
Data policy as activity network

© Vasily Bunakov

Science and Technology Facilities Council, Harwell Campus, United Kingdom

vasily.bunakov@stfc.ac.uk

Abstract. The work suggests using a network of semantically clear interconnected activities for a

formal yet flexible definition of policies in data archives and data infrastructures. The work is inspired by

needs of EUDAT Collaborative Data Infrastructure and the case of long-term digital preservation but the

suggested policy modelling technique is universal and can be considered for all sorts of data management

that require clearly defined policies linked to machine-executable policy implementations.

Keywords: data management, long-term digital preservation, data policy, semantic modelling

1 Introduction

Problematics of advanced long-term digital preservation

[1] has been in focus of many collaborative projects and

popular recommendations. However, it has been paid a

relatively small attention in domain-specific projects

that rely on data archiving, or in projects that develop

scalable e-infrastructures aggregating data that comes

from different user communities.

One of the problems that long-term digital

preservation aims to address is having clear policies for

the entire data lifecycle from data ingestion by archive

or by e-infrastructure service, through years-long data

management with sensible data checks, transformations

and moves, to data access and data dissemination to the

end users.

One can argue that without clear data policies and

means of their validation there is no such a thing as the

long-term digital preservation, even in cases when a

technology foundation used for an archive or an e-

infrastructure is sound and well-supported. At the end

of the day, every technology evolves – and at a brisk

pace compared to relatively long time when many data

assets are going to be useful, so data policies and means

of their expression should be semantically clear and in a

way more permanent than technology that underpins

data management. A strong case for policy-driven

digital preservation, with extensive references to the

prominent projects and popular methodologies was

made in [2].

In practice, quite a few data archives and e-

infrastructures end up in a situation when they have got

a sound technology for managing data bits, also acquire

a decent number of users (which is a popular measure

used by funders for their judgement on the e-

infrastructure success) but do not have a reasonable data

policy, let alone any machine-assisted reasoning over it.

The users’ trust in the archive or the e-infrastructure

may be enough for their daily use but there can be a

substantial conceptual and technological gap in regards

to data policies formulation, expression and execution.

Some larger projects and e-infrastructures are aware

of this gap and do make efforts to close it by working

on data policies implementation. An example of such e-

infrastructure is EUDAT [3] that has developed a

number of operational services [4] and data pilots with

user communities, and is now trying to express and

apply policies to these services.

The prime candidate for applying data policies in

EUDAT is B2SAFE service [5] based on iRODS

platform [6]. B2SAFE developers are doing a very good

job on building geographically and organizationally

distributed data storage with data replication, integrity

checks and other routine tasks of data management

guided by iRODS machine-executable rules. B2SAFE

have made their own effort on policies with the

development of Data Policy Manager [7] which is a

software module with policies expressed via XML

templates. There is a perceived need though of having a

more universal solution for policy management across

all EUDAT services. The possible policy modelling

approaches under consideration are using RuleML[8],

SWRL[9] or ProvOne ontology[10] which seems

suitable not only for capturing data provenance after the

execution of certain actions but also for the forward-

looking design of data processing workflows which can

then potentially serve as a means of data policy

modelling.

This work presents an alternative approach to those

mentioned and is based on Research Activity Model

[11] which is in fact quite universal and suitable for the

expression of all sorts of activities, not necessarily

related to research. Research Activity Model is slightly

extended and applied to the case of data policy

modelling.

The main advantage of this alternative approach is

its high modularity which allows modeling policy

elements and using them as building blocks for the

semantically clear representation of a whole policy. The

modularity of policy design is especially important in

data infrastructures that commonly aggregate data

coming from different user communities, often having

their own business models, technical requirements, data

formats and data lifecycles which makes it difficult to

design and adequately express the crosswalks between

Proceedings of the XIX International Conference

“Data Analytics and Management in Data Intensive

Domains” (DAMDID/RCDL’2017), Moscow, Russia,

October 10-13, 2017

mailto:first@author.email

community-specific data policies and those for the data

infrastructure. Another advantage of the suggested

approach is its ability to address the conceptual gap

between policy formulation and policy implementation,

as it may not be easy to translate a high-level policy

(often in a textual form) into machine-executable

policy.

