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USING FGMRES TO OBTAIN BACKWARD STABILITY IN MIXED PRECISIO  N*
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Dedicated to @rard Meurant on the occasion of his 60th birthday

Abstract. We consider the triangular factorization of matrices ing@nprecision arithmetic and show how
these factors can be used to obtain a backward stable sol@iar aim is to obtain double-precision accuracy even
when the system is ill-conditioned. We examine the use ddtiiee refinement and show by example that it may not
converge. We then show both theoretically and practicalft the use of FGMRES will give us the result that we
desire with fairly mild conditions on the matrix and the diréactorization. We perform extensive experiments on
dense matrices using MATLAB and indicate how our work exgetadsparse matrix factorization and solution.
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1. Introduction. We are concerned with the solution of
Az =0, (1.1)

whenA is ann x n matrix andx: andb are vectors of length. For most of our discussion the
matrix A is dense and unsymmetric, although we will consider the chsparse symmetric
Ain Section6. We will solve these systems using a direct method where #igx is first
factorized as

A— LU,

whereL andU are triangular matrices. The solution is then obtainedughdorward elimi-
nation

Ly=1b
followed by back substitution
Uz =y,

where we have omitted permutations required for numeriahllgty and sparsity preservation
for the sake of clarity. Whed is symmetric, we use ahD L7 factorization where the matrix
D is block diagonal with blocks of order 1 and 2, so that we cablgtfactorize indefinite
systems.

On many emerging computer architectures, single-pratiaithmetic (by which we
mean working with 32-bit floating-point numbers) is fasteart double-precision arithmetic.
In fact on the Cell processor, using single precision can beertihan ten times as fast as using
double precisiond]. In addition, single-precision numbers require half tterage of double-
precision numbers, and the movement of data between menamiye, and processing units
is much reduced by using single rather than double precislowever, in many applications,
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a higher accuracy is required than single precision (withlaesof machine precision around
10~7), because the matrix can be so ill-conditioned that sipgéeision calculation is unable
to obtain accuracy to even one significant figure — that isréisalts are meaningless.

The loss of accuracy due to ill-conditioning could be evenerdramatic if we want to
achieve extended-precision accuracy in the residual wineht) factorization is performed
in double precisionq]. In some applications it is well known that the matrix wik lvery
ill-conditioned, but a reasonable solution is still reguir Because extended precision is typ-
ically implemented in software, an extended-precision Btkdrization will be prohibitively
slow.

In this paper, we show how to use selective double-precisimt-processing to obtain
solutions with a backward error (scaled residual) of doydskrision accuracy (machine pre-
cisione ~ 10~!6) even when the factorization is computed in single prenisid/e show
that iterative refinement in double precision may fail whiea matrix is ill-conditioned, and
then show that, even for such badly-behaved matrices, theUBGMRES [L5] can pro-
duce answers to the desired level of accuracy; that is, tlii@o process using FGMRES is
backward stable at the level of double precision. We progg tmder realistic assumptions
on the matrix and the factorization, a double-precision FRE® iteration preconditioned
with a single-precision LU factorization is backward stalButtari et al. §] have performed
extensive performance testing of similar algorithms onrayeaof modern architectures and
illustrate well that such an approach can be beneficial,Hayt have no analysis of the algo-
rithms. For the case whes is sparse, which we discuss in Section 6, extensive nunierica
experiments have been performed by Buttari et gl.ahd Hogg and Scottl[J], although
again neither paper has any analysis. This paper expanddsimg theory of the authors
and others to provide a rigorous theoretical backgrounddich mixed arithmetic computa-
tions.

We observe that our analysis is still valid if we want to agkiextended-precision accu-
racy in the residual when the LU factorization is performedduble precision.

We briefly discuss iterative refinement and FGMRES in Se@iand prove the conver-
gence of the mixed-precision FGMRES algorithm in Sec8owe describe our construction
of dense test matrices in Sectidrand illustrate the performance of our algorithms in Sec-
tion 5. We then show how this can be extended to sparse matrice<tini$é where we
perform the single-precision factorization using the H9deMA57[6]. We present some
conclusions in Section.

