . , kǫ,α. The

nonconvexity of fM.α
ǫ (x) is clear from the bottom graphs.

Lemma 3.1 The function fM.α
ǫ defined above on the interval [0, xkǫ,α ] can be extended to

a function from IR to IR satifying A.α and whose range is bounded independently of α and

ǫ.

Proof. We start by showing that, on

[0, xkǫ,α ] =
⋃

k∈K

[xk, xk + sk],

fM.α
ǫ is bounded in absolute value independently of ǫ and α, twice continuously differentiable

with Lipschitz continuous gradient and α-Hölder continous Hessian. Recall first (3.10) provide

that fM.α
ǫ is twice continuously differentiable by construction on [0, xkǫ,α ]. It thus remains to

investigate the gradient’s Lipschitz continuity and Hessian’s α−Hölder continuity, as well as

whether |fM.α
ǫ (x)| is bounded on this interval.

Defining now

πk
def
=

θk
2

2fk − 1

fk
∈ [0, 1

2
θk] and φ(θ)

def
= 2− 1

θ
∈ [2− κλ

1− κrg
, 1 + κrg] (3.14)
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(where we used (3.4) and (3.6)), we obtain from (3.2), (3.3), (3.6) and (3.13), that, for k ∈ K,

|c3,k|s2k = ǫfk
(

20− 10
θk

− 2θk
)

− ǫ
3+2α
1+α (4 + πk) ≤ ǫ

[

10|φ(θ)|+ 2θ + 9
2ǫ

2+α
1+α

]

= O(ǫ),

|c4,k|s3k = ǫfk
(

15
θk

− 30 + θk
)

+ ǫ
3+2α
1+α (7 + 2πk) ≤ ǫ

[

15|φ(θ)|+ θ + 8ǫ
2+α
1+α

]

= O(ǫ),

|c5,k|s4k = ǫfk
(

12− 6
θk

)

− ǫ
3+2α
1+α (3 + πk) ≤ ǫ

[

6|φ(θ)|+ 7
2ǫ

2+α
1+α

]

= O(ǫ),

(3.15)

where we also used ǫ ≤ 1 and (3.4). To show that the Hessian of fM.α
ǫ is globally α−Hölder

continuous on [0, xkǫ,α ], we need to verify that (2.8) holds for all x, y in this interval. From

(3.10), this is implied by

|p′′′

(s)| ≤ c|s|−1+α, for all s ∈ [0, sk] and k ∈ K, (3.16)

for some c > 0 independent of ǫ, s and k. We have from the expression of pk and s ∈ [0, sk]

that
|p′′′

k (s)| · |s|1−α ≤ (6|c3,k|+ 24|c4,k|sk + 60|c5,k|s2k)s1−α
k

= (6|c3,k|s2k + 24|c4,k |s3k + 60|c5,k|s4k)s
−(1+α)
k .

(3.17)

The boundedness of this last right-hand side on [0, xkǫ,α ] , and thus the α-Hölder continuity

of the Hessian of fM , then follow from (3.15), (3.6) and (3.4).

Similarly, to show that the gradient of fM is globally Lipschitz continuous in [0, xkǫ,α ] is

equivalent to proving that p
′′

k(s) is uniformly bounded above on the interval [0, sk] for k ∈ K.

Since sk > 0, we have

|p′′

k(s)| ≤ 2|c2,k|+ 6|c3,k|sk + 12|c4,k|s2k + 20|c5,k|s3k
= 2|c2,k|+ (6|c3,k|s2k + 12|c4,k|s3k + 20|c5,k|s4k)s−1

k .
(3.18)

Then the third part of (3.3) and the bounds ǫ ≤ 1, (3.15), (3.12), (3.6) and (3.4) again imply

the boundedness of the last right-hand side on [0, xkǫ,α ], as requested. Finally, the fact that

|fM.α
ǫ | is bounded on [0, xkǫ,α ] results from the observation that, on the interval [0, sk] with

k ∈ K,

|pk(s)| ≤ fk + |gk||sk|+ 1

2
|Hk| |sk|2 + (|c3,k|s2k + |c4,k|s3k + |c5,k|s4k)sk

from which a finite bound a independent from α and ǫ again follows from ǫ ≤ 1, (3.3), (3.10),

(3.15), (3.12), (3.6) and (3.4). We have thus proved that fM.α
ǫ satisfies the desired properties

on [0, xkǫ,α ].

We may then smoothly prolongate fM.α
ǫ for x ∈ IR, for instance by defining two additional

interpolation intervals [x−1, x0] = [−1, 0] and [xkǫ,α , xkǫ,α + 1] with end conditions

f−1 = 1, fkǫ,α+1 = fkǫ,α and g−1 = H−1 = gkǫ,α+1 = Hkǫ,α+1 = 0,

and setting

fM.α
ǫ (x) =











1 for x ≤ −1,

pk(x− xk) + fk+1 for x ∈ [xk, xk+1] and k ∈ {−1, . . . , kǫ,α},
fM.α
ǫ (xkǫ,α) for x ≥ xkǫ,α + 1,

which subsumes (3.10). Using arguments similar to those used above, it is easy to verify from

(3.12), (3.13) and s−1 = skǫ,α = 1 that all desired properties are maintained. ✷
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We formulate the results of this development in the following theorem.