The modularity should allow high levels of

inheritance and reuse of policy elements; it also helps to

solve specific problems of policy formulation and

validation when textually the same policy can be

executed in different ways leading to different states of

data archive, for which situation we provide an

example. The conceptual gap between policy

formulation and policy implementation is addressed by

a possibility to define policy-related Activities as “black

boxes” with (initially) only interfaces defined; this can

be hopefully done by policy makers themselves without

entirely delegating this policy design phase to policy

implementers (software developers).

Implementation of a sensible data policy is a

challenging task even within the boundaries of a

particular organization. In a situation when the

organization is using a collaborative data infrastructure

along with its own organization-specific IT services, the

implementation of a data policy is going to be even

more intricate and is likely to rely on loosely coupled

services. An approach to data policy modelling

suggested in this work is going to address this

challenge, along with the alleviation of the earlier

mentioned problems of the policy elements reusability

and the policy application results predictability.

The work is inspired by needs of EUDAT

Collaborative Data Infrastructure [3] and refers to it for

illustration of certain ideas, also the main incentive for

the work was modelling policies for the case of long-

term digital preservation. However, the suggested

modelling technique is universal and can be considered

for all archives or e-infrastructures that are interested in

all sorts of data management (not only long-term digital

preservation) that require a clearly defined policy linked

to machine-executable policy implementations.

Conceptual challenges of data policy modelling are

discussed first, specifically the problem of policy

decomposition into policy elements, then an example is

given of how Activity Model can be used for policy

modelling. This is followed by suggestions on what IT

architecture for data policy management will be

required to support the suggested modelling techniques.

2 Data policy and a problem of its

decomposition

2.1 Insufficiency of granular policy definition

Data policy is often created as a conventional textual

document that contains certain statements about what

should or should not be done with data, with implied or

sometimes explicit logical “ANDs” and “ORs” that glue

statements together in an aggregated policy. This

composite nature of policies is why it seems natural to

break down the policy document into granular

statements, model each statement using some formalism

and then execute the statements using some IT solution.

One of the most advanced efforts on data policy

decomposition was performed by SCAPE project [12]

that created an extensive catalogue of preservation

policy elements [13] which are in fact granular textual

statements. These granular statements which can be

converted, in a pretty straightforward way, in machine-

executable statements are called control policies in

SCAPE. Examples of control policies are: “information

on preservation events should use the PREMIS

metadata schema” or “original object creation date must

be captured”. The granular control policies relate to a

higher-level procedural policy (a procedural policy on

Provenance for the current example) which in turn

relates to an even higher-level and most abstract

guidance policy (a policy on Authenticity for the

current example). Three-level structure of guidance

policies, procedural policies and control policies

constitute a very well developed SCAPE digital

preservation policy framework.

SCAPE stopped short of the actual implementation

of control policies, so when EUDAT [3] decided to use

the SCAPE framework for policy considerations, it was

also decided to supplement this framework with the

catalogue of practical data policies [14] developed by

an RDA (Research Data Alliance) Practical Policy

Working Group. The practical data policies in this

catalogue are expressed as iRODS [6] functons

specifically suitable for implementation in EUDAT

B2SAFE service [5] based on iRODS platform.

Having well-defined control policies or practical

policies is not enough though for semantically clear

modelling of a data policy as a whole, as the application

(execution) of a policy composed of granular machine-

executable statements may lead to quite different

outcomes depending on the order in which granular

policies are applied.

The problem of policy decomposition is in fact

interrelated with the problem of policy validation. To

illustrate this, let us consider a simple case when there

is a couple of easily identifiable policy statements

contained in the same policy document which we want

to decompose and validate through execution of two

granular policies. Let the statements in a composite

policy (perhaps, but not necessarily so, added one to

another through some policy update by different policy

managers) be:

 Image files having size of more than X gigabytes

should be stored in file storage A; otherwise they

should be stored in file storage B.

 Image files of type RAW should be converted in

JPG format.

If a certain file of type RAW is more than X

gigabytes in size but becomes less than X when

converted in JPG then, depending on the higher-level

guiding policy and on the order in which these granular

policies are applied in the actual service

implementation, the result of the combined application

of the two granular policies can be any of the following:

1. File is moved as RAW in storage A and

remains stored in A as RAW.

2. File is moved as RAW in storage A then

converted in JPG and remains stored in A.

3. File is converted in JPG and stored in B.

4. File is moved as RAW in storage A and

remains stored in A as RAW; also a copy of it

converted in JPG is stored in B.