2. lterative refinement and FGMRES. The standard technique for improving a solu-
tion to (L.1) is iterative refinement. This consists of computing thédee

) = p— Az (2.1)
to the current approximate solutiaf*) and calculating a correction t6*) by solving
AdzF) = (k) (2.2)
The new estimate is then

) = o) 4 5 (k)

The solution of the correction equatio?.?) will of course use the original factorization of
A, and so can be performed relatively quickly. It is easy tothe¢ the condition for the

convergence of iterative refinement is that the spectratsaof I — M A is less than one,

whereM is the approximation tol~! obtained using the factorization df
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Originally, it was customary to compute the residual in leigprecision 18]. More re-
cently, Skeel 17] established that in order to reduce the scaled residuakyeard error) to
machine precision, it is only necessary to compute thewasahd correction in the same pre-
cision as the original computation. However, since we wishhtain solutions with double-
precision accuracy when using a single-precision facation, we will follow the original
recommendation and compute the residuals in double poecisi

One potentially major restriction when using iterativemefnent is the condition on the
spectral radius of — M A. If M is not a very accurate factorization fdrthen this condition
may not be met. We have discussépldt length the case whe# is sparse and the factoriza-
tion is computed using static pivoting, for example using 5L codeMA57[6]. There we
have shown that in cases when iterative refinement fails, RESI[L5] will normally work
and is far more robust than either iterative refinement or @3R.6].

In this current work, we also compute atfi which is potentially far fromA—! because
we compute it in single precision. This will be particulathe case when the condition
number of the matrix is large, say around the inverse of sipgécision roundingl(?). We
study the use of FGMRES in this context both experiment&yctions) and theoretically
(Section3).

The FGMRES algorithm is an Arnoldi method based on Krylovusstges, and we
present its restarted variant in detail as Algoritérm. The main reason why FGMRES is
superior to GMRES is that FGMRES computes and stores a sestrd vectors?Z,, corre-
sponding to the preconditioned problem along with the ustthbnormal sequencg, [1].

ALGORITHM 2.1.

procedure [x] = FGMRES(A,l¥lb,maxit)
o = ]\/fo_lb, ro =b— Axg andﬁ = ||T‘0||
vy = ro/B; k=0; it = 0; convergence = false;
while convergence = false and < maxit
k=k+1,it=1it+1;
2 = Mk_lvk; w = Azy;
fori=1,...,kdo
hix = viTw;
w=w — h; LV,
end for;
hi1 = [lwll;
Zy = [z1,- -y 2] He = {hij hi<i<jr1,1<<k;
yr = argminy || Be1 — Hyyll;
if |Ber — Hiyel < e ([[bl] + | Al [|zx]l) do
Tk = xo + Zpyr andr = b — Axy;
if el > e ([[oll + [ Al [|zx]]) do
xo = X, 1o = b — Axy, andg = ||rol| ;
v1 = ro/0; k= 0; convergence = false;

else
convergence = true ;
end if
else
V1 = W/ hit1.k; Vierr = [v1, -+ Ut1]s
end if
end while;

end procedure.
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3. Theoretical proof of convergence for FGMRES.We present here an improved ver-
sion of Theorem 5.1 inl] using componentwise bounds for the matrix by vector prégluc
This simplifies the proof given inl] and gives more accurate bounds on the norm of the
residual. In Sectior8.1, we discuss the restarting process and we indicate how wé use
to achieve normwise backward stability. The first part of analysis is independent of the
choice of the matriced/; in FGMRES (Algorithm2.1). The only thing that we assume is
that the computed version of th, matrix