Theorem 3.2 For every ǫ ∈ (0, 1), every α ∈ [0, 1] and every method in M.α, a func-

tion fM.α
ǫ satisfying A.α with values in a bounded interval independent of ǫ and α can

be constructed, such, when applied to fM.α
ǫ , the considered method terminates exactly at

iteration

kǫ,α =
⌈

ǫ−
2+α
1+α

⌉

.

with the first iterate xkǫ,α such that ‖∇xf
M.α
ǫ (xkǫ,α)‖ ≤ ǫ.

Note that the prolongation of fM.α
ǫ (x) to x ≥ 0 suggested as an example in the proof of

Lemma 3.1 admits an isolated finite global minimizer. Indeed, since the gkǫ,α < 0, there must

be a value lower than f(xkǫ,α) in (xkǫ,α , xkǫ,α + 1), and thus the global minimizer must lie in one

of the constructed sub-intervals in (−1, xkǫ,α+1); since f
M.α
ǫ (x) is quintic (and not constant) in

each of these, the global minimizer must therefore be isolated.

3.2 The inexact Newton’s method

It is interesting that the technique developed in the previous subsection can also be used to

derive an O
(

ǫ−2
)

lower bound on worst-case evaluation complexity for an inexact Newton’s

method applied to a function having Lipschitz continuous Hessians on the path of iterates. This

is stronger than using Theorem 3.2 above for α = 1, as it would result in a weaker O
(

ǫ−3/2
)

lower bound, or for α = 0 as it would then only guarantee bounded Hessians. In the spirit of [15],

this new function is constructed by extending to IR2 the unidimensional fM.0
ǫ (x) obtained in the

previous section for the specific choice Mk = 0, which then ensures that θk ∈ [1−κrg, 1+κrg ] for
all k (see (3.5) and (3.6)). The proposed extension is of the form

hNǫ (x, y)
def
= fM.0

ǫ (x) + uǫ(y), (3.19)

where we still have to specify the univariate function uǫ such that Newton’s method applied to

uǫ converges with large steps. In order to define it, we start by redefining

kǫ = kǫ,0 = ⌈ǫ−2⌉ and K = {0, . . . , kǫ}.

Then we set, for k ∈ K,

uk = 1− 1

2
kǫ2, guk = −2ǫ2uk, Hu

k = 2|guk |uk > 0, (3.20)

and

suk =
νk
2uk

with νk ∈ [1− κrg, 1 + κrg] and uk ∈ [ 1
2
, 1], (3.21)

this definition allowing for

Hu
k s

u
k = −guk + ruk with |ruk | ≤ κrg|guk |.

(Remember that Mk = 0 because we are considering Newton’s method.) Note that sufficient

decrease is obtained in manner similar to (3.7)-(3.8), because of (3.20), (3.21) and λk = 0,
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yielding that uk − uk+1 ≥ −(guks
u
k +

1

2
Hu

k (s
u
k)

2)/(1 +κrg). Setting now y0 = 0 and yk+1 = yk + suk
for k ∈ {1, . . . , kǫ}, we may then, as in Section 3.1, define

uǫ(y) = puk(y − yk) + uk+1 for y ∈ [yk, yk+1] and k = 0, . . . , kǫ − 1, (3.22)

where puk is a fifth degree polynomial interpolating the values and derivatives given by (3.20) on

the interval [0, suk ]. We then obtain the following result.

Theorem 3.3 For every ǫ ∈ (0, 1), there exists a function hNǫ with Lipschitz continuous

gradient and Lipschitz continuous Hessian along the path of iterates ∪kǫ−1
k=0 [xj , xj+1], and

with values in a bounded interval independent of ǫ, such that, when applied to hNǫ , Newton’s

terminates exactly at iteration

kǫ =
⌈

ǫ−2
⌉

with the first iterate xkǫ such that ‖∇xf
M.α
ǫ (xkǫ)‖ ≤ ǫ

√
1 + ǫ2.

Proof. One easily verifies from (3.20), (3.21) and (3.13) that the interpolation coefficients,

now denoted by |di,k|, are bounded for all k ∈ {0, . . . , kǫ − 1} and i ∈ {0, . . . , 5}. This

observation and (3.21) in turn guarantee that uǫ and all its derivatives (including the third)

remain bounded on each interval [0, suk ] by constants independent of ǫ. As in Lemma 3.1,

we next extend uǫ to the whole of IR while preserving this property. We then construct hN

using (3.19). From the properties of fM.0
ǫ and uǫ, we deduce that hNǫ is twice continuously

differentiable and has a range bounded independently of ǫ. Moreover, it satisfies A.0. When

applied on hNǫ (x, y), Newton’s generates the iterates (xk, yk) and its gradient at the kǫ-th

iterate is (ǫ, ǫ2) so that ‖∇hN (xkǫ , ykǫ)‖ = ǫ
√
1 + ǫ2, prompting termination. Before that, the

algorithm generates the steps (sk, s
u
k), where, because both fk and uk belong to [ 1

2
, 1] and

because of (3.6) with α = 0,

sk ∈ [ǫ(1− κrg), 2ǫ(1 + κrg)] and suk ∈ [1− κrg, 2(1 + κrg)]. (3.23)