This is to illustrate that validation of the data policy

implementation is hard as any of the listed outcomes

may be considered being right or wrong depending on

the validator’s point of view.

Also let us take into account that policy validation

can be based on some statistical selection of samples (so

that problematic boundary cases of RAW data sized

only slightly over X gigabytes threshold may not be

selected in a sample and hence go unnoticed), or that a

policy validation procedure allows some tolerance

towards small amount of failed policy checks (so that

even if a few files have ended up somewhere that a

particular policy interpretation considers to be a wrong

place, this does not trigger a policy violation alert).

So even if the data policy can be, seemingly

successfully, decomposed into granular policies that are

easy to define and validate as machine-executable

statements, the actual result of the policy

implementation does not necessarily match the

intentions of policy designers or policy managers, as the

backwards process of the policy composition –

assembling it from the granular policies (policy

elements) – can be performed with substantial

variations.

2.2 Possible responses to the challenge of granular

policies insufficiency

One possible response to the outlined challenge could

be setting up an elaborated policy governance

framework, i.e. well-defined business processes that

allow human agents (policy managers) to look after the

policy implementation, i.e. accumulate and analyse

feedback from the environment where the policy is

applied and supply the result of this analysis as updated

requirements to software developers who work on the

actual software implementation of the policy. This

approach requires a good organizational culture and a

substantial human resource involved in data policy

management and in policy implementation; documented

requirements will serve as an interface between policy

managers and policy implementers. Some “magic”

should happen in between so that high-level policy

definitions translate into actual policies implementation

in software code, this is why policy validation is likely

to demand extensive software testing with specific

policy-related test cases.

Another possible response is having an elaborated

means of expression for the entire data policy (a

sophisticated policy modelling language): both for the

definition of granular policies and for the definition of

logic than binds the granular policies into the whole. An

example of this approach is RuleML [8] that is

considered a candidate for a detailed expression of data

policy in EUDAT e-infrastructure [3]. This approach

requires skilled human resource for policy modelling;

the modeler and a sophisticated model produced by her

becomes then an interface between policy managers and

policy implementers (the role of the latter is less

prominent than in the first approach, in a sense that

software developers should not interpret requirements

but just implement – or adopt – a certain engine that

executes formal rules defined by the savvy policy

modeller).

The third possible response is that a certain

formalism is used for the expression and, where

necessary, recomposition of granular policies (policy

elements) and for their assembling in the whole, with

that formalism being reasonably friendly to machines as

well as to humans. The humans – policy managers

themselves or a not-so-skilled modeller – can use the

formalism for a flexible policy definition that can be

fairly easily modified depending on the true policy

intentions and on the feedback received from the

archive or e-infrastructure where the policy is

implemented. The role of software developers is then to

implement an engine for the formalism (quite similarly

to the second approach). The machine just executes the

policy expressed using that formalism.

The differences amongst approaches are presented

in Table 1; in essence, they are different “weights”

(different levels of demand) for the skills of policy

managers, policy modellers and policy implementers.

Table 1 Differences amongst policy modelling

approaches

Policy

modelling

approach

Demands

for policy

manager

skills

Demands

for policy

modeller

skills

Demands

for policy

implementer

skills

Policy

governance

framework +

requirements

management

+ specific

software

testing

High

None

(policy

modeler

can be

replaced

by

business

analyst

or/and

software

tester)

High

Policy

modelling

language

Low High Medium

Formalism

for granular

policy

elements

definition

and

composition

Medium Medium Medium

The preferable approach could easily be the third

one as it empowers policy modelers themselves with

reasonable means of policy expression and therefore

can reduce overheads and risks of communicating a

policy from policy managers through modelers to

implementers. A remote analogy of the third approach

could be the proliferation of SQL language that, despite

its sophistication, has become a lingua franca of not

only software engineers but is widely used by logistics

and even sales departments in all sorts of business.

The formalism to be used for data policy expression

should not be something as developed as SQL though,

neither should it be purely textual: it can be based on

the idea of “building blocks” with possible graphical

representation of them, hence providing an easy-to-

operate semantic wrapper for machine-executable

statements. On the other hand (unlike SQL which

allows the actual data manipulation), these “building

blocks” for data policy definition are likely to remain

only a wrapper to the actual machine-executable

implementations of granular policies which will be

inevitably specific to a particular service even within

the same archive or e-infrastructure. As an example, for

EUDAT B2SAFE [5] that is based on iRODS platform

[6] these granular implementations can be iRODS

functions and for other EUDAT services based on other

software platforms the policy implementations can be

something else. A common semantic wrapper will be

then a reasonable means of a clear policy modelling and

a clear definition of interfaces between policy “building

blocks” across a variety of different IT services.

