
Convergence and evaluation-complexity
analysis of a regularized tensor-Newton
method for solving nonlinear
least-squares problems
NIM Gould, T Rees, JA Scott

November 2017

Submitted for publication in Computational Optimization and Applications

 Preprint
RAL-P-2017-009

RAL Library
STFC Rutherford Appleton Laboratory
R61
Harwell Oxford
Didcot
OX11 0QX

Tel: +44(0)1235 445384
Fax: +44(0)1235 446403
email: libraryral@stfc.ac.uk

Science and Technology Facilities Council preprints are available online
at: http://epubs.stfc.ac.uk

ISSN 1361- 4762

Neither the Council nor the Laboratory accept any responsibility for
loss or damage arising from the use of information contained in any of
their reports or in any communication about their tests or
investigations.

mailto:libraryral@stfc.ac.uk�
http://epubs.stfc.ac.uk/�

Convergence and evaluation-complexity analysis of a regularized

tensor-Newton method for solving nonlinear least-squares

problems∗

Nicholas I. M. Gould†, Tyrone Rees† and Jennifer A. Scott†‡

November 16, 2017

Abstract

Given a twice-continuously vector-valued function r(x), a local minimizer of ∥r(x)∥2 is sought.
We propose and analyse tensor-Newton methods, in which r(x) is replaced locally by its

second-order Taylor approximation. Convergence is controlled by regularization of various

orders. We establish global convergence to a first-order critical point of ∥r(x)∥2, and provide

function evaluation bounds that agree with the best-known bounds for methods using second

derivatives.

1 Introduction

Consider a given, sufficiently smooth, vector-valued function r : IRn −→ IRm. A ubiquitous

problem is to find the value of x ∈ IRn so that ∥r(x)∥ is a small as possible, where here and

elsewhere ∥ · ∥ is the Euclidean norm. A common approach is to consider instead the equivalent

problem of minimizing

Φ(x) := 1
2
∥r(x)∥2. (1.1)

The resulting problem is thereafter tackled using a generic method for unconstrained optimization,

or one that exploits the special structure of Φ.

A question of interest in general smooth unconstrained optimization is how many evaluations

of an objective function f(x) and its derivatives are necessary to reduce some measure of opti-

mality below a specified (small) ϵ > 0 from some arbitrary initial guess. If the measure is ∥g(x)∥,
where g(x) := ∇xf(x), it is known that some well-known schemes (including steepest descent

and generic second-order trust-region methods) may require Θ(ϵ−2) evaluations under standard

assumptions [5], while this may be improved to Θ(ϵ−3/2) evaluations for second-order methods

with cubic regularization or using specialised trust-region tools [7,12,22]. Here and hereafter O(·)
indicates a term that is of at worst a multiple of its argument, while Θ(·) indicates additionally
there are instances for which the bound holds.

∗This work was supported by EPSRC grant EP/M025179/1.
†STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX, UK.

{nick.gould,tyrone.rees,jennifer.scott}@stfc.ac.uk
‡Department of Mathematics and Statistics, University of Reading, Reading, Berkshire, RG6 6AX, UK.

1

For the problem we consider here, an obvious approach is to apply the aforementioned algo-

rithms to minimize (1.1), and to terminate when

∥∇Φ(x)∥ ≤ ϵ, where ∇Φ(x) = JT (x)r(x) and J(x) := ∇xr(x). (1.2)

However, it has been argued [8] that this ignores the possibility that it may suffice to stop instead

when r(x) is small, and that a more sensible criterion is to terminate when

∥r(x)∥ ≤ ϵp or ∥gr(x)∥ ≤ ϵd, (1.3)

where ϵp > 0 and ϵd > 0 are required accuracy tolerances and

gr(x) :=


JT (x)r(x)

∥r(x)∥
, whenever r(x) ̸= 0;

0, otherwise.

(1.4)

Note that the scaled gradient gr(x) in (1.4) is precisely the gradient of ∥r(x)∥ whenever r(x) ̸= 0,

while if r(x) = 0, we are at the global minimum of r and so gr(x) = 0 ∈ ∂(∥r(x)∥), the sub-

differential of r(x). It has been shown that a second-order method based on cubic regularization

will satisfy (1.3) after O
(
max(ϵ

−3/2
d , ϵ

−1/2
p)

)
evaluations [8, Theorem 3.2]. Our aim here is to

show, amongst other things, a similar bound for the tensor-Newton method we are advocating.

To put our proposal into context, arguably the most used method for solving nonlinear least-

squares problems is the Gauss-Newton method and its variants. These iterative methods all build

locally-linear (Taylor) approximations to r(xk+s) about xk, and then minimize the approximation

as a function of s in the least-squares sense to derive the next iterate xk+1 = xk+sk [17,18,20]. The

iteration is usually stabilized either by imposing a trust-region constraint on the permitted s, or by

including a quadratic regularization term [2, 19]. While these methods are undoubtedly popular

in practice, they often suffer when the optimal value of the norm of the residual is large. To

counter this, regularized Newton methods for minimizing (1.1) have also been proposed [6,13,14].

Although this usually provides a cure for the slow convergence of Gauss-Newton-like methods on

non-zero-residual problems, the global behaviour is sometimes less attractive; we attribute this

to the Newton model not fully reflecting the sum-of-squares nature of the original problem.

With this in mind, we consider instead the obvious nonlinear generalization of Gauss-Newton

in which a locally-quadratic (Taylor) “tensor-Newton” approximation to the residuals is used

instead of a locally-linear one. Of course, the resulting least-squares model is now quartic rather

than quadratic (and thus in principle is harder to solve), but our experiments [16] have indicated

that this results in more robust global behaviour than Newton-type methods and an improved

performance on non-zero-residual problems than seen for Gauss-Newton variants. Our intention

here is to explore the convergence behaviour of a tensor-Newton approach.

We mention in passing that we are not the first authors to consider higher-order models

for least-squares problems. The earliest approach we are aware of [3, 4] uses a quadratic model

of r(xk + s) in which the Hessian of each residual is approximated by a low-rank matrix that

is intended to compensate for any small singular values of the Jacobian. Another approach,

known as geodesic acceleration [24,25], aims to modify Gauss-Newton-like steps with a correction

that allows for higher-order derivatives. More recently, derivative-free methods that aim to

build quadratic models of r(xk + s) by interpolation/regression of past residual values have been

proposed [26,27], although these ultimately more resemble Gauss-Newton variants. While each of

2

these methods has been shown to improve performance relative to Gauss-Newton-like approaches,

none makes full use of the residual Hessians. Our intention is thus to investigate the convergence

properties of methods based on the tensor-Newton model.

We propose a regularized tensor-Newton method in §2, and analyse both its global convergence

and its evaluation complexity in §3. The regularization order, r, permitted by the algorithm

proposed in §2 is restricted to be no larger than 3, and so in §4 we introduce a modified algorithm

for which r > 3 is possible.

2 The tensor-Newton method

Suppose that r(x) ∈ C2 has components ri(x) for i = 1, . . . ,m. Let t(x, s) be the vector whose

components are

ti(x, s) := ri(x) + sT∇xri(x) + 1
2
sT∇xxri(x)s (2.1)

for i = 1, . . . ,m. We build the tensor-Newton approximation

m(x, s) := 1
2
∥t(x, s)∥2 (2.2)

of Φ(x+ s), and define the regularized model

mR(x, s, σ) := m(x, s) +
1

r
σ∥s∥r, (2.3)

where r ≥ 2 is given. Note that

∇sm
R(x, s, σ) = ∇sm(x, s) + σ∥s∥r−2s. (2.4)

We consider the following algorithm (Algorithm 2.1 on the following page) to find a critical

point of Φ(x).

3

Algorithm 2.1: Adaptive Tensor-Newton Regularization.