Thus the absolute value of the third derivative of hNǫ (x, y) is given, for (x, y) in the k-th

segment of the path of iterates, by

1

‖(sk, suk)‖
∣

∣

∣p
′′′

k (x− xk)s
3
k + (puk)

′′′

(y − yk)(s
u
k)

3
∣

∣

∣

≤ 1
1− κrg

[

|p′′′

k (x− xk)|s3k + |(puk)
′′′

(y − yk)|(suk)3
]

= 1
1− κrg

[ (

6|c3,k|+ 24|c4,k|sk + 60|c5,k|s2k
)

s3k

+
(

6|d3,k|+ 24|d4,k|suk + 60|d5,k|(suk)2
)

(suk)
3
]

= 1
1− κrg

[ (

6|c3,k|s2k + 24|c4,k |s3k + 60|c5,k|s4k
)

sk

+6|d3,k|(suk)3 + 24|d4,k|(suk)4 + 60|d5,k|(suk)5
]

,

(3.24)

where we used the fact that ‖(sk, suk)‖ ≥ ‖suk‖. and (3.23). But, in view of (3.15), (3.14) with

θk ∈ [1− κrg, 1 + κrg], (3.23), ǫ ≤ 1 and the boundedness of the di,k, the last right-hand side
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of (3.24) is bounded by a constant independent of ǫ. Thus the third derivative of hNǫ (x, y)

is bounded on every segment by the same constant, and, as a consequence, the Hessian of

hNǫ (x, y) is Lipschitz continuous of each segment, as desired. ✷

Note that the same result also holds for any method in M.0 with Mk small enough to guarantee

that sk is bounded away from zero for all k.

4 Complexity and optimality for methods in M.α

We now consider the consequences of the examples derived in Section 3 on the evaluation com-

plexity analysis of the various methods identified in Section 2 as belonging to M.α.

4.1 Newton’s method.

First note that the third part of (3.3) ensures that Hk > 0 so that the Newton iteration is

well-defined for the choice (2.23). This choice corresponds to setting θk = 1 for all k ≥ 0 in the

example of Section 3. So we first conclude from Theorem 3.2 that Newton’s method may require

ǫ−(2+α)/(1+α) evaluations when applied on the resulting objective function fM.α
ǫ satisfying A.α to

generate |gk| ≤ ǫ. However, Theorem 3.3 provides the stronger result that it may in fact require

ǫ−2 evaluations (as a method in M.0) for nearly the same task (we traded Lipschitz continuity

of the Hessian on the whole space for that along the path of iterates). As a consequence we

obtain that Newton’s method is not optimal in M.α as far as worst-case evaluation complexity

is concerned.

The present results also improves on the similar bound given in [19], in that the objective

function on Sections 3.1 and 3.2 ensure the existence of a lower bound flow on fM.α
ǫ (x) such that

fM.α
ǫ (x0) − flow is bounded, while the latter difference is unbounded in [19] (for α ∈ {0, 1}) as

the number of iterations approaches ǫ−2. We will return to the significance of this observation

when discussing regularization methods.

Since the steepest-descent method is known to have a worst-case evaluation complexity of

O
(

ǫ−2
)

when applied on functions having Lipschitz continuous gradients [61, p. 29] , Theorem 3.3

shows that Newton’s method may, in the worst case, converge as slowly as steepest descent in the

worst case. Moreover, we show in Appendix A1 that the quoted worst-case evaluation complexity

bound for steepest descent is sharp, which means that steepest-descent and Newton’s method are

undistinguishable from the point of view of worst-case complexity orders.

Note also that if the Hessian of the objective is unbounded, and hence, we are outside of the

class A.0, the worst-case evaluation complexity of Newton’s method worsens, and in fact, it may

be arbitrarily bad [15].

4.2 Cubic and other regularizations.

Recalling our discussion of the (2 +α)-regularization method in Section 2.2, we first note, in the

example of Section 3.1, that, because of (2.2) and (2.3), sk is a minimizer of the model (2.6) with

βk = λk at iteration k, in that

mk(sk) = fM.α
ǫ (xk + sk) = fk+1 (4.1)
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for k ∈ K. Thus every iteration is successful as the objective function decrease exactly matches

decrease in the model. Hence the choice σk = σ > 0 for all k is allowed by the method, and thus

λk = σ‖sk‖2+α satisfies (2.3) and (2.4). Theorem 3.2 then shows that this method may require

at least ǫ−(2+α)/(1+α) iterations to generate an iterate with |gk| ≤ ǫ. This is important as the

upper bound on this number of iterations was proved6 in [17] to be

O
(

[f(x0)− flow)] ǫ
− 2+α

1+α

)

(4.2)

where flow is any lower bound of f(x). Since we have that f(x0) − flow is a fixed number

independent of ǫ for the example of Section 3.1, this shows that the ratio

ρcomp
def
=

upper bound on the worst-case evaluation complexity

lower bound on the worst-case evaluation complexity
(4.3)

for the (2 + α)-regularization method is bounded independently of ǫ and α. Given that (4.2)

involves an unspecified constant, this is the best that can be obtained as far as the order in ǫ is

concerned, and yields the following important result on worst-case evaluation complexity.