This work strongly prefers the third approach and

suggests considering Activity Model [11] for

semantically clear modelling of data policies in all IT

services within the same data archive or e-

infrastructure, as well as for policy interoperability

across different data archives and e-infrastructures.

3 Activity Model as a semantic wrapper for

machine-executable policies

3.1 Activity Model in a nutshell

Activity Model [11] was initially suggested for

modelling granular research activities and combining

them in networks so that, as an example, the output of

one Activity can be the input of another one, e.g. these

combined Activities may represent certain phases in

research data analysis. It has been clear though that

Activity Model can suit all sorts of activities as it is

pretty generic; as an example, it may well suit for

modelling data provenance across different IT services

within e-infrastructure.

The main “building block“ of the Activity Model

is an “activity cell” represented by Figure 1 with its

aspects (that can be thought of as incoming and

outcoming relations) explained in Table 2.

Figure 1 Research activity “cell”; it can be used for

semantic definition of any activity

The full RDF serialization of the Activity Model is

published in [11]; it is really simple and requires only

RDF Schema and an “inverseOf” OWL statement for its

expression, i.e. what is often referred to as RDFS Plus.

Table 2 Activity Model aspects explained

Aspect Description

Examples

Research per

se

Research

data

analysis

Input

Something

that is taken

in or

operated on

by Activity

Previous

research

Raw data

Output

Something

that is

intentionally

produced by

Activity

Raw data Derived

(analyzed)

data

Scope

Something

that Activity

is aimed at

or deals with

Sample

properties

One or more

experiments

Condition

Something

that affects

or supports

Activity, or

gives it a

specific

Scientific

instrument

IT

environment

context

Actor

Something

or somebody

who

participates

in Activity

Investigator Data analyst

Effect

Something

that is a

consequence

of Activity

Environment

pollution

New

software

module

Activity “cells” can be combined in chains or

networks, and not necessarily in a way that the Output

of one Activity is the Input to another. As an example, a

data management policy can be the Output of one

Activity (policy design) and the Condition that affects

another Activity, e.g. data replication in the archive.

The model flexibility when any aspect of one

Activity can be matched with any aspect of another

Activity is supported by the fact that aspects do not

have to have types associated with them.

3.2 Proposed extensions of the Activity Model

In order to use Activity Model for data policy

modelling, we will need to make a profile of the model

by specifying certain types of Activity as subclasses (in

case of an RDF serialization of the model – RDFS

subclasses). Suggested extensions are presented in

Table 3. Conceptually, Generic Data Management

Activities should cover the needs of data engineering

that are related to machine-interpretable policy

implementations, Logical Switch Activities should

cover the needs of data analysis and machine-assisted

reasoning, and Control Activities should cover the

needs of IT services deployment and operation.

Compared to modelling data policies with

workflows, the suggested approach based on the

definition of policy-related Activities should allow

more loosely coupled implementations of policy

management IT solutions. As an example, the “data

engineering” part of policy implementation represented

by Generic Data Management Activity can be

performed on a software platform fully controlled by a

specific user community or organization (e.g. a research

institution), the operation (the actual execution of

control statements) represented by Control Activity can

be performed by collaborative data infrastructure (e.g.

by EUDAT CDI [3]) and the logic of combining policy

elements represented by Logical Switch Activity can be

performed by either the organization or the data

infrastructure, or by a third-party service.

If the policy was modelled by an executable

workflow, it would require the presence of all three

aspects: data engineering, reasoning and execution – in

the same workflow likely operated by a single universal

workflow engine. This would mean not only an

operational limitation but a conceptual / modelling

limitation, too, as all the participants (stakeholders) of

policy implementation would have to adhere to the

conceptual framework and the format required by the

workflow engine. Modeling with interconnected

Activities as semantic wrappers to particular

implementations leaves more freedom to conceptualize

and to operate data policies that are going to be

executed by loosely coupled IT services.

Table 3 Additions to the core Activity Model required

for data policy modelling

Type to add Comment / Description

Generic Data

Management Activity

Subclass of Activity for data

policy definition. It can be

considered a semantic wrapper

for a variety of data handling

Activities, e.g. Activities for

data characterization or data

transformation.

