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Abstract 

This paper reports an algorithm and software for producing dynamical models of materials at the 

atomic scale using classical molecular dynamics simulation, but simultaneously refining the potential 

energy parameters based on experimentally determined dynamical and structural information such 

as the dynamical structure factor S(Q, ω). The software is called MDMC (Molecular Dynamics  - 

Monte Carlo) (https://github.com/MDMCproject) and the first pre-release version used in this work 

is https://doi.org/10.5281/zenodo.1068365. 

The algorithm follows from two previous very successful algorithms Reverse Monte Carlo (RMC) 

(McGreevy & Pusztai, 1988)(McGreevy, 2001) and Empirical Potential Structure Refinement (EPSR) 

(Soper, 1996) (Soper, 2007), though these are only used to produce structural models based on 

structural data.  

In this paper the algorithm is presented together with initial results for a model system, liquid argon, 

based  on the data of  (van Well, Verkerk, de Graaf, Suck, & Copley, 1985).  

Introduction 

Both RMC and EPSR have had a large impact on structural studies of disordered and amorphous 

materials. For recent reviews and works using these methods see for example: (Playford, Owen, 

Levin, & Tucker, 2014) (Bouty, 2014) (Soper & Edler, 2017). In RMC the atomic coordinates in a 

structural model, typically many thousands of atoms, are refined based on the difference between 

experimental structural data and that calculated from the model.  Sequences of RMC configurations 

(models) have been used to explore dynamical aspects of structures (see e.g. McGreevy and 

Zetterström, 2003), for example diffusion pathways in crystalline ionic conductors, but still based on 

structural data. This approach has then been extended (RMCt) to fit to the dynamical structure 

factor (Gereben, Pusztai, & McGreevy, 2007) by assigning a time step between configurations and 

thus creating an analogue of a MD simulation.  

In EPSR an empirical potential is used in a Monte Carlo model to generate a structure and the 

potential parameters are refined based on the difference between experimental structural data and 

that calculated from the model. When the refinement has converged the potential can then be used 

on its own to create ensembles of structures. In principle the potential could also be used in a MD 

simulation to create dynamical models. However, it has been recognised for a long time that often a 

range of potentials can adequately reproduce the same set of structural data, whereas they might 

produce quite different results in terms of dynamics. Hence the use of the word ‘empirical’; the 

potential is purely used as a tool for generating a structural model.   
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More recently, an approach to refining PE parameters from dynamical structure factor data has been 

reported in the detailed study by (Borreguero & Lynch, 2016). However, in this case a particular 

problem has been chosen where the data to be fitted are dominated by a single type of motion and 

hence a single PE parameter is refined, so it is not clear whether this algorithm can be generalised to 

a wider range of problems. 

It might be questioned whether such model fitting to experimental data is any longer needed, since 

classical force fields/potentials and ab-initio methods can in many cases provide semi-quantitative 

agreement with experimental data. But the problem remains to ascertain how significant the 

deviations between simulation and experiment are for the purposes of understanding the relevant 

physical phenomena and, perhaps more importantly, how those deviations then affect the validity of 

any predictions that simulations may be used to make for either different conditions or different 

materials. Ab-initio methods also still tend to be restricted to smaller systems and timescales than 

would often be of interest. 

The algorithm described in this paper takes strong inspiration from the RMC and EPSR methods to 

be generally applicable to any structural or dynamical data that can be calculated from a simulation, 

such as the dynamical structure factor. In practice the starting point would normally be the best 

available potentials.  

The algorithm 

The algorithm developed uses a standard classical MD simulation wrapped inside a Monte Carlo 

(MC) minimisation routine that optimises the potential energy parameters to provide the best fit 

between calculated and experimental data. An important development required to significantly 

decrease the computing time was to only use small changes of the parameters in order to maintain 

the simulation in equilibrium, i.e. any change in parameters should alter the total energy of the 

simulation by a smaller amount than the normal numerical fluctuation.   

1. Specify the starting values of the PE parameters and run the initial MD simulation to 

equilibrium.  Calculate the function(s) to be fitted (see below) and the Figure of Merit (FOM) 

function that measures the discrepancy between calculation and experiment(s).  

2. Store the FOM value and MD phase-space configuration. 

3. Select new values for the PE parameters by randomly modifying the previous PE parameters. 

Parameter changes should be sufficiently small to maintain the simulation in equilibrium. (At 

present the maximum parameter changes have been adjusted manually, however this could 

be automated.) 