Theorem 4.1 When applied to a function satisfying A.α, the (2+α)-regularization method

may require at most (4.2) function and derivatives evaluations. Moreover this bound is sharp

(in the sense that ρcomp is bounded independently of ǫ and α) and the (2+α)-regularization

method is optimal in M.α.

Proof. The optimality of the (2 + α)-regularization method within M.α results from the

observation that the example of Section 3 implies that no method in M.α can have a worst-

case evaluation complexity of a better order. ✷

In particular, the cubic regularization method is optimal for smooth optimization problems with

Lipschitz continuous second derivatives. As we have seen above, this is in contrast with Newton’s

method.

Note that Theorem 4.1 as stated does not result from the statement in [19] that the bound

(4.2) is “essentially sharp”. Indeed this latter statement expresses the fact that, for any τ > 0,

there exists a function independent of ǫ, on which the relevant method may need at least ǫ−3/2+τ

evaluations to terminate with |gk| ≤ ǫ. But, for any fixed ǫ, the value of f(x0) − flow tends to

infinity when, in the example of that paper, the number of iterations to termination approaches

ǫ−3/2 as τ goes to zero. As a consequence, the numerator of the ratio (4.3), that is (4.2), and

ρcomp itself are unbounded for that example. Theorem 4.1 thus brings a formal improvement on

the conclusions of [19].

6As a matter of fact, [17] contains a detailed proof of the result for α = 1, as well as the statement that it

generalizes for α ∈ (0, 1]. Because of the central role of this result in the present paper, a more detailed proof of

the worst-case evaluation complexity bound for α ∈ (0, 1] in provided as Appendix A2.
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4.3 Goldfeld-Quandt-Trotter

Recalling (2.29), we can set ωk = ω in the algorithm as every iteration is successful due to (4.1)

which, with (3.3) and fk ∈ [ 1
2
, 1] gives that λk+λmin(Hk) ≤ ω|gk|

α
1+α , which is in agreement with

(2.5) and (2.4). Thus the lower bound of ǫ−(2+α)/(1+α) iterations for termination also applies to

this method.

An upper bound on the worst-case evaluation complexity for the GQT method can be obtained

by the following argument. We first note that, similarly to regularization methods, we can

bound the total number of unsuccessful iterations as a constant multiple of the successful ones,

provided ωk is chosen such that (2.32) holds. Moreover, since f satisfies A.α, its Hessian is

bounded above by (2.9). In addition, we have noted in Section 2.2 that ‖gk‖ is also bounded

above. In view of (2.29) and (2.39), this in turn implies that ‖Hk + λkI‖ is also bounded above.

Hence we obtain from (2.33) that ‖sk‖ ≥ κGQT ‖gk‖ ≥ κGQT ǫ for some κQGT > 0, as along as

termination has not occurred. This last bound and (2.37) then give that GQT takes at most

O
(

(f(x0)− flow)ǫ
− α

1+α
−2
)

iterations, which is worse than (4.2) for α > 0. Note that this bound

improves if only Newton steps are taken (i.e. λk = 0 is chosen for all k ≥ 0), to be of the order of

(4.2); however, this cannot be assumed in the worst-case for nonconvex functions. In any case,

it implies that the GQT method is not optimal in M.α.

4.4 Trust-region methods

Recall the choices (2.41) we make in this case. If λk = 0, the trust-region constraint ‖s‖ ≤ ∆k is

inactive at sk, in which case, sk is the Newton step. If we make precisely the choices we made

for Newton’s method above, choosing ∆0 such that ∆0 > |s0| implies that the Newton step will

be taken in the first and in all subsequent iterations since each iteration is successful and then

∆k remains unchanged or increases while the choice (3.6) implies that sk decreases. Thus the

trust-region approach, through the Newton step, has a worst-case evaluation complexity when

applied to fM.α
ǫ which is at least that of the Newton’s method, namely ǫ−2.

4.5 Linesearch methods

Because the examples of Sections 3.1 and 3.2 are valid for rk = 0 which corresponds to µk = 1

for all k, and because this stepsize is acceptable since f(xk+1) = mk(sk), we deduce that at least

ǫ−
2+α
1+α iterations and evaluations may be needed for the linesearch variants of any method in M.α

applied to a function satisfying A.α, and that ǫ−2 evaluations may be needed for the linesearch

variant of Newton’s method applied on a function satisfying A.0. Thus the conclusions drawn

regarding their (sub-)optimality in terms of worst-case evaluation complexity are not affected by

the use of a linesearch.

5 The Curtis-Robinson-Samadi class

We finally consider a class of methods recently introduced in [36], which we call the CRS class.

This class depends on the parameters 0 < σ ≤ σ̄, η ∈ (0, 1) and two non-negative accuracy

thresholds κ1 and κ2. It is defined as follows. At the start, adaptive regularization thresholds

are set according to

σL0 = 0 and σU0 = σ̄. (5.1)
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Then for each iteration k ≥ 0, a step sk from the current iterate xk and a regularization parameter

λk ≥ 0 are chosen to satisfy7

(Hk + λkI)sk = −gk + rk, (5.2)

σLk ‖sk‖ ≤ λk ≤ σUk ‖sk‖, (5.3)

sTk rk ≤ 1

2
sTk (Hk + λkI)sk + 1

2
κ1‖sk‖3, (5.4)

and

‖rk‖ ≤ λk‖sk‖+ κ2‖sk‖2. (5.5)

The step is then accepted, setting xk+1 = xk + sk, if

ρCRS =
f(xk)− f(xk + sk)

‖sk‖3
≥ η (5.6)

or rejected otherwise. In the first case, the regularization thresholds are reset according to (5.1).