Logical Switch

Activity

Subclass of Activity for

logical switches of all sorts

Control Activity Subclass of Activity for an

interface with a particular

software platform where

policies are executed. This is a

semantic wrapper for the

actual call to a platform-

specific script or function.

Depending on a particular operational environment

(software platform where policies are executed), other

parts of the Activity Model, e.g. its Inputs, Outputs, or

Conditions may require additional semantically clear

extensions. However, it is unclear at the moment

whether these potentially required extensions should be

a part of the universal Activity Model profile for data

policies, or it is better to introduce them as necessary, as

parts of policy execution engine implementations on

particular software platforms.

3.3 Examples of the Activity Model data policies

profile application

The role of the suggested model extensions will be

clearer by giving an example of their application to the

modelling of a particular policy. The example will be a

policy with two granular statements about data

movements depending on data size and data format that

were considered in Section 2.1.

 We will need to define first a File Characterization

Activity:

@prefix am:

 <http://.../stuff/ActivityModel#> .

@prefix ampp:

 <http://.../ActivityModel#PolicyProfile> .

GDMA_FileChar a ampp:GenericDataPolicyActivity

GDMA_FileChar am:hasInput File

GDMA_FileChar am:hasOutput FileSize

GDMA_FileChar am:hasOutput FileFormat

GDMA_FileChar am:hasOutput File

GDMA_FileChar am:hasScope ImageFiles

GDMA_FileChar am:hasCondition ServiceInstance

GDMA_FileChar am:hasActor CertainScript

GDMA_FileChar am:hasEffect FileCharLog

In short, GDPA_FileChar activity takes a file as an

input and produces values for the file size and file

format (which can be semantically clearly defined as

necessary – e.g. with measurement units and format IDs

in a file type registry) as outputs; the initial file is

passed over as another output. To derive the file size

and format, the activity uses CertainScript (which again

can be semantically clearly defined as necessary – e.g.

with references to a software repository).

 As an additional outcome (better defined not as

Output but as Effect) of the file characterization

activity, we get the FileCharLog log file. The scope of

activity is defined as ImageFiles (so that other kinds of

files can be handled by differently defined

Characterization Activities; what “ImageFiles” actually

means can be clearly defined with e.g. a reference to a

certain taxonomy entry). The Condition is defined as

ServiceInstance (which means that Actor:CertainScript

operates in some particular IT service environment).

 Mapping of Activity to a particular software

implementation can be performed using Activity ID and

a reference to a repository with a clear software

identity, e.g. a software versioning repository.

Figure 2 Definition of a Data Policy Activity for image

files characterization

The graphic representation of this Characterization

Activity (which, in the ideal world, can be designed in a

certain authoring tool with graphical user interface and

producing the above RDF as a serialization) is

illustrated by Figure 2.

The problem of the policy composition out of two

granular policies outlined in Section 2.1 can be

addressed with the help of other classes of activities that

we introduced earlier: Logical Switch and Control. For

the sake of simplicity (as we are going just to illustrate

it how the policy modelling can be done) we will not be

defining all aspects for these activities, e.g. we can omit

Scope or Effect but they may be required in a real

policy modelling situation.

 The Logical Switch activity will take File, FileSize

and FileFormat as Inputs, a particular logic of handling

file moves to either storage A or B, as well as file

conversion, will be Condition. The Activity yields a list

of particular control statements (like “move File to

storage A”, “Convert file in JPG format”) as Output.

The shape of such defined Logical Switch activity is

illustrated by Figure 3.

Figure 3 Definition of a Logical Switch Activity for

handling image files

The semantically clear definition of a Logical

Switch Activity gives an idea of how we suggest to

address the problem of a policy composition from

granular policy statements. The hope is, if the logic of

producing control statements is made explicit, as well as

the control statements themselves, this will eliminate

the ambiguity of a policy composed of granular policy

statements.

A good question is what formalism, if any, will be

adequate for the expression of logic in the Condition of

the Logical Switch. The short answer is: it depends on

the policy engine implementation. In an extreme case,

this Condition can be just a mandatory textual

explanation (commentary) of the logic implemented by

the Actor (which is omitted in the Figure 3), i.e. by an

executable function or a procedure or a script for a

particular IT platform. Alternatively, rules modelling

language or workflow templates (and appropriate

engines for them) can be used – yet, in this case, the

actual usage of these modelling languages or workflow

templates would be limited to the policy logic

enwrapped in the Logical Switch Activity, allowing

freedom for different implementations of other types of

Activities involved in the policy definition.