4. Run MD, re-calculate the FOM. 

5. Use the Metropolis criterion to accept or reject the new FOM and therefore the PE 

parameters used to calculate the FOM, i.e. accept the new PE parameters with probability 

P������ = min�1, ��� �− �������������
��� �� where the MC 'temperature' TMC controls the 

acceptance rate. If the MC step is accepted then overwrite the previously stored FOM value 

and phase-space configuration from step 2. 
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6. Repeat from step 3 until convergence has been achieved (the average value of the FOM over 

a number of iterations no longer decreases) or the chosen maximum number of iterations 

has been reached.   

The FOM is defined as 

  !" =#$% 	' %
()*) −  %+),-% .

/
	

%
	 (1) 

where Fi is any function that can be both determined from experimental data and calculated from 

the simulation, for example the dynamical structure factor S(Q, ω).  σi is a measure of the 

experimental error which may be constant or a function of the same parameters as the data, e.g. Q 

and ω in the case of S(Q, ω). wi is a weighting factor that assigns a relative importance to different 

data sets, for example accounting for the fact that they may have very different numbers of data 

points.   

Although the algorithm has only been tested on a system with a single atomic species this is not a 

restriction. 

Initial results 

The algorithm has been tested using S(Q, ω) data for liquid argon collected at T=120K ρ=0.0176Å-3 

(van Well et al., 1985) where the data are modelled with a Lennard-Jones (LJ) potential.  

S(Q, ω) is related to the time-dependent correlation function G(r,t) through the Fourier transform 

 012,34 = 1
26 ∫ 819, :4�%1;⋅=�>*4?:?9 (2) 

Ignoring Quantum effects, then in the classical limit of G(r,t) for a single atomic species is 

 819, :4 = 1
@ 〈# B19 − 9C1:4 + 9%104

%,C
〉 (3) 

where <…> denotes a thermal average. This is calculated by averaging over statistically independent 

(or nearly independent) G(r,t) instances., which were determined from the MD simulations using the 

approach described in the book by Rapaport (Rapaport, 2004).  

The partial differential cross section for inelastic neutron scattering from a single atomic species is 

proportional to -%G+0H12, 34 + -+IJ012, 34, where 0H is the Fourier transform of the self-part (i=j) 

of the correlation function in Eq. (3), σinc is the incoherent cross section and σcoh is the coherent 

cross section (Squires, 1996). For argon the incoherent cross section can be neglected in which case 

the inelastic neutron scattering cross section is proportional to S(Q, ω). For a single atomic species 

the time-dependent correlation function and the space-time pair correlation function (as shown in 

Figure 1) are related by g(r,t)= G(r,t)/ ρ, where ρ is the atomic number density. 

The MD simulation used a cubic box with standard periodic boundary conditions. The maximum 

values of r and t for the simulation need to be sufficient to avoid truncation of G(r,t) in the Fourier 

transform Eq.(2) that would otherwise introduce artefacts into the calculated S(Q, ω). In this case a 
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box containing 864 atoms was used. In addition the minimum number of time steps needs to allow 

for an equal number of time origins (Eq. (3)) for both the shortest and longest times. In this case the 

individual MD time step was 10.75 fs, and the number of time steps (after the initial run to 

equilibrium) was 3500.  This time resolution was not required for the Fourier transform (determined 

by the maximum value of ω) so the G(r,t) histogram time bin was 7 MD time steps; the r bin was 0.2 

Å.  

The experiment above was repeated where the MD simulations were run with larger box sizes, 

different initial configurations of the atoms (simple cubic, face centred cubic and liquid) and for 

different times. It was found that for this simple system the algorithm could cope with this.  

The experimental liquid argon data are shown in Figure 1(a). The initial values selected for the LJ 

parameters were ε=1.5K/mol and σ=4.0Å and, as can be seen from Figure 1(b), the system then 

equilibrates in a crystalline phase (face centred cubic). This marks the completion of steps 1 and 2 of 

the proposed algorithm. 

The algorithm continues through cycles of updating LJ parameters; in this test it was allowed to run 

beyond convergence for 400 cycles/MC steps. The LJ parameters found with the smallest FOM were 

ε=1.020K/mol and σ=3.362Å and these may be compared to the published values: ε=1.0243K/mol 

and σ=3.36Å (van Well et al., 1985). Figures 1(c-d) show the corresponding Scal(Q, ω) and space-time 

pair correlation function gd(r,t) for the best obtained LJ parameter values and, as expected, the MD 

simulation now equilibrates in the liquid state (gd  = g – gs  is shown because otherwise the sharp 

spike in the bottom corner obscures the figure). Finally, figures 1(e-g) compare the experimental and 

calculated data for the best values of the LJ parameters. 