A starting point x0, an initial and a minimal regularization parameter σ0 ≥ σmin > 0 and

algorithmic parameters θ > 0, γ3 ≥ γ2 > 1 > γ1 > 0 and 1 > η2 ≥ η1 > 0, are given.

Evaluate Φ(x0). For k = 0, 1, . . ., until termination, do:

1. If the termination test has not been satisfied, compute derivatives of r(x) at xk.

2. Compute a step sk by approximately minimizing mR(xk, s, σk) so that

mR(xk, sk, σk) < mR(xk, 0, σk) (2.5)

and

∥∇sm
R(xk, sk, σk)∥ ≤ θ∥sk∥r−1 (2.6)

hold.

3. Compute Φ(xk + sk) and

ρk =
Φ(xk)− Φ(xk + sk)

m(xk, 0)−m(xk, sk)
. (2.7)

If ρk ≥ η1, set xk+1 = xk + sk. Otherwise set xk+1 = xk.

4. Set

σk+1 ∈


[max(σmin, γ1σk), σk] if ρk ≥ η2 [very successful iteration]

[σk, γ2σk] if η1 ≤ ρk < η2 [successful iteration]

[γ2σk, γ3σk] otherwise. [unsuccessful iteration],

(2.8)

and go to Step 2 if ρk < η1.

At the very least, we insist that (trivial) termination should occur in Step 1 of Algorithm 2.1

if ∥∇xΦ(xk)∥ = 0, but in practice a rule such as (1.2) or (1.3) at x = xk will be preferred.

At the heart of Algorithm 2.1 is the need (Step 2) to find a value sk that both reduces

mR(xk, s, σk) and satisfies ∥∇sm
R(xk, sk, σk)∥ ≤ θ∥sk∥r−1. Since mR(xk, s, σk) is bounded from

below (and grows as s approaches infinity), we may apply any descent-based local optimization

method that is designed to find a critical point of mR(xk, s, σk), starting from s = 0, as this

will generate an sk that is guaranteed to satisfy both Step 2 stopping requirements. Crucially,

such a minimization is on the model mR(xk, s, σk), not the true objective, and thus costs no true

objective evaluations. We do not claim that this calculation is trivial, but it might, for example, be

achieved by applying a safeguarded Gauss-Newton method to the least-squares problem involving

the extended residuals (t(xk, s),
√

σk∥s∥r−2s).

We define the index set of successful iterations, in the sense of (2.8), up to iteration k as

Sk := {0 ≤ l ≤ k | ρl ≥ η1} and let S := {k ≥ 0 | ρk ≥ η1} be the set of all successful iterations.

4

3 Convergence analysis

We shall make the following blanket assumption:

AS.1 each component ri(x) and its first two derivatives are Lipschitz continuous on an open

set containing the intervals [xk, xk + sk] generated by Algorithm 2.1 (or its successor).

It has been shown [9, Lemma 3.1] that AS.1 implies that Φ(x) and its first two derivatives are

Lipschitz on [xk, xk + sk].

We define

H(x, y) :=

m∑
i=1

yi∇xxri(x)

and let q(x, s) be the vector whose ith component is

qi(x, s) := sT∇xxri(x)s

for i = 1, . . . ,m. In this case

t(x, s) = r(x) + J(x)s+ 1
2
q(x, s).

Since m(xk, s) is a second-order accurate model of Φ(xk + s), we expect bounds of the form

|Φ(xk + sk)−m(xk, sk)| ≤ Lf∥sk∥3 (3.1)

and

|∇xΦ(xk + sk)−∇sm(xk, sk)| ≤ Lg∥sk∥2 (3.2)

for some Lf, Lg > 0 and all k ≥ 0 for which ∥sk∥ ≤ 1 (see Appendix A).

Also, since ∥r(x)∥ decreases monotonically,

∥JT (xk)r(xk)∥ ≤ ∥JT (xk)∥∥r(xk)∥ ≤ LJ∥r(x0)∥ (3.3)

and

∥H(xk, r(xk))∥ ≤ LH∥r(xk)∥ ≤ LH∥r(x0)∥ (3.4)

for some LJ, LH > 0 and all k ≥ 0 (again, see Appendix A).

Our first result derives simple conclusions from the basic requirement that the step sk in our

algorithm is chosen to reduce the regularized model.

5

Lemma 3.1. Algorithm 2.1 ensures that

m(xk, 0)−m(xk, sk) > 1
r
σk∥sk∥r (3.5)

In addition, if r = 2, at least one of

σk < 2∥H(xk, r(xk))∥ (3.6)

or

σk∥sk∥ < 4∥JT (xk)r(xk)∥ (3.7)

holds, while if r > 2, it follows that

∥sk∥ < max

((
r∥H(xk, r(xk))∥

σk

)1/(r−1)

,

(
2r∥JT (xk)r(xk)∥

σk

)1/(r−2)
)
. (3.8)

Proof. It follows from (2.5), (2.3) and (2.2) that

0 > 2 (m(xk, sk) + 1
r
σk∥sk∥r −m(xk, 0))

= ∥r(xk) + J(xk)sk + 1
2
q(xk, sk)∥2 + 2

r
σk∥sk∥r − ∥r(xk)∥2

= ∥J(xk)sk + 1
2
q(xk, sk)∥2 + 2rT (xk) (J(xk)sk + 1

2
q(xk, sk)) + 2

r
σk∥sk∥r

= ∥J(xk)sk + 1
2
q(xk, sk)∥2 + 2sTk J(xk)r(xk) + sTkH(xk, r(xk))sk + 2

r
σk∥sk∥r

≥ ∥J(xk)sk + 1
2
q(xk, sk)∥2 − 2∥JT (xk)r(xk)∥∥sk∥ − ∥H(xk, r(xk))∥∥sk∥2 + 2

r
σk∥sk∥r.

(3.9)

Inequality (3.5) follows immediately from the first inequality in (3.9). When r = 2, inequality

(3.9) becomes

0 > ∥J(xk)sk + 1
2
q(xk, sk)∥2+(

1
2
σk∥sk∥ − 2∥JT (xk)r(xk)∥

)
∥sk∥+ (1

2
σk − ∥H(xk, r(xk))∥) ∥sk∥2.

In order for this to be true, it must be that at least one of the last two terms is negative,

and this provides the alternatives (3.6) and (3.7). By contrast, when r > 2, inequality (3.9)

becomes

0 > ∥J(xk)sk + 1
2
q(xk, sk)∥2+(

1
r
σk∥sk∥r−1 − 2∥JT (xk)r(xk)∥

)
∥sk∥+

(
1
r
σk∥sk∥r−2 − ∥H(xk, r(xk))∥

)
∥sk∥2,

and this implies that

1
r
σk∥sk∥r−1 < 2∥JT (xk)r(xk)∥ or 1

r
σk∥sk∥r−2 < ∥H(xk, r(xk))∥

(or both), which gives (3.8). 2

Our next task is to show that σk is bounded from above. Let

Bγ :=
{
j ≥ 0 | σj ≥ γrmax

(
∥H (xj , r(xj)) ∥, 2∥JT (xj)r(xj)∥

)}
and

B := B1,

6

and note that Lemma 3.1 implies that

∥sk∥ ≤ 1 if k ∈ Bγ when γ ≥ 1,

and in particular

∥sk∥ ≤ 1 for all k ∈ B. (3.10)

We consider first the special case for which r = 2.

Lemma 3.2. Suppose that AS.1 holds, r = 2, k ∈ B and

σk ≥

√
8LfLJ∥r(x0)∥

1− η2
. (3.11)

Then iteration k of Algorithm 2.1 is very successful.