How to express control statements in the Output is

subject to particular implementations, too. The only

consideration which is important for the moment –

important both from conceptual and from

implementation perspectives – is having the list of

control statements as a clearly defined interface

between Logical Switch Activity and Control Activity.

Control Activity takes the list of control statements

as Input and makes platform-specific function or

procedure or script calls that implement the control

statements. Actors for Control Activity are particular

functions / procedures / scripts and the Effects of it are

log and error files or messages – whatever is used for

traceability in a particular implementation. Condition is,

similarly to the file characterization activity definition,

a particular software platform or IT service where

Actors operate. Figure 4 presents an example of a

diagramme for the Control Policy.

Figure 4 Definition of a Control Activity for policy

execution

Generic Data PolicyActivities (such as data

characterization) can be combined with Logical Switch

Activities and Control Activities in a chain or a network

of activities. For our example, the resulted chain is

illustrated by Figure 5. It represents the full model of a

certain data policy expressed as a chain of semantically

clear activities with interfaces between them, as well as

interfaces to activity implementations in particular IT

services or software platforms.

Figure 5 Example of full policy definition

It is worth mentioning once again that every aspect

in the Figure 5 diagramme (such as File, Size, Format,

Script or Log) should be thought of not as a particular

artefact or a value but as a semantic wrapper of an

artefact or a value. As a particular model serialization,

these semantic wrappers can be RDF statements about

artefacts or values.

In real data policy modelling situations, it may be

necessary to define more than one instance of each

Activity type; as an example, there could be two Data

Characterization Activities defined (one for the file size

and another for the file format) in place of one in our

example. Nevertheless, even differently defined

Activities could be combined in a semantically clear

network representing the same data policy.

If Activities in Figure 5 are clearly defined and

sensibly combined in the Activity network, this

eliminates any ambiguity in policy definition and

execution exemplified by two interfering granular

policies discussed back in Section 2.1 so that the actual

result of the policy implementation becomes predictable

and can be formally validated.

One of the strengths of the suggested model is a

combination of its reasonable expressivity with its high

flexibility as it is based on the idea of composition of

activities that can be a) modelled differently b)

implemented differently and c) operated (executed)

differently. In the above example, scripts for file

characterization and scripts for policy execution can be

implemented using different software and operated by

different components of the same service, or by

different services, or even by different e-infrastructures.

The actual chain or network of activities, as well as

definition of each of them (i.e. definition of all semantic

wrappers) could be done in a certain authoring tool with

a graphic user interface and RDF as a model

serialization format. Development of such a tool has

been beyond resources available for this conceptual

work; however, such a tool is worth mentioning as one

of the elements of an IT architecture that can support

data policies formulation, execution and validation.

4 IT architecture for activity-based data

policy management

The proposed IT architecture is presented by Figure 6

with the most essential components and information

flows (that would constitute a core operational platform

for data policy management) designated as filled-in

boxes and arrows; more advanced components and

flows are designated as dashed boxes and arrows with a

blank background.

Figure 6 IT architecture for activity-based policy

management

 As already suggested, having policy Activities

authoring tools with GUI and possibility to serialize

Activity networks in a semantically explicit format such

as RDF is essential for good levels of adoption of the

suggested approach and therefore such authoring tools

should be a part of a sensible IT architecture for data

policy management. In addition, what is required is a

repository where policy designs can be stored and

retrieved from.

 Activity network interpretation engine picks up

Activity network from the authoring tools or repository

and executes them. In order to execute activity networks

in a particular IT environment (software platforms and

services), a mapping engine is required that maps

Activities and their aspects (such as Conditions or

Outputs) to configuration files and executable scripts.

 In addition to this generic mapping engine, specific

engines for logical conditions and control statements

can be implemented. Effects repository stores Effect

aspects of each Activity; it is a generalization of logging

service and contains semantically clear tracks of

Activities execution. Policy search interface can be

designed for searching and sharing data policies.

 For the purposes of data archive or data infrastructure

audit, a policy validation engine is required that talks to

policy search interface and to Effects repository. The

actual validation can be based on matching graphs of

artefacts resulted from policies execution with graphs of

Activities in the policy design.