If sk is rejected, σLk and σUk are updated by a simple mechanism (using σ) which is irrelevant for

our purpose here. The algorithm is terminated as soon as an iterate is found such that ‖gk‖ ≤ ǫ.

Observe that (5.2) corresponds to inexactly minimizing the regularized model (2.6) and that

(5.5) is very similar to the subproblem termination rule of [10].

An upper bound of O
(

ǫ−3/2
)

is proved in [36, Theorem 17] for the worst-case evaluation

complexity of the methods belonging to the CRS class. It is stated in [36] that both ARC

[54, 72, 63, 16, 17] and TRACE [37] belong to the class, although the details are not given.

Clearly, the CRS class is close to M.1, but yet differs from it. In particular, no requirement

is made that Hk + λkI be positive semi-definite but (5.4) is required instead, there is no formal

need for the step to be bounded and (5.5) combined with (5.3) is slightly more permissive than

the second part of (2.2). We now define CRSa, a sub-class of the CRS class of methods, as the

set of CRS methods for which (5.5) is strengthened8 to become

‖rk‖ ≤ min
[

κrg‖gk‖, λk‖sk‖+ κ2‖sk‖2
]

with κrg < 1. (5.7)

(in a manner reminiscent of the second part of (2.2)) and such that

2η(1 + κrg)
3 ≤ 1 (5.8)

(a mild technical condition9 whose need will become apparent below). We claim that, for any

choice of method in the CRSa class and termination threshold ǫ, we can construct a function

satisfying A.1 such that the considered CRSa method terminates in exactly
⌈

ǫ−3/2
⌉

iterations

and evaluations. This achieved simply by showing that the generated sequences of iterates,

function, gradient and Hessian values belong to those detailed in the example of Section 3.1.

We now apply a method of the CRSa class for a given ǫ > 0, and first consider an iterate xk
with associated values fk, gk and Hk given by (3.3) for α = 1, that is

f0 = 1, fk = f0 − 1

2
kǫ3/2, gk = −2ǫfk and Hk = 4ǫ1/2f2k ; (5.9)

7In [36], further restrictions on the step are imposed in order to obtain global convergence under A.0 and

bounded gradients, but are irrelevant for the worst-case complexity analysis under A.1. We thus ignore them here,

but note that this analysis also ensures global convergence to first-order stationary points.
8Hence the subscript a, for “accurate”.
9Due to the lack of scaling invariance of (5.6), at variance with (2.30).
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Suppose that

σLk = 0 and σUk = σ̄ (5.10)

(as is the case by definition for k = 0), and let

sk = θk
ǫ1/2

2fk
(θk > 0) (5.11)

be an acceptable step for an arbitrary method in the CRSa class. Now, because of (5.10), (5.3)

reduces to

λk ∈ [0, σ̄|sk|] =
[

0, σ̄θk
ǫ1/2

2fk

]

(5.12)

and, given that Hk > 0 because of (5.9), this in turn implies that Hk + λk > 0. Condition (5.7)

requires that

|gk + (Hk + λk)sk| = |rk| ≤ κrg|gk| = 2κrgǫfk < 2ǫ, (5.13)

where we used the fact that fk ≤ 1 because of (5.9) and κrg < 1 because of (5.7). Moreover,

(5.13) and (5.12) imply that

2(1 − κrg)ǫfk
4ǫ1/2f2k + σ̄sk

≤ |gk|(1 − κrg)

Hk + λk
≤ sk ≤ |gk|(1 + κrg)

Hk + λk
≤ (1 + κrg)ǫ

1/2

2fk
. (5.14)

Thus, using (5.11) and the right-most part of these inequalities, we obtain that θk ≤ 1+κrg , which

in turn ensures that sk ≤ (1 + κrg)ǫ
1/2/(2fk). Substituting this latter bound in the denominator

of the left-most part of (5.14) and using (5.11) again with the fact that fk ≥ 1

2
before termination,

we obtain that

θk ∈
[

1− κrg
1 + σ̄(1 + κrg)

, 1 + κrg

]

(5.15)

(note that this is (3.6) with κλ = 1 + σ̄(1 + κrg)). We immediately note that πk and φ(θk) are

then both guaranteed to be bounded above and below as in (3.14). (Since this is enough for our

purpose, we ignore the additional restriction on θk which might result from (5.4).) Using the

definitions (5.9) for k + 1, we may then construct the objective function fCRS
ǫ on the interval

[xk, xk + sk] by Hermite interpolation, as in Section 3.1. Moreover, using (5.6), (5.9), (5.11),

(5.15), fk ∈ [ 1
2
, 1] and the condition (5.8), we obtain that

ρk =
ǫ3/2

2

(

2fk
θkǫ1/2

)3

=
4f3k
θ3k

≥ 1

2(1 + κrg)3
≥ η.

Thus iteration k is successful, xk+1 = xk+sk, σ
L
k+1 = σLk = 0, σUk+1 = σUk = σ̄, and all subsequent

iterations of the CRSa method up to termination follow the same pattern in accordance with (5.9).