Proof. Since k ∈ B, Lemma 3.1 implies that (3.7) and (3.10) hold. Then (2.7), (3.1) and

(3.5) give that

| ρk − 1| = |Φ(xk + sk)−m(xk, sk)|
m(xk, 0)−m(xk, sk)

≤ 2Lf∥sk∥
σk

and hence

| ρk − 1| ≤ 8Lf∥JT (xk)r(xk)∥
σ2
k

≤ 8LfLJ∥r(x0)∥
σ2
k

≤ 1− η2

from (3.3), (3.7) and (3.11). Thus it follows from (2.8) that the iteration is very successful.

2

Lemma 3.3. Suppose that AS.1 holds and r = 2. Then Algorithm 2.1 ensures that

σk ≤ σmax := γ3max

(√
8LfLJ∥r(x0)∥

1− η2
, σ0, 2max(LH, 2LJ)∥r(x0)∥

)
(3.12)

for all k ≥ 0.

Proof. Let

σB
max = γ3max

(√
8LfLJ∥r(x0)∥

1− η2
, σ0

)
.

Suppose that k+1 ∈ Bγ3 is the first iteration for which σk+1 ≥ σB
max. Then, since σk < σk+1,

iteration k must have been unsuccessful, xk = xk+1 and (2.8) gives that σk+1 ≤ γ3σk. Thus

γ3σk ≥ σk+1 ≥ 2γ3max(∥H(xk+1, r(xk+1)) 2∥JT (xk+1)r(xk+1)∥)
= 2γ3max(∥H(xk, r(xk)), 2∥JT (xk)r(xk)∥)

7

since k + 1 ∈ Bγ3 , which implies that k ∈ B. Furthermore,

γ3σk ≥ σk+1 ≥ σB
max ≥ γ3

√
8LfLJ∥r(x0)∥

1− η2

which implies that (3.11) holds. But then Lemma 3.2 implies that iteration k must be very

successful. This contradiction ensures that

σk < σB
max (3.13)

for all k ∈ Bγ3 . For all other iterations, we have that k /∈ Bγ3 , and for these the definition of

Bγ3 , and the bounds (3.3) and (3.4) give

σk < 2γ3max(∥H(xk, r(xk))∥, 2∥JT (xk)r(xk))∥) ≤ 2γ3max(LH, 2LJ)∥r(x0)∥. (3.14)

Combining (3.13) and (3.14) gives (3.12). 2

We now turn to the general case for which 2 < r ≤ 3.

Lemma 3.4. Suppose that AS.1 holds, 2 < r ≤ 3, k ∈ B and

σk ≥ max

(rLf (rLH∥r(x0)∥)
3−r
r−1

1− η2

) r−1
2

,

(
rLf (2rLJ∥r(x0)∥)

3−r
r−2

1− η2

)r−2
 (3.15)

Then iteration k of Algorithm 2.1 is very successful.

Proof. Since k ∈ B, it follows from (2.7), (3.10), (3.1), (3.5), (3.8), (3.3), (3.4) and (3.15)

that

| ρk − 1| = |Φ(xk + sk)−m(xk, sk)|
m(xk, 0)−m(xk, sk)

≤ rLf∥sk∥3−r

σk
< rLf max

(
(r∥H(xk, r(xk))∥)(3−r)/(r−1) σ

−2/(r−1)
k ,(

2r∥JT (xk)r(xk)∥
)(3−r)/(r−2)

σ
−1/(r−2)
k

)
≤ rLf max

(
(rLH∥r(x0)∥)(3−r)/(r−1) σ

−2/(r−1)
k ,

(2rLJ∥r(x0)∥)(3−r)/(r−2) σ
−1/(r−2)
k

)
≤ 1− η2.

As before, (2.8) then ensures that the iteration is very successful. 2

8

Lemma 3.5. Suppose that AS.1 holds and 2 < r ≤ 3. Then Algorithm 2.1 ensures that

σk ≤ σmax := γ3max

(rLf (pLH∥r(x0)∥)
3−r
r−1

1− η2

) r−1
2

,

(
rLf (2rLJ∥r(x0)∥)

3−r
r−2

1− η2

)r−2

,

σ0, rmax(LH, 2LJ)∥r(x0)∥

) (3.16)

for all k ≥ 0.

Proof. The proof mimics that of Lemma 3.3. First, suppose that k ∈ Bγ3 and that iteration

k + 1 is the first for which

σk+1 ≥ σB
max := γ3max

(rLf (rLH∥r(x0)∥)
3−r
r−1

1− η2

) r−1
2

,

(
rLf (2rLJ∥r(x0)∥)

3−r
r−2

1− η2

)r−2

, σ0

 .

Then, since σk < σk+1, iteration k must have been unsuccessful and (2.8) gives that

γ3σk ≥ σk+1 ≥ σB
max,

which implies that k ∈ B and (3.15) holds. But then Lemma 3.4 implies that iteration k must

be very successful. This contradiction provides the first three terms in the bound (3.16), while

the others arise as for the proof of Lemma 3.3 when k /∈ Bγ3 . 2

Next, we bound the number of iterations in terms of the number of successful ones.

Lemma 3.6. [7, Theorem 2.1]. Algorithm 2.1 ensures that

k ≤ κu|Sk|+ κs, where κu :=

(
1− log γ1

log γ2

)
, κs :=

1

log γ2
log

(
σmax

σ0

)
, (3.17)

and σmax is any known upper bound on σk.

Our final ingredient is to find a useful bound on the smallest model decrease as the algorithm

proceeds. Let L := {k | ∥sk∥ ≤ 1}, and let G := {k | ∥sk∥ > 1} be its compliment. We then have

the following crucial bounds.

Lemma 3.7. Suppose that AS.1 holds and 2 ≤ r ≤ 3. Then Algorithm 2.1 ensures that

m(xk, 0)−m(xk, sk) ≥

 σmin

(
∥∇xΦ(xk + sk)∥
Lg + θ + σmax

) r
r−1

if k ∈ L
1
rσmin if k ∈ G.

(3.18)

9

Proof. Consider k ∈ L. The Cauchy-Schwarz inequality and (2.4) reveal that

∥∇xΦ(xk + sk)∥ =
∥∥(∇xΦ(xk + sk)−∇sm(xk, sk)) +

(
∇sm(xk, sk) + σk∥sk∥r−2sk

)
−σk∥sk∥r−2sk

∥∥
≤ ∥∇xΦ(xk + sk)−∇sm(xk, sk)∥+ ∥∇sm

R(xk, sk, σk)∥+ σk∥sk∥r−1.

(3.19)

Combining (3.19) with (3.2), (2.6), (3.12), (3.16) and ∥sk∥ ≤ 1 we have

∥∇xΦ(xk + sk)∥ ≤ Lg∥sk∥2 + θ∥sk∥r−1 + σmax∥sk∥r−1 ≤ (Lg + θ + σmax)∥sk∥r−1

and thus that

∥sk∥ ≥
(
∥∇xΦ(xk + sk)∥
Lg + θ + σmax

) 1
r−1

.

But then, combining this with (3.5), the lower bound

σk ≥ σmin (3.20)

imposed by Algorithm 2.1 and (3.5) provides the first possibility in (3.18).

By contrast, if k ∈ G, (3.5), ∥sk∥ > 1 and (3.20) ensure the second possibility in (3.18). 2

Corollary 3.8. Suppose that AS.1 holds and 2 ≤ r ≤ 3. Then Algorithm 2.1 ensures that

Φ(xk)− Φ(xk+1) ≥

 η1σmin

(
∥∇xΦ(xk + sk)∥
Lg + θ + σmax

) r
r−1

if k ∈ L ∩ S
1
rη1σmin if k ∈ G ∩ S.

(3.21)

Proof. The result follows directly from and (2.7) and (3.18). 2

We now provide our three main convergence results. Firstly, we establish the global conver-

gence of our algorithm to a first-order critical point of Φ(x).