Zkz [21,...,2k]

is of rankk for all values oft < n. This guarantees convergence of the algorithm. We later
show how mixed precision influences the rankzfand the convergence of the algorithm.
Furthermore, the roundoff error analysis of FGMRES in Tlkeeo8.1is independent of the
specific choice of the computeql at each step if the resulting computgg is full rank.
Under this assumption and following the discussionlin\je decompose Algorithra.1
into three main sub-algorithms:
e Computation of the matrice§*), V., and R, by the Modified Gram-Schmidt al-

gorithm (MGS) such that
C®) =[ry, AZ) = VexrRe; V'V =1; Vj, (3.1)
where
Ry = Ber Hy |, (3.2)
AZy = Viy1 Hy,, (3.3)

andHj, is upper Hessenberg. Colurka-1 of C(**1) is computed after theth step
of MGS in (3.1) and @.2) by computing or choosing a new., ;. We then generate
the next column of/,.» and Ry, 1.

e Computation of the vectay;, by solving the least-squares problem

min | e, — Hyy| (3.4)

using a QR algorithm based on Givens rotations and the upgesdthberg structure
of Hy.

e Computation ofr;, = 29 + Zryx when the residuad|fe; — Hyyx|| is less than or
equal to the prescribed threshold.

In the following, we denote by, (n, j) functions that depend only on the dimension
and the integey. If the second index is omitted then the function dependg onln. We
avoid a precise formulation of these dependences, but weresthat eacla, (n, j) grows
moderately withn andj. Finally, if B € RP*?,p > ¢ is a full rank matrix, we denote by
k(B) = || B| ||BT|| its spectral condition number, wheBs = (BT B)~! B. For all matrices
and vectors we denote B3| the matrix or vector of the absolute values. Furthermore, we
denote the computed quantitiesi®f, Vi, Hx, yx, rx, andz by the same symbol with a bar
above it, i.e., the matri¥;, will be the computed value of the matrk;,.

THEOREM3.1. If we apply Algorithn®.1to solve (.1), using finite-precision arithmetic
conforming to IEEE standard with relative precisiornd under the following hypotheses:

212(n+1)e <001  and  co(n)ex(CH) < 0.1 Vk, (3.5)
where

co(n) = 18.53n2
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and
[5k] < 1—¢, Vk, (3.6)

where s, are the sines computed during the Givens algorithm applied/t in order to
computeyy, then there exists, & < n, such thatvk > k, we have

1= Azl < ealn, ke (Il + 141 2o+

o - S %))
JAITZel 6l |+ 1AZi] 9] ) + O(e2).

The proof is based on the following two lemmata. Note that vileuse some compo-
nentwise bounds to obtain the factprZy| |7x| || in the bound 8.7). In our earlier analysis
we had replaced this with the majorizing quantit|| ||| but found that this was too loose
a bound and that the quantityy || ||7x|| could be very large in our numerical experiments.

LEMMA 3.2.If we apply MGS to factoriz€ (*) in (3.1), using finite-precision arithmetic
conforming to IEEE standard with relative precisierand under the hypothese3.), then
there exist orthonormal matricég, such that

C®) =[ro+ f,AZ + Ex] = Vis1 R Vk <n (3.8)
with

I£1l < ea(n, e (JIb]l + 1Al [|zo)) + O(*) ~  and

3.9
|Ex| < es(m, k)e (| AZy Juul + |A] | Zk]) + OE?), (3:9)

where we denote by; the vectors of ordey with all entries equal tol. Moreover, the
computed value df}, satisfies the relation

Vil <13 (3.10)

Proof. By standard techniqueS]| the computed matrix by vector products and the initial
residualr, satisfy the relations

fo=ro+fi (Al < ca(n, D (o] + Al Izo]) + O?),  (3.11)
A(AZy) = AZ + FV [FY) < es(n, k)e |A] | 2] + O(e2). (3.12)
Following [3] and [8], the Gram-Schmidt orthogonalization process appliefl(t6*))

computes an upper triangular matd, for which there exists an orthonormal mat#i. |
that satisfies the relations:

{ [Fo; A(AZ3)] + [fo; FV] = Vieyr Ro, Vi Vigr = I (3.13)

I foll < co(n, Dellrol +OE2)  |FP| < er(n, k)e | AZk|| + O(e?)