5 Conclusion

The problem of data policy modelling with reasonable

crosswalks between high-level (read: textual) policies

and their machine-executable implementations has yet

to find a satisfactory solution. The challenges of policy

design and implementation are even bigger when

collaborative data infrastructures are operated in

combination with the in-house software platforms.

The problem of semantically clear crosswalks and

the problem of data policy implementation across

organization-specific and external IT services can be

addressed by adoption of certain policy modelling

techniques and tools. Activity Model [11] can be a

reasonable means for the design of such tools, with the

idea that data policies can be represented as networks of

Activities with interconnected aspects of them.

This work has introduced extensions to the Activity

Model in order to make it fit for the task of data policy

modelling. An example of using the Activity Model for

the definition of a particular data policy has been given,

and a possible IT architecture has been considered that

can support data policy management based on Activity

networks.

Acknowledgements

This work is supported by EUDAT 2020 project that

receives funding from the European Union’s Horizon

2020 research and innovation programme under the

grant agreement No. 654065. The views expressed are

those of the author and not necessarily of the project.

References

[1] Giaretta, D. Advanced Digital Preservation.

Springer, Heidelberg (2011).

[2] Bunakov, V., Jones, C., Matthews, B., Wilson, M.

Data authenticity and data value in policy-driven

digital collections. OCLC Systems & Services:

International digital library perspectives, vol. 30

issue 4, pp. 212-231 (2014). doi: 10.1108/OCLC-

07-2013-0025. Open Access version of the

preprint: http://purl.org/net/epubs/work/12299882

[3] EUDAT Collaborative Data Infrastructure.

https://www.eudat.eu/eudat-cdi

[4] EUDAT services. https://www.eudat.eu/services-

support

[5] EUDAT B2SAFE service.

https://www.eudat.eu/b2safe

[6] iRODS: Integrated Rule-Oriented Data System.

https://irods.org/

[7] EUDAT Data Policy Manager.

https://github.com/EUDAT-B2SAFE/B2SAFE-

DPM

[8] RuleML Wiki pages.

http://wiki.ruleml.org/index.php/RuleML_Home

[9] SWRL: A Semantic Web Rule Engine.

https://www.w3.org/Submission/SWRL/

[10] ProvONE: A PROV Extension Data Model for

Scientific Workflow Provenance.

http://vcvcomputing.com/provone/provone.html

[11] Bunakov, V. Core semantic model for generic

research activity. In 15th All-Russian Conference

"Digital Libraries: Advanced Methods and

technologies, Digital Collections" (RCDL 2013),

Yaroslavl, Russia, 14-17 Oct 2013, CEUR

Workshop Proceedings (ISSN 1613-0073) 1108,

79-84 (2013). Persistent URL:

http://purl.org/net/epubs/work/10938342

[12] SCAPE: Scalable Preservation Environments

project. http://scape-project.eu/

[13] SCAPE Catalogue of Preservation Policy

Elements. http://scape-project.eu/wp-

content/uploads/2014/02/SCAPE_D13.2_KB_V1.

0.pdf

[14] Practical Policy Implementations Report.

http://dx.doi.org/10.15497/83E1B3F9-7E17-

484A-A466-B3E5775121CC

http://purl.org/net/epubs/work/12299882
https://www.eudat.eu/eudat-cdi
https://www.eudat.eu/services-support
https://www.eudat.eu/services-support
https://www.eudat.eu/b2safe
https://irods.org/
https://github.com/EUDAT-B2SAFE/B2SAFE-DPM
https://github.com/EUDAT-B2SAFE/B2SAFE-DPM
http://wiki.ruleml.org/index.php/RuleML_Home
https://www.w3.org/Submission/SWRL/
http://vcvcomputing.com/provone/provone.html
http://purl.org/net/epubs/work/10938342
http://scape-project.eu/
http://scape-project.eu/wp-content/uploads/2014/02/SCAPE_D13.2_KB_V1.0.pdf
http://scape-project.eu/wp-content/uploads/2014/02/SCAPE_D13.2_KB_V1.0.pdf
http://scape-project.eu/wp-content/uploads/2014/02/SCAPE_D13.2_KB_V1.0.pdf
http://dx.doi.org/10.15497/83E1B3F9-7E17-484A-A466-B3E5775121CC
http://dx.doi.org/10.15497/83E1B3F9-7E17-484A-A466-B3E5775121CC