Theorem 3.9. Suppose that AS.1 holds and 2 ≤ r ≤ 3. Then the iterates {xk} generated

by Algorithm 2.1 satisfy

lim
k→∞

inf ∥∇xΦ(xk)∥ = 0 (3.22)

if no non-trivial termination test is provided.

Proof. Suppose that

∥∇xΦ(xk)∥ ≥ ϵ > 0 (3.23)

for all k > 0. Then for each successful iteration, we have from (3.21) that

Φ(xk)− Φ(xk+1) ≥ δ := η1σminmin

((
ϵ

Lg + θ + σmax

) r
r−1

,
1

r

)
> 0.

10

Thus summing over successful iterations and recalling that Φ(x0) = 1
2
∥r(x0)∥2 and Φ(xk) ≥ 0,

we have that

1
2
∥r(x0)∥2 ≥ Φ(x0)− Φ(xk+1) ≥ |Sk|δ, (3.24)

and hence that there are only a finite number of successful iterations. If iteration k is the last

of these, all subsequent iterations are unsuccessful, and thus σk grows without bound, since

(2.8) imposes σk+1 ≥ γ2σk when k /∈ S. But as this contradicts Lemmas 3.3 & 3.5, (3.23)

cannot be true, and therefore (3.22) holds. 2

Secondly we provide an evaluation complexity result based on the stopping criterion (1.2).

Theorem 3.10. Suppose that AS.1 holds and 2 ≤ r ≤ 3. Then Algorithm 2.1 requires at

most ⌈
κu∥r(x0)∥2 (Lg + θ + σmax)

r
r−1

2η1σmin
ϵ−

r
r−1

⌉
+ κs + 1 (3.25)

evaluations of r(x) and its derivatives to find an iterate xk for which the termination test

∥∇xΦ(xk)∥ ≤ ϵ

is satisfied for given 0 < ϵ < 1, where κu and κs are defined in (3.17).

Proof. If the algorithm has not terminated, (3.23) holds, and then (3.24) ensures that

1
2
∥r(x0)∥2 ≥ |Sk|η1σmin

(
ϵ

Lg + θ + σmax

) r
r−1

since ϵ < 1, and thus that

|Sk| ≤
∥r(x0)∥2 (Lg + θ + σmax)

r
r−1

2η1σmin
ϵ−

r
r−1

.

Combining this with (3.17) and remembering that we need to evaluate the function and

gradient at the final xk+1 yields the bound (3.25). 2

Notice how the evaluation complexity improves from O(ϵ−2) evaluations with quadratic (r =

2) regularization to O(ϵ−3/2) evaluations with cubic (r = 3) regularization. It is not clear if these

bounds are sharp.

Finally, we refine this analysis to provide an alternative complexity result based on the stop-

ping rule (1.3). The proof of this follows similar arguments in [8, §3.2; 10, §3] and crucially depends

upon the following elementary result.

11

Lemma 3.11. Suppose that a > b ≥ 0. Then

a2 − b2 ≥ c implies that a1/2
i − b1/2

i ≥ c

2i+1a
2i+1−1

2i

for all integers i ≥ −1.

Proof. The result follows directly by induction using the identity A2−B2 = (A−B)(A+B)

with A = a1/2
j
> B = b1/2

j
for increasing j ≤ i. 2

Theorem 3.12. Suppose that AS.1 holds, 2 < r ≤ 3 and that the integer

i ≥ i0 :=

⌈
log2

(
r − 1

r − 2

)⌉
(3.26)

is given. Then Algorithm 2.1 requires at most⌈
κumax

(
κ−1
c , κ−1

g ϵ
−r/(r−1)
d , κ−1

r ϵ−1/2i

p

)⌉
+ κs + 1 (3.27)

evaluations of r(x) and its derivatives to find an iterate xk for which the termination test

∥r(xk)∥ ≤ ϵp or ∥gr(xk)∥ ≤ ϵd, (3.28)

is satisfied for given ϵp > 0 and ϵd > 0, where κu and κs are defined in (3.17), κc, κg and κr
are given by (3.37) and β ∈ (0, 1) is a fixed problem-independent constant.

Proof. Consider Sβ := {l ∈ S | ∥r(xl+1)∥ > β∥r(xl)∥}, and let i be the smallest integer for

which
2i+1 − 1

2i
≥ r

r − 1
, (3.29)

that is i satisfies (3.26).

First, consider l ∈ G ∩ S. Then (3.21) gives that ∥r(xl)∥2 − ∥r(xl+1)∥2 ≥ η1σmin and, since

∥r(xl+1)∥ < ∥r(xl)∥ ≤ ∥r(x0)∥ (3.30)

for all l ∈ S, Lemma 3.11 implies that

∥r(xl)∥1/2
i − ∥r(xl+1)∥1/2

i≥ 1
2
i+1η1σmin∥r(xl)∥−(2i+1−1)/2i

≥ 1
2
i+1η1σmin∥r(x0)∥−(2i+1−1)/2i .

(3.31)

By contrast, for l ∈ L ∩ S, (3.21) gives that

∥r(xl)∥2 − ∥r(xl+1)∥2 ≥ κ∥JT (xl+1)r(xl+1)∥r/(r−1), where κ =
2η1σmin

(L+ θ + σmax)r/(r−1).
(3.32)

12

If additionally l ∈ Sβ, (3.32) may be refined as

∥r(xl)∥2 − ∥r(xl+1)∥2≥ κ
(
∥JT (xl+1)r(xl+1)∥

∥r(xl+1)∥

)r/(r−1)
∥r(xl+1)∥r/(r−1)

≥ κ
(
∥JT (xl+1)r(xl+1)∥

∥r(xl+1)∥

)r/(r−1)
∥r(xl+1)∥r/(r−1)

≥ κβr/(r−1)∥gr(xl+1)∥r/(r−1)∥r(xl)∥r/(r−1)

(3.33)

from (1.4) and the requirement that ∥r(xl+1)∥ > β∥r(xl)∥. Using (3.33), (3.30), Lemma 3.11

and (3.29), we then obtain the bound

∥r(xl)∥1/2
i − ∥r(xl+1)∥1/2

i≥ 1
2
i+1κβr/(r−1)∥gr(xl+1)∥r/(r−1)∥r(xl)∥(r/(r−1)−(2i+1−1)/2i)

≥ 1
2
i+1κβr/(r−1)∥r(x0)∥(r/(r−1)−(2i+1−1)/2i)∥gr(xl+1)∥r/(r−1)

(3.34)

for all l ∈ L ∩ Sβ. Finally, consider l ∈ S \ Sβ, for which ∥r(xl+1)∥ ≤ β∥r(xl)∥ and hence

∥r(xl+1)∥1/2
i ≤ β1/2i∥r(xl)∥1/2

i
. Thus we have that

∥r(xl)∥1/2
i − ∥r(xl+1)∥1/2

i≥ (1− β1/2i)∥r(xl)∥1/2
i

≥ 1−β1/2i

β1/2i
∥r(xl+1)∥1/2

i (3.35)

for all l ∈ L ∩ (S \ Sβ). Thus, combining (3.31), (3.34) and (3.35), we have that

∥r(xl)∥1/2
i − ∥r(xl+1)∥1/2

i ≥ min
(
κc, κg∥gr(xl+1)∥r/(r−1), κr∥r(xl+1)∥1/2

i
)
, (3.36)

where

κc := 1
2
i+1η1σmin∥r(x0)∥−(2i+1−1)/2i ,

κg :=
1
2
iη1σminβ

r/(r−1)

(L+ θ + σmax)r/(r−1)
∥r(x0)∥(r/(r−1)−(2i+1−1)/2i)

and κr :=
1− β1/2i

β1/2i
,

(3.37)

for all l ∈ S.