under the hypothesi8S(5).
By combining 3.17), (3.12, and 8.13, we have

[ro; AZg] + [f1 + fz;F,gl) + F;f)] = Vk+1Rk7
L + Foll = £ < ealm, 1)e (]l + A 0] + O(c2)  and (3.14)
IEY + FP) | = | By| < es(n. k) (| AZyl[wpud + |A] | Zi]) + O(e2).
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We note that the third bound i3 (L4 is a componentwise bound. This is in contrast to the

normwise bound off] and gives us the final tighter bound in our main resBIv);
Finally, a proof of relation.10 can be found in§, 14]. 0
LeEmMMA 3.3. Applying the QR factorization with Givens rotations to solv

min | e — Hegl| (3.15)

using finite-precision arithmetic conforming to IEEE stardiwith relative precisiore and
under the condition

0.1 > co(n)e k(Hy) + O(e?) Vk, (3.16)

there exist an orthonormal matri%!*!, a vectorg/*), and an upper Hessenberg matix/
such that the computed valgg satisfies the following relations

g = argminy, |G (Be; + gI¥l — (Hy, + AH)y)|, ) (3.17)
[AH|| < cs(k, 1)e | Hil| + O(?) and||g™|| < co(k,1)e B+ O(?).
Moreover, the residuals
ay, = || Ber + g™ — (Hy + AH)k |,
satisfy the equations
{ Qg = ﬁ(Hj:.O |57|) (Hj:()(l + C])) (3.18)
Gl <e V.

Under hypothesis3(6), we have thaty, is strictly decreasing to zero ang;, = 0 for some
value ofk < n.

Proof. See p]. O
We point out that hypothesi8 (5) implies hypothesis3.16).

The proof of Theoren3.1, and in particular the proof of inequalityg.(?), follows the
proof presented in Appendix A oi], where we take into account the new boungls.{) and
that the valuer;, satisfies the relations

(3.19)

{ I = To + Zilk + Ox,
|0xk| < cro(k, e |Zk| [Tk + € ]Zo| + O(e?).

REMARK 3.4. Hypothesis §.6) can be removed if the IEEE standard (in particular

the IEEE-754 standard) for binary floating-point arithneeis correctly implemented on the
computer [L3, page 3]. In this case, formul8(18 can be modified as follows

o = B(ITjo 1531) (TTo(1 + )
Gl <e Vj

5l =111 =0

5] <1 V3.
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3.1. Computing Z;, using single-precision arithmetic. In this subsection, we choose
M; = M = LU for all j in Algorithm 2.1, whereL andU are computed by using abl/
factorization ofA based on IEEE single-precision arithmetic.

We justify the satisfactory convergence behavior of FGMR#®n z; the jth column
of Z;, is computed by solving the system

MZj = ’Uj. (320)
The computed solution; satisfies the relation$]
Mzj=0;+w;  |wj| < f(e)enn(n) LI U] |71 - (3.21)

If we use single precision during the backward and forwartsstution algorithms
f(e) ~ /e, otherwise if double precision is usgds ) ~ . Thus, we have the follow-
ing relations

MZk = Vk + Wi
Wk = [wl, e ,wk] B B B (322)
(Wil < f(e)era(n) [L] U] | Zk]-
Multiplying the first equation in%.19 by M, we have
M (Z), — To — dxx) = M Zij, (3.23)
and then from§.22 it follows that
M (Zx — To — 62x) = Vilik + Wil (3.24)

Under the hypotheses of Lemr&, V,I'V; is invertible, and thus we obtain
VI:F [M(fk — Xg — 6£Ck) — Wkﬂk} = Yk. (325)
Finally, combining 8.25 with (3.10), (3.19, and (.22, we have
gl < IV [IM@e = 20)] + 2 [M] ||+
e , (3.26)
c1a(n) f(&) (1M1 + L1 |T]) 1 Zel 5| + O(e )

and

ol < 13[IM (@ — 20 + £ M| 1o+

o _ 3.27
c1a(m) £(