As in Section 3.1, we may construct fCRS
ǫ on the whole of IR which satisfies A.1 and such that,

the considered CRSa method applied to fCRS
ǫ will terminate in exactly ⌈ǫ−3/2⌉ iterations and

evaluations. This and the O
(

ǫ−3/2
)

upper bound on the worst-case evaluation complexity of

CRS methods allow stating the following theorem.
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Theorem 5.1 For every ǫ ∈ (0, 1) and every method in the CRSa class, a function fCRS
ǫ

satisfying A.1 with values in a bounded interval independent of ǫ can be constructed, such

that the considered method terminates exactly at iteration

kǫ =
⌈

ǫ−3/2
⌉

with the first iterate xkǫ such that ‖∇xf
CRS
ǫ (xkǫ)‖ ≤ ǫ. As a consequence, methods in CRSa

are optimal within the CRS class and their worst-case evaluation complexity is, in order,

also optimal with respect to that of methods in M.1.

CRSa then constitutes a kernel of optimal methods (from the worst-case evaluation complexity

point of view) within CRS and M.1. Methods in CRS but not in CRSa correspond to very

inaccurate minimization of the regularized model, which makes it unlikely that their worst-case

evaluation complexity surpasses that of methods in CRSa. Finally note that, since we did not

use (5.4) to construct our example, it effectively applies to a class larger than CRSa where this

condition is not imposed.

6 The algorithm of Royer and Wright

We finally consider the linesearch algorithm proposed in [65, Algorithm 1], which is reminiscent

of the double linesearch algorithm of [47] and [34, Section 10.3.1]. From a given iterate xk,

this algorithm computes a search direction dk whose nature depends on the curvature of the

(unregularized) quadratic model along the negative gradient, and possibly computes the left-

most eigenpair of the Hessian if this curvature is negative or if the gradient’s norm is small

enough to declare first-order stationarity. A linesearch along dk is then performed by reducing

the steplength αk from αk = 1 until

f(xk + αkdk) ≤ f(xk)−
η

6
α3
k‖dk‖3 (6.1)

for some η > 0. The algorithm uses ǫg and ǫH , two different accuracy thresholds for first- and

second-order approximate criticality, respectively.

Our objective is now to show that, when applied to the function fM.1
ǫg of Section 3.1 with

ǫ = ǫg, this algorithm, which we call the RW algorithm, takes exactly kǫg,1 = ⌈ǫ−3/2
g ⌉ iterations

and evaluations to terminate with ‖gk‖ ≤ ǫg.

We first note that (3.3) guarantees that Hk is positive definite and, using (3.4), that

gTkHkgk
‖gk‖2

= 4ǫ1/2g f2k > ǫg

for k ∈ {0, . . . , kǫg,1}. Then, provided
ǫH ≤ √

ǫg, (6.2)

and because λmin(Hk) = 4ǫ
1/2
g f2k > ǫH (using (3.4) again), the RW algorithm defines the search

direction from Newton’s equation Hkdk = −gk (which corresponds, as we have already seen, to
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taking Mk = 0 = rk and thus θk = 1 in the example of Section 3.1). The RW algorithm is

therefore, on that example, identical to a linesearch variant of Newton’s method with the specific

linesearch condition (6.1). Moreover, using (3.4) once more,

f(xk)− f(xk + dk) =
1

2
ǫ3/2g ≥ η

6

(

ǫ
1/2
g

2fk

)3

≥ η

6
ǫ3/2g

whenever η ≤ 3, an extremely weak condition10. Thus (6.1) holds11 with αk = 1. We have

thus proved that the RW algorithm generates the same sequence of iterates as Newton’s method

when applied to fM.1
ǫg . The fact that an upper bound of O

(

ǫ
−3/2
g

)

iterations and evaluations was

proved to hold in [65, Theorem 5] then leads us to stating the following result.

Theorem 6.1 Assume that η ∈ (0, 3]. Then, for every ǫg ∈ (0, 1) and ǫH satisfying (6.2), a

function fM.1
ǫg satisfying A.1 with values in a bounded interval (independent of ǫg and ǫH)

can be constructed, such that the Royer-Wright algorithm terminates exactly at iteration

kǫg =
⌈

ǫ−3/2
g

⌉

with the first iterate xkǫg such that ‖∇xf
M.1
ǫg (xkǫg )‖ ≤ ǫg. As a consequence and under

assumption (6.2), the first-order worst-case evaluation complexity order of O
(

ǫ
−3/2
g

)

for this

algorithm is sharp and it is (in order of ǫg), also optimal with respect to that of algorithms

in the M.1 and CRS classes.

7 Conclusions

We have provided lower bounds on the worst-case evaluation complexity of a wide class of second-

order methods for reaching approximate first-order critical points of nonconvex, adequately

smooth unconstrained optimization problems. This has been achieved by providing improved

examples of slow convergence on functions with bounded range independent of ǫ. We have found

that regularization algorithms, methods belonging to a subclass of that proposed in [36] and

the linesearch algorithm of [65] are optimal from a worst-case complexity point of view within a

very wide class of second-order methods, in that their upper complexity bounds match in order

the lower bound we have shown for relevant, sufficiently smooth objectives satisfying A.α. At

this point, the question of whether all known optimal second-order methods share enough design

concepts to be made members of a single class remains open.