The calculated FOM values (on a log scale) as a function of MC steps (cycles) are shown in Figure 2, 

where the crosses plot the accepted MC steps and the circles plot the rejected MC steps. Within the 

first 20 MC steps the FOM value drops sharply transforming the system from a crystalline state to a 

liquid state and the system thereafter stays in this state. Convergence appears to have been reached 

after 200 steps. It was then tested whether lowering the TMC parameter from TMC=1 to TMC=0.25 

would further reduce the FOM; the percentage of accepted steps dropped from ~32% to ~18% but 

otherwise no noticeable change was observed.  

Figure 3 show the pairs of values of σ and ε for all the accepted MC steps starting from the 15th 

accepted step, with the '+' in the top right-hand corner showing the starting parameters. The point 

where the horizontal and vertical dashed lines cross marks the published values for liquid argon in 

(van Well et al., 1985). The (σ,ε) pair of values which is closest happens to be that with the smallest 

FOM value. However, this should be viewed as coincidental since fluctuations of order ± 10% in ε 

and  ± 3% in σ would produce equally acceptable fits to the experimental data. The distribution of 

value pairs also indicates some correlation, with higher values of ε corresponding to lower values of 

σ and vice-versa. 

Figure 4 shows the values of the diffusion constant for the accepted MC steps. After about 20 MC 

steps the system settles into the liquid state with a calculated diffusion constant fluctuating near the 

published value for this system: D=0.68 10-8 m2s-1 (van Well et al., 1985).  
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To reproduce these results the MDMC software can be downloaded from [software DOI reference]. 

Note that because of the random moves of the PE parameters and initial scaled velocities of the 

starting phase-space configuration no two runs of MDMC will yield exactly the output. 

Conclusions 

A new algorithm has been proposed to model dynamical structure factor data from inelastic neutron 

scattering, which was heavily inspired by the RMC and EPSR methods. As for these algorithms, the 

proposed method may also be easily combined with other types of data and constraints. Initial 

results from using the algorithm were presented, which showed that it was able to straightforwardly 

optimise LJ parameters from a poor initial starting point of these parameters.  
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Captions 

Figure 1: (a) Shows the T=120K, ρ=0.0176Å-3 argon S(Q, ω) data from (van Well et al., 1985) 

multiplied by exp1ℏω/12kRT44. This multiplication is performed to ‘un-symmetrise’ the 

symmetrised S(Q, ω) data, see Eq. (5) in (van Well et al., 1985). (b) Shows the distinct part of the 

space-time pair-distribution function, gd(r,t), for the first guess at the PE parameter values. (c-d) 

Show plots of Scal(Q, ω) and gd(r,t) for the PE parameter values resulting in the smallest FOM value 

found. (e) Shows the difference between S(Q, ω) in (a) and (c). The solid line in (f) shows 

∫ 0()*)12,34?3 and the dashed line ∫ 0+),12,34?3. S(Q, ω) is in units of 10-13s = 0.1 ps. gd(r,t) is 

dimensionless. 

Figure 2: Shows the FOM value, on a log scale, for accepted (crosses) and rejected (circles) MC steps. 

The FOM here is as defined in Eq. (1) with the weighting factors set to one and Fi set to the 

dynamical structure factor. During the first 200 MC steps TMC=1. The MDMC simulation was then 

continued, after the first 200 MC steps, using as a starting point the LJ parameters with the lowest 

FOM value from the first 200 MC steps and with TMC reduced by a factor of four. 

Figure 3: Plots the LJ parameter values of the accepted MC steps as crosses after the 15th step. The 

'+' at the top right-hand corner shows the values of the LJ parameters first selected. The horizontal 

and vertical dashed lines show the published (van Well et al., 1985) LJ parameter values: 

ε=1.0243K/mol and σ=3.36Å. 

Figure 4: Shows the value of the calculated diffusion constant in units of [10-8 m2s-1] for all accepted 

MC steps. The horizontal solid line plots the published value for the diffusion constant: D=0.68 10-8 

m2s-1 (van Well et al., 1985). 
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Figure 1 

 

  



9 
 

Figure 2 
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Figure 4 
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