Now suppose that the stopping rule (3.28) has not been satisfied up until the start of iteration

k + 1, and thus that

∥r(xl+1)∥ > ϵp and ∥gr(xl+1)∥ > ϵd (3.38)

for all l ∈ Sk. Combining this with (3.36), we have that

∥r(xl)∥1/2
i − ∥r(xl+1)∥1/2

i ≥ min
(
κc, κgϵ

r/(r−1)
d , κrϵ

1/2i

p

)
,

and thus, summing over l ∈ Sk and using (3.30),

∥r(x0)∥1/2
i ≥ ∥r(x0)∥1/2

i − ∥r(xk+1)∥1/2
i ≥ |Sk|min

(
κc, κgϵ

r/(r−1)
d , κrϵ

1/2i

p

)
.

As before, combining this with (3.17) and remembering that we need to evaluate the function

and gradient at the final xk+1 yields the bound (3.27). 2

13

If i < i0, a weaker bound that includes r = 2 is possible. The key is to note that the purpose

of (3.29) is to guarantee the second inequality in (3.34). Without this, we have instead

∥r(xl)∥1/2
i − ∥r(xl+1)∥1/2

i ≥ 1
2

i+1κβr/(r−1)∥gr(xl+1)∥r/(r−1)∥r(xl+1)∥(r/(r−1)−(2i+1−1)/2i) (3.39)

for all l ∈ L ∩ Sβ, and this leads to

∥r(xl)∥1/2
i − ∥r(xl+1)∥1/2

i ≥ min

(
κc, κg′ϵr/(r−1)

d ϵ
(r/(r−1)−(2i+1−1)/2i)
p , κrϵ

1/2i

p

)
,

where

κg′ :=
1
2
iη1σminβ

r/(r−1)

(Lg + θ + σmax)r/(r−1)
.

if (3.38) holds. This results in a bound of O

(
max(1, ϵ

r/(r−1)
d · ϵ(r/(r−1)−(2i+1−1)/2i)

p , ϵ
1/2i

p)

)
func-

tion evaluations, which approaches that in (3.27) as i increases to infinity when r = 2.

4 A modified algorithm for higher-than-cubic regularization

For the case where r > 3, the proof of Lemma 3.4 breaks down as there is no obvious bound on

the quantity ∥sk∥3−r/σk. One way around this defect is to modify Algorithm 2.1 so that such

a bound automatically occurs. We consider the following variant; our development follows very

closely that in [11].

Algorithm 4.1: Adaptive Tensor-Newton Regularization when r > 3.

A starting point x0, an initial and a minimal regularization parameter σ0 ≥ σmin > 0 and

algorithmic parameters θ > 0, α ∈ (0, 1
3
], γ3 ≥ γ2 > 1 > γ1 > 0 and 1 > η2 ≥ η1 > 0, are

given. Evaluate Φ(x0), and test for termination at x0.

For k = 0, 1, . . ., until termination, do:

1. Compute derivatives of r(x) at xk.

2. Compute a step sk by approximately minimizing mR(xk, s, σk) so that

mR(xk, sk, σk) < mR(xk, 0, σk)

and

∥∇sm
R(xk, sk, σk)∥ ≤ θ∥sk∥2 (4.1)

hold.

14

3. Test for termination at xk + sk.

4. Compute Φ(xk + sk) and

ρk =
Φ(xk)− Φ(xk + sk)

m(xk, 0)−m(xk, sk)
.

If ρk ≥ η1 and

σk∥sk∥r−1 ≥ α∥∇xΦ(xk + sk)∥, (4.2)

set xk+1 = xk + sk. Otherwise set xk+1 = xk.

5. Set

σk+1 ∈


[max(σmin, γ1σk), σk] if ρk ≥ η2 and (4.2) holds

[σk, γ2σk] if η1 ≤ ρk < η2 and (4.2) holds

[γ2σk, γ3σk] if ρk < η2 or (4.2) fails,

(4.3)

and go to Step 2 if ρk < η1 or (4.2) fails.

It is important that termination is tested at Step 3 as deductions from computations in

subsequent steps rely on this. We modify our definition of a successful step accordingly so that

now Sk = {0 ≤ l ≤ k | ρl ≥ η1 and (4.2) holds} and S = {k ≥ 0 | ρk ≥ η1 and (4.2) holds},
and note in particular that Lemma 3.6 continues to hold in this case. Likewise, a very successful

iteration is now one for which ρk ≥ η2 and (4.2) holds.

As is now standard, our first task is to establish an upper bound on σk.

Lemma 4.1. Suppose that AS.1 holds, r > 3, k ∈ B and

σk∥∥sk∥r−3 ≥ κ2, where κ2 :=
rL

1− η2
and L = max(Lf, Lg, θ). (4.4)

Then iteration k of Algorithm 4.1 is very successful.

Proof. It follows immediately from (2.7), (3.10), (3.1), (3.5) and (4.4) that

|ρk − 1| = |Φ(xk + sk)−m(xk, sk)|
m(xk, 0)−m(xk, sk)

≤ rLf∥sk∥3−r

σk
≤ rL∥sk∥3−r

σk
≤ 1− η2,

and thus ρk ≥ η2. Observe that

κ2 ≥ L (4.5)

since 1− η2 ≤ 1 and r ≥ 1. We also have from (3.19), (3.2) and (4.1) that

∥∇xΦ(xk + sk) ≤ Lg∥sk∥2 + θ∥sk∥2 + σk∥sk∥r−1 = (Lg + θ + σk∥|sk∥r−3)∥sk∥2 (4.6)

and thus from (4.4), (4.5) and the algorithmic restriction 3 ≤ 1/α that

∥∇xΦ(xk + sk)∥ ≤ (2L+ σk∥|sk∥r−3)∥sk∥2 ≤ (3σk∥|sk∥r−3)∥sk∥2 = 3σk∥sk∥r−1 ≤ σk
α
∥sk∥r−1.

15

Thus (4.2) is also satisfied, and hence iteration k is very successful. 2

Lemma 4.2. Suppose that AS.1 holds, r > 3, k ∈ B and

σk ≥ κ1∥∇sΦ(xk + sk)∥(3−r)/2, where κ1 := κ2(3κ2)
(r−3)/2 (4.7)

and κ2 is defined in the statement of Lemma 4.1. Then iteration k of Algorithm 4.1 is very

successful.

Proof. It follows from Lemma 4.1 that it suffices to show that (4.7) implies (4.4). Suppose

that (4.4) is not true, that is

σk∥sk∥r−3 < κ2. (4.8)

Then (4.6), (4.8) and (4.5) imply that

∥∇xΦ(xk + sk)∥ ≤ (2L+ κ2)∥sk∥2 < 3κ2∥sk∥2 < 3κ2

(
κ2
σk

)2/(r−3)

which contradicts (4.7). Thus (4.4) holds. 2

Unlike in our previous analysis for r ≤ 3, we are unable to deduce an upper bound on σk without

further consideration. With this in mind, we now suppose that all the iterates xk + sk generated

by Algorithm 4.1 satisfy

∥∇xΦ(xk + sk)∥ ≥ ϵ (4.9)

for some ϵ > 0 and all 0 ≤ k ≤ l, and thus, from (4.2), that

σk∥sk∥r−1 ≥ αϵ (4.10)

for k ∈ Sl. In this case, we can show that σk is bounded from above.

Lemma 4.3. Suppose that AS.1 holds and r > 3. Then provided that (4.9) holds for all

0 ≤ k ≤ l, Algorithm 4.1 ensures that

σk ≤ σmax := γ3max
(
κ1ϵ

(3−r)/2, κσ

)
, where κσ := max (σ0, rmax(LH, 2LJ)∥r(x0)∥) .

(4.11)

Proof. The proof is similar to that of Lemma 3.5. Suppose that iteration k+1 ∈ Bγ3 (with

k ≤ l) is the first for which

σk+1 ≥ σB
max := σmax := γ3max

(
κ1ϵ

(3−r)/2, σ0

)
.

Then, since σk < σk+1, iteration k must have been unsuccessful and (4.3) gives that

γ3σk ≥ σk+1 ≥ σB
max,

16

i.e., that

σk ≥ max
(
κ1ϵ

(3−r)/2, σ0

)
≥ κ1ϵ

(3−r)/2 ≥ κ1∥∇xΦ(xk + sk)∥(3−r)/2

because of (4.9). In addition, as k + 1 ∈ Bγ3 and iteration k was unsuccessful, it follows

that k ∈ B. But then Lemma 4.2 implies that iteration k must be very successful. This

contradiction provides the first two terms in (4.11). The other terms result directly as in the

proof of Lemma 3.3 when k /∈ Bγ3 . 2

These introductory lemmas now lead to our main convergence results. First we establish

global convergence to a critical point of Φ(x).

Theorem 4.4. Suppose that AS.1 holds and r > 3. Then the iterates {xk} generated by

Algorithm 4.1 satisfy

lim
k→∞

inf ∥∇xΦ(xk)∥ = 0 (4.12)

if no non-trivial termination test is provided.

Proof. Suppose that (4.12) does not hold, in which case (4.9) holds for some 0 < ϵ ≤ 1 and

all k ≥ 0. If k ∈ S, it follows from (3.5), (4.10) and (4.11) that

Φ(xk)− Φ(xk+1) ≥ η1(m(xk, 0)−m(xk, sk)) >
η1
r
σk∥sk∥r

=
η1
r
(σk∥sk∥r−1)∥sk∥ ≥ η1

r
αϵ

(αϵ)1/(r−1)

σ
1/(r−1)
k

≥ η(αϵ)r/(r−1)

rσ
1/(r−1)
max

≥ ηαr/(r−1)

rκ
1/(r−1)
3

ϵr/(r−1)

(ϵ(3−r)/2)1/(r−1)
= κ4ϵ

3/2 > 0,

(4.13)

where

κ3 = γ3max(κσ, κ1) and κ4 :=
ηαr/(r−1)

rκ
1/(r−1)
3

.

Just as in the proof of Theorem 3.10, we then deduce (3.24) which shows that there are only a

finite number of successful iterations. If iteration k is the last of these, all subsequent iterations

are unsuccessful, and thus σk grows without bound. But as this contradicts Lemma 4.3, (4.9)

cannot be true, and thus (4.12) holds. 2

Next we give an evaluation complexity result based on the stopping criterion (1.2).

Theorem 4.5. Suppose that AS.1 holds and r > 3. Then Algorithm 2.1 requires at most⌈
κu

∥r(x0)∥2

2κ4
ϵ−3/2 + κi + κe log ϵ

−1

⌉
+ 1 if ϵ <

(
κ1
κσ

)2/(r−3)

or⌈
κu

∥r(x0)∥2

2κ4
ϵ−3/2 + κa

⌉
+ 1 otherwise

(4.14)

evaluations of r(x) and its derivatives to find an iterate xk for which the termination test

17

∥∇xΦ(xk)∥ ≤ ϵ

is satisfied for given 0 < ϵ < 1, where

κi :=
log(γ3κ1/κσ)

log γ2
, κe :=

r − 3

2 log γ2
and κa :=

log γ3
log γ2

, (4.15)

κu is defined in (3.17), κ1 in (4.7) and κσ in (4.11).

Proof. If the algorithm has not terminated on or before iteration k, (4.9) holds, and so

summing (4.13) over successful iterations and recalling that Φ(x0) = 1
2
∥r(x0)∥2 and Φ(xk) ≥ 0,

we have that

1
2
∥r(x0)∥2 ≥ Φ(x0)− Φ(xk+1) ≥ |Sk|κ4ϵ3/2.

Thus there at most

|Sk| ≤
∥r(x0)∥2

2κ4
ϵ−3/2

successful iterations. Combining this with Lemma 3.6, accounting for the max in (4.11) and

remembering that we need to evaluate the function and gradient at the final xk+1 yields the

bound (4.14). 2

We note in passing that in order to derive Theorem 4.5, we could have replaced the test (4.2)

in Algorithm 4.1 by the normally significantly-weaker requirement (4.10).

Our final result examines the evaluation complexity under the stopping rule (3.28).

Theorem 4.6. Suppose that AS.1 holds, r > 3 and an i ≥ 1 is given. Then Algorithm 2.1

requires at most⌈
κu∥r(x0)∥1/2

i
max

(
κ−1
g ϵ

−3/2
d , κ−1

r ϵ
−1/2i

p

)
+ κi + κe(log ϵ

−1
d + log ϵ−1

p)
⌉
+ 1

if ϵpϵd <

(
κ1
κσ

)2/(r−3)

, or otherwise⌈
κu∥r(x0)∥1/2

i
max

(
κ−1
g ϵ

−3/2
d , κ−1

r ϵ
−1/2i

p

)
+ κa

⌉
+ 1,

(4.16)

evaluations of r(x) and its derivatives to find an iterate xk for which the termination test

∥r(xk)∥ ≤ ϵp or ∥gr(xk)∥ ≤ ϵd,

is satisfied for given 0 < ϵp, ϵd ≤ 1, where κc, κg and κr are given by (3.37), κu is defined in

(3.17), κ1 in (4.7), κσ in (4.11), and β ∈ (0, 1) is a fixed problem-independent constant.

18

Proof. As in the proof of Theorem 3.12, let Sβ := {l ∈ S | ∥r(xl+1)∥ > β∥r(xl)∥} for a

given β ∈ (0, 1). For l ∈ Sβ, it follows from (3.5), (4.2) and the definition (1.4) that

∥r(xl)∥2 − ∥r(xl+1)∥2 ≥ 2η1(m(xl, 0)−m(xl, sl)) >
2η1
r

σl∥sl∥r

=
2η1
r

(σl∥sl∥r−1)∥sl∥ ≥ 2η1
r

αr/((r−1))σ
−1/((r−1))
l ∥∇xΦ(xl+1)∥r/(r−1)

≥ 2η1
r

αr/(r−1)σ
−1/(r−1)
l ∥gr(xl+1)∥r/(r−1)∥r(xl+1)∥r/(r−1)

≥ 2η1
r

αr/(r−1)σ
−1/(r−1)
l ∥gr(xl+1)∥r/(r−1)∥r(xl)∥r/(r−1)

and thus applying Lemma 3.11 with i ≥ 1,

∥r(xl)∥1/2
i −∥r(xl+1)∥1/2

i ≥ η1α
r/(r−1)

2ir
σ
−1/(r−1)
l ∥gr(xl+1)∥r/(r−1)∥r(xl)∥(r/(r−1)−(2i+1−1)/2i)

=
η1α

r/(r−1)

2ir
σ
−1/(r−1)
l ∥gr(xl+1)∥r/(r−1)∥r(xl)∥(r/(r−1)−3/2)∥r(xl)∥(3/2−(2i+1−1)/2i)

≥ κdσ
−1/(r−1)
l ∥gr(xl+1)∥r/(r−1)∥r(xl)∥(r/(r−1)−3/2),

where κd :=
η1α

r/(r−1)

2ir
∥r(x0)∥(3/2−(2i+1−1)/2i),

(4.17)

as 3/2 ≤ (2i+1 − 1)/2i and (3.30) holds. But since the algorithm has not yet terminated,

∥r(xk)∥ > ϵp and ∥gr(xk)∥ > ϵd (4.18)

for all k ≤ l + 1 and in particular (4.17) becomes

∥r(xl)∥1/2
i − ∥r(xl+1)∥1/2

i ≥ κdσ
−1/(r−1)
l ϵ(3−r)/2(r−1)

p ϵ
r/(r−1)
d (4.19)

and (4.10) holds with ϵ = ϵpϵd, and so

σl ≤ σmax := γ3max
(
κ1ϵ

(3−r)/2
p ϵ

(3−r)/2
d , κσ

)
(4.20)

from Lemma 3.3. Consider the possibility

κ1ϵ
(3−r)/2
p ϵ

(3−r)/2
d ≥ κσ. (4.21)

In this case, (4.20) implies that

σ
−1/(r−1)
l ≥ 1

(γ3κ1)1/(r−1)
ϵ(r−3)/2(r−1)
p ϵ

(r−3)/2(r−1)
d

and hence combining with (4.19), we find that

∥r(xl)∥1/2
i − ∥r(xl+1)∥1/2

i ≥ κd
(γ3κ1)1/(r−1)

ϵ
3/2
d (4.22)

If (4.21) does not hold,

σ
−1/(r−1)
l ≥ 1

(γ3κσ)1/(r−1)

and thus (4.19) implies that

∥r(xl)∥1/2
i − ∥r(xl+1)∥1/2

i ≥ κd
(γ3κσ)1/(r−1)

ϵ(3−r)/2(r−1)
p ϵ

r/(r−1)
d ≥ κd

(γ3κσ)1/(r−1)
ϵ
3/2
d (4.23)

19

since ϵp and ϵd ≤ 1 and r > 3. Hence (4.22) and (4.23) hold when l ∈ Sβ,

For l ∈ S \ Sβ, for which ∥r(xl+1)∥ ≤ β∥r(xl)∥ and hence ∥r(xl+1)∥1/2
i ≤ β1/2i∥r(xl)∥1/2

i
.

Thus in view of (4.18), we have that

∥r(xl)∥1/2
i − ∥r(xl+1)∥1/2

i ≥ (1− β1/2i)∥r(xl)∥1/2
i ≥ (1− β1/2i)ϵ1/2

i

p (4.24)

for all l ∈ S \ Sβ. Thus, combining (4.22),(4.23) and (4.24), we have that

∥r(xl)∥1/2
i − ∥r(xl+1)∥1/2

i ≥ min
(
κgϵ

3/2
d , κrϵ

1/2i

p

)
for all l ∈ S, where

κg :=
η1α

r/(r−1)

2irγ
1/(r−1)
3

min

(
1

κ1
,
1

κσ

)1/(r−1)

∥r(x0)∥(3/2−(2i+1−1)/2i) and κr := (1− β1/2i).

(4.25)

Summing over l ∈ Sk and using (3.30),

∥r(x0)∥1/2
i ≥ ∥r(x0)∥1/2

i − ∥r(xk+1)∥1/2
i ≥ |Sk|min

(
κgϵ

3/2
d , κrϵ

1/2i

p

)
and thus that there are at most

|Sk| ≤ ∥r(x0)∥1/2
i
max

(
κ−1
g ϵ

−3/2
d , κ−1

r ϵ−1/2i

p

)
.

successful iterations. As before, combining this with Lemma 3.6, accounting for the max in

(4.11) and remembering that we need to evaluate the function and gradient at the final xk+1

yields the bound (4.16). 2

Comparing (3.27) with (4.16), there seems little theoretical advantage (aside from constants)

in using regularization of order more than three.

5 Conclusions

We have proposed and analysed a related pair of tensor-Newton algorithms for solving non-

linear least-squares problems. Under reasonable assumptions, the algorithms have been shown

to converge globally to a first-order critical point. Moreover, their function-evaluation com-

plexity is as good as the best-known algorithms for such problems. In particular, conver-

gence to an ϵ-first-order critical point of the sum-of-squares objective (1.1) requires at most

O
(
ϵ−min(r/(r−1),3/2)

)
function evaluations with r-th-order regularization with r ≥ 2. More-

over, convergence to a point that satisfies the more natural convergence criteria (1.3) takes at

most O
(
max(ϵ

−min(r/(r−1),3/2)
d , ϵ

−1/2i

p

)
evaluations for any chosen i ≥ ⌈log2 ((r − 1)/(r − 2))⌉.

Whether such bounds may be achieved is an open question.

Although quadratic (r = 2) regularization produces the poorest theoretical worst-case bound

in the above, in practice it often performs well. Moreover, although quadratic regularization is

rarely mentioned for general optimization in the literature (but see [1] for a recent example), it

is perhaps more natural in the least-squares setting since the Gauss- and tensor-Newton approx-

imations (2.2) are naturally bounded from below and thus it might be argued that regularization

need not be so severe. The rather weak dependence of the second bound above on ϵp is worth

20

noting. Indeed, increasing i reduces the influence, but of course the constant hidden by the O(·)
notation grows with i. A similar improvement on the related bound in [8, Theorem 3.2] is possible

using the same arguments.

It is also possible to imagine generalizations of the methods here in which the quadratic tensor-

Newton model in (2.1) is replaced by a p−th-order Taylor approximation (p > 2). One might then

anticipate evaluation-complexity bounds in which the exponents min(r/(r − 1), 3/2) mentioned

above are replaced by min(r/(r−1), (p+1)/p), along the lines considered elsewhere [10,11]. The

limiting applicability will likely be the cost of computing higher-order derivative tensors.

Our interest in these algorithms has been prompted by observed good behaviour when applied

to practical problems [16]. The resulting software is available as part of the RALFit [23] and

GALAHAD [15] software libraries.

References

[1] E. G. Birgin and J. M. Martinez. Quadratic regularization with cubic descent for un-

constrained optimization. Technical Report MCDO271016, State University of Campinas,

Brazil, 2016.

[2] Å. Björck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia, USA, 1996.

[3] A. Bouaricha and R. B. Schnabel. Algorithm 768: TENSOLVE: a software package for solv-

ing systems of nonlinear equations and nonlinear least-squares problems. ACM Transactions

on Mathematical Software, 23(2):174–195, 1997.

[4] A. Bouaricha and R. B. Schnabel. Tensor methods for large, sparse nonlinear least squares

problems. SIAM Journal on Scientific and Statistical Computing, 21(4):1199–1221, 1999.

[5] C. Cartis, N. I. M. Gould, and Ph. L. Toint. On the complexity of steepest descent, New-

ton’s method and regularized Newton’s methods for nonconvex unconstrained optimization

problems. SIAM Journal on Optimization, 20(6):2833–2852, 2010.

[6] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Adaptive cubic regularisation methods for

unconstrained optimization. Part I: motivation, convergence and numerical results. Mathe-

matical Programming, Series A, 127(2):245–295, 2011.

[7] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Adaptive cubic regularisation methods for un-

constrained optimization. Part II: worst-case function and derivative-evaluation complexity.

Mathematical Programming, Series A, 130(2):295–319, 2011.

[8] C. Cartis, N. I. M. Gould, and Ph. L. Toint. On the evaluation complexity of cubic reg-

ularization methods for potentially rank-deficient nonlinear least-squares problems and its

relevance to constrained nonlinear optimization. SIAM Journal on Optimization, 23(3):1553–

1574, 2013.

[9] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Evaluation complexity bounds for smooth

constrained nonlinear optimization using scaled KKT conditions and high-order models.

Report naXys-11-2015(R1), University of Namur, Belgium, 2015.

21

[10] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Improved worst-case evaluation complexity

for potentially rank-deficient nonlinear least-euclidean-norm problems using higher-order

regularized models. Technical Report RAL-TR-2015-011, Rutherford Appleton Laboratory,

Chilton, Oxfordshire, England, 2015.

[11] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Universal regularization methods-varying the

power, the smoothness and the accuracy. Preprint RAL-P-2016-010, Rutherford Appleton

Laboratory, Chilton, Oxfordshire, England, 2016.

[12] F. E. Curtis and D. P. Robinson. A trust region algorithm with a worst-case iteration

complexity of O(ϵ−3/2) for nonconvex optimization. COR@L Technical Report 14T-009,

Lehigh University, Bethlehem, PA, USA, 2014.

[13] J. E. Dennis, D. M. Gay, and R. E. Welsh. An adaptive nonlinear least squares algorithm.

ACM Transactions on Mathematical Software, 7(3):348–368, 1981.

[14] P. E. Gill and W. Murray. Algorithms for the solution of the nonlinear least squares problem.

SIAM Journal on Numerical Analysis, 15(5):977–992, 1978.

[15] N. I. M. Gould, D. Orban, and Ph. L. Toint. GALAHAD—a library of thread-safe fortran

90 packages for large-scale nonlinear optimization. ACM Transactions on Mathematical

Software, 29(4):353–372, 2003.

[16] N. I. M. Gould, T. Rees, and J. A. Scott. A higher order method for solving nonlinear

least-squares problems. Technical Report RAL-P-2017-010, STFC Rutherford Appleton

Laboratory, 2017.

[17] K. Levenberg. A method for the solution of certain problems in least squares. Quarterly of

Applied Mathematics, 2(2):164–168, 1944.

[18] D. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. SIAM

Journal on Applied Mathematics, 11(2):431–441, 1963.

[19] J. J. Moré. The Levenberg-Marquardt algorithm: implementation and theory. In G. A. Wat-

son, editor, Numerical Analysis, Dundee 1977, number 630 in Lecture Notes in Mathematics,

pages 105–116, Heidelberg, Berlin, New York, 1978. Springer Verlag.

[20] D. D. Morrison. Methods for nonlinear least squares problems and convergence proofs. In

J. Lorell and F. Yagi, editors, Proceedings of the Seminar on Tracking Programs and Orbit

Determination, pages 1–9, Pasadena, USA, 1960. Jet Propulsion Laboratory.

[21] Yu. Nesterov. Introductory lectures on convex optimization. Kluwer Academic Publishers,

Dordrecht, The Netherlands, 2004.

[22] Yu. Nesterov and B. T. Polyak. Cubic regularization of Newton method and its global

performance. Mathematical Programming, 108(1):177–205, 2006.

[23] RALFit. https://github.com/ralna/RALFit. Accessed: 2017-07-20.

[24] M. K. Transtrum, B. B. Machta, and J. P. Sethna. Why are nonlinear fits to data so

challenging? Physical Review Letters, 104(6):060201, 2010.

22

[25] M. K. Transtrum and J. P. Sethna. Geodesic acceleration and the small-curvature approxi-

mation for nonlinear least squares. arXiV.1207.4999, 2012.

[26] H. Zhang and A. R. Conn. On the local convergence of a derivative-free algorithm for

least-squares minimization. Computational Optimization and Applications, 51(2):481–507,

2012.

[27] H. Zhang, A. R. Conn, and K. Scheinberg. A derivative-free algorithm for least-squares

minimization. SIAM Journal on Optimization, 20(6):3555–3576, 2010.

Appendix A: Proofs of function bounds (3.1)–(3.4)

We assume that ri(x), i = 1, . . . ,m are twice-continuously differentiable, and that they and their

first two derivatives are Lipschitz on the intervals Fk = {x : x = xk + αsk for some α ∈ [0, 1]}.
Therefore

∥r(x)− r(y)∥ ≤ Lr∥x− y∥, ∥J(x)− J(y)∥ ≤ Lj∥x− y∥ and ∥∇xxri(x)−∇xxri(y)∥ ≤ Lh∥x− y∥
(A.1)

for x, y ∈ Fk . Moreover, these Lipschitz bounds imply that

∥∇xri(x)∥ ≤ Lr, ∥J(x)∥ ≤ Lr and ∥∇xxri(x)∥ ≤ Lj (A.2)

for x ∈ Fk [21, Lemma 1.2.2]. It follows from Taylor’s theorem and (A.1) that

|ri(xk + sk)− ti(xk, sk)| ≤ 1
6
Lh∥sk∥3, (A.3)

and from the definition (2.1) of ti(x, s), the Cauchy-Schwarz inequality, (A.2) and the monotonic-

ity bound

|ri(xk)| ≤ ∥r(xk)∥ ≤ ∥r(x0)∥ (A.4)

that
|ti(xk, sk)| ≤ |ri(xk)|+ ∥∇xri(xk))∥∥sk∥+ 1

2
∥∇xxri(xk)∥∥sk∥2

≤ ∥r(x0)∥+ Lr∥sk∥+ 1
2
Lj∥sk∥2.

(A.5)

But, using (A.3)–(A.5),

|r2i (xk + sk)− t2i (xk, sk)| = |ri(xk + sk)− ti(xk, sk)||ri(xk + sk) + ti(xk, sk)|
≤ 1

6
Lh∥sk∥3(|2ti(xk, sk)|+ Lh∥sk∥3)

≤ 1
6
Lh∥sk∥3(2∥r(x0)∥+ 2Lr∥sk∥+ Lj∥sk∥2 + Lh∥sk∥3).

Thus if ∥sk∥ ≤ 1, it follows from the triangle inequality that

| 1
2
∥r(xk + sk)∥2 − 1

2
∥t(xk, sk)∥2| ≤ 1

12
mLh(2∥r(x0)∥+ 2Lr + Lj + Lh)

which provides the bound (3.1) with Lf := 1
12
mLh(2∥r(x0)∥+ 2Lr + Lj + Lh).

Taylor’s theorem once again gives that

∥∇xri(xk + sk)−∇sti(xk, sk)∥ ≤ 1
2
Lj∥s∥2. (A.6)

23

But then the triangle inequality together with (A.3), (A.5) and (A.6) give

∥ri(xk + sk)∇xri(xk + sk)− ti(xk, sk)∇sti(xk, sk)∥
= ∥(ri(xk + sk)− ti(xk, sk))∇xri(xk + sk) + ti(xk, sk)(∇xri(xk + sk)−∇sti(xk, sk))∥
≤ |ri(xk + sk)− ti(xk, sk)|∥∇xri(xk + sk)∥+ |ti(xk, sk)|∥∇xri(xk + sk)−∇sti(xk, sk)∥
≤ 1

6
LhLj∥sk∥3 + 1

2
Lj(∥r(x0)∥+ Lr∥sk∥+ 1

2
Lj∥sk∥2)∥sk∥2.

Hence, if ∥sk∥ ≤ 1, we have that

|Φ(xk + sk)−m(xk, sk)| ≤ m (1
6
LhLj + 1

2
Lj(∥r(x0)∥+ Lr + 1

2
Lj)) ,

which is (3.2) with Lg := m(1
6
LhLj + 1

2
Lj(∥r(x0)∥+ Lr + 1

2
Lj).

The bound (3.3) follows immediately from Cauchy-Schwarz and (A.2) with LJ := Lr. Finally

(A.2), (A.4) and the well-known relationship ∥·∥1 ≤
√
m∥·∥ between the ℓ1 and Euclidean norms

give

∥H(xk, r(xk))∥ =

∥∥∥∥∥
m∑
i=1

ri(xk)∇xxri(xk)

∥∥∥∥∥ ≤
m∑
i=1

|ri(xk)|∥∇xxri(xk)∥ ≤ ∥r(xk)∥1Lj ≤
√
mLj∥r(x0)∥,

which is (3.4) with LH :=
√
mLj.

24

	RAL-P-2017-009 - cover
	RAL-P-2017-009 - preprint