Note that every iteration complexity bound discussed above is of the order ǫ−p (for various

values of p > 0) for driving the objective’s gradient below ǫ; thus the methods we have addressed

may require an exponential number of iterations 10p·k to generate k correct digits in the solution.

Also, as our examples are one-dimensional, they fail to capture the problem-dimension dependence

of the upper complexity bounds. Indeed, besides the accuracy tolerance ǫ, existing upper bounds

10In practice, η is most likely to belong to (0, 1) and even be reasonably close to zero.
11But fails for the example of Section 3.2 as ‖sk‖ = 1.
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depend on the distance to the solution set, that is f(x0)− flow, and the gradient’s and Hessian’s

Lipschitz or Hölder constants, all of which may dependent on the problem dimension. Some

recent developments in this respect can be found in [56, 1, 57, 65].

Here we have solely addressed the evaluation complexity of generating first-order critical

points, but it is common to require second-order methods for nonconvex problems to achieve

second-order criticality. Indeed, upper worst-case complexity bounds are known in this case for

cubic regularization and trust-region methods [63, 17, 21], which are essentially sharp in some

cases [21]. A lower bound on the whole class of second order methods for achieving second-order

optimality remains to be established, especially when different accuracy is requested in the first-

and second-order criticality conditions.

Regarding the worst-case evaluation complexity of constrained optimization problems, we

have shown [20, 18, 23] that the presence of constraints does not change the order of the bound,

so that the unconstrained upper bound for some first- or second-order methods carries over to the

constrained case; note that this does not include the cost of solving the constrained subproblems

as the latter does not require additional problem evaluations. Since constrained problems are

at least as difficult as unconstrained ones, these bounds are also sharp. It remains an open

question whether a unified treatment such as the one given here can be provided for the worst-

case evaluation complexity of methods for constrained problems.
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A1. An example of slow convergence of the steepest-descent

method

We show in this paragraph that the steepest-descent method may need at least ǫ−2 iteration to

terminate on a function whose range is fixed and independent of ǫ.
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We once again follow the methodology used in Section 3.1 and build a unidimensional function

fSDǫ by Hermite interpolation, such that the steepest-descent method applied to this function

takes exactly kǫ = ⌈ǫ−2⌉ iterations and function evaluations to terminate with an iterate xk such

that |g(xk)| ≤ ǫ. Note that, for the sequence of function values to be interpretable as the result

of applying the steepest-descent method (using a Goldstein linesearch), we require that, for all k,

f(xk) + µ1g
T
k sk ≤ f(xk − µkgk) ≤ f(xk) + µ2g

T
k sk for constants 0 < µ2 < µ1 < 1 (A.1)

where, as above, sk = xk+1 − xk. Keeping this in mind, we define the sequences fk, gk, Hk and

sk for k ∈ {0, . . . , kǫ − 1} by

fk = 1− 1

2
kǫ2 gk = −2ǫfk, Hk = 0, rk = 0 and µk =

1

4f2k
∈ [ 1

4
, 1].

Note that this last definition ensures that (A.1) holds provided 0 < µ2 < 1

2
< µ1 < 1. It also gives

that sk = ǫ/(2fk) ≤ ǫ < 1. Using these values, it can also be verified that termination occurs for

k = kǫ, that f
SD
ǫ defined by (3.10) and Hermite interpolation is twice continuously differentiable

on [0, xkǫ ] and that (3.12) again holds. Since |gk| ≤ ǫ, we also obtain that, for k ∈ {0, . . . , kǫ−1},
∣

∣

∣

∣

∣

∆fk
s2k

∣

∣

∣

∣

∣

= 2f2k ≤ 1,

∣

∣

∣

∣

∆gk
sk

∣

∣

∣

∣

= 2ǫ2fk ≤ 2 and

∣

∣

∣

∣

gk
sk

∣

∣

∣

∣

= 4f2k ≤ 4.

These bounds, Hk = ∆Hk = 0, the first equality of (3.18) and (3.13) then imply that the Hessian

of fSDǫ is bounded above by a constant independent of ǫ. fSDǫ thus satisfies A.0 and therefore

has Lipchitz continuous gradient. Moreover, since sk ≤ 1, we also obtain, as in Section 3.1 and

3.2, that |fSDǫ | is bounded by a constant independent of ǫ on [0, xkǫ ]. As above we then extend

fSDǫ to the whole of IR while preserving A.0.

Theorem A.1 For every ǫ ∈ (0, 1), a function fSDǫ satisfying A.0 (and thus having Lipschitz

continuous gradient) with values in a bounded interval independent of ǫ can be constructed,

such that the steepest-descent method terminates exactly at iteration

kǫ =
⌈

ǫ−2
⌉

with the first iterate xkǫ such that ‖∇xf
SD
ǫ (xkǫ)| ≤ ǫ.

As a consequence, the O
(

ǫ−2
)

order of worst-case evaluation complexity is sharp for the

steepest-descent method in the sense that the complexity ratio ρcomp is bounded above inde-

pendently of of ǫ, which improves on the conclusion proposed in [15] for the steepest-descent

method.

The top three graphs of Figure A.2 illustrate the global behaviour of the resulting function

fNǫ (x) and of its first and second derivatives for x ∈ [0, xkǫ ], while the bottom ones show more

detail of the first 10 iterations. The figure is once more constructed using ǫ = 5.10−2 (kǫ = 400).
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Figure A.2: fSDǫ (x) (left) and its first (center) and second (right) derivatives as a function of x

for ǫ = 5.10−2 (top: x ∈ [0, xkǫ,α ]; bottom: x ∈ [0, x10]). Horizontal dotted lines indicate values

of −ǫ and ǫ in the central top graph.

A2. Upper complexity bound for the (2+α)-regularization method

The purpose of this paragraph is to to provide some of the missing details in the proof of

Lemma 2.5, as well as making explicit the statement made at the end of Section 5.1 in [17]

that the (2 + α)-regularization method needs at most (4.2) iterations (and function/derivatives

evaluations) to obtain and iterate xk such that |gk| ≤ ǫ.

We start by proving (2.27) following the reasoning of [16, Lem.2.2]. Consider

mk(s)− f(xk) = gTk s+
1

2
sTHks+

1
2+ασk‖s‖2+α

≥ −‖gk‖ ‖s‖ − 1

2
‖s‖2 ‖Hk‖+ 1

2+ασk‖s‖2+α

≥
(

1
3(2+α)σk‖s‖2+α − ‖gk‖ ‖s‖

)

+
(

2
3(2+α)σk‖s‖2+α − 1

2
‖s‖2‖Hk‖

)

But then 2
3(2+α)σk‖s‖2+α−‖Hk‖ ‖s‖2 > 0 if ‖sk‖ < (3(2+α)‖Hk‖/(4σk))

1

α while 1
3(2+α)σk‖s‖2+α−

‖gk‖ ‖s‖ > 0 if ‖sk‖ < (3(2 + α)‖gk‖/σk)
1

1+α . Hence, since mk(sk) < f(xk), we have that

‖sk‖ ≤ max





(

3(2 + α)‖Hk‖
4σk

)

1

α

,

(

3(2 + α)‖gk‖
σk

)

1

1+α





which yields (2.27) because ‖Hk‖ ≤ Lg.

We next explicit the worst-case evaluation complexity bounf of Section 5.1 in [17]. Following

[16, Lemma 5.2], we start by proving that

σmax
def
= cσ max(σ0, LH,α) (A.1)

for some constant cσ only dependent on α and algorithm’s parameters. To show this inequality,

we deduce from Taylor’s theorem that, for each k ≥ 0 and some ξk belonging the the segment
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[xk, xk + sk],

f(xk + sk)−mk(sk) ≤
1

2
‖H(ξk)−H(xk)‖ · ‖sk‖2 −

σk
2 + α

‖sk‖2+α ≤
(

LH,α

2
− σk

2 + α

)

‖sk‖2+α,

where, to obtain the second inequality, we employed (2.8) in A.α and ‖ξk − xk‖ ≤ ‖sk‖. Thus

f(xk + sk) < mk(sk) whenever σk > 1

2
(2+α)LH,α, providing sufficient descent and ensuring that

σk+1 ≤ σk. Taking into account the (possibly large) choice of the regularization parameter at

startup then yields (A.1).

We next note that, because of (2.25) and (A.1), (2.11) holds. Moreover, κ(Mk) = κ (σk‖sk‖αI) =
1. Lemma 2.3 then ensures that (2.16) also holds.

We finally follow [16, Corollary 5.3] to prove the final upper bound on the number of successful

iterations (and hence on the number of function and derivatives evaluations). Let Sǫ
k index the

subset of the first k iterations that are successful and such that min[‖gk‖, ‖gk+1‖] > ǫ, and let |Sǫ
k|

denote its cardinality. It follows from this definition, (2.11), (2.26) and the fact that sufficient

decrease is obtained at successful iterations that, for all k before termination,

f(xj)−mk(sj) ≥ αSǫ
2+α
1+α , for all j ∈ Sǫ

k, (A.2)

for some positive constant αS independent of ǫ. Now, if flow > −∞ is a lower bound on f(x), we

have, using the monotonically decreasing nature of {f(xk)}, that

f(x0)− flow ≥ f(x0)− f(xk+1) =
∑

j∈Sǫ
k

[f(xj)− f(xj+1)]

≥ η1
∑

j∈Sǫ
k

[f(xj)−mk(sj)] ≥ |Sǫ
k| η1αS ǫ

2+α
1+α ,

where the constant η1 ∈ (0, 1) defines sufficient decrease. Hence, for all k ≥ 0,

|Sǫ
k| ≤

f(x0)− flow
η1αS

ǫ−
2+α
1+α .

As a consequence, the (2 + α)-regularization method needs at most (4.2) successful iterations to

terminate. Since it known that, for regularization methods, k ≤ κS |Sǫ
k| for some constant κS

[17, Theorem 2.1] and because every iteration involves a single evaluation, we conclude that the

(2+α)-regularization method needs at most (4.2) function and derivatives evaluations to produce

an iterate xk such that ‖gk‖ ≤ ǫ when applied to an objective function satisfying A.α.

We finally oserve that the statement (made in the proof of Lemma 2.5) that ‖gk‖ is bounded

above immediately follows from this worst-case evaluation complexity bound.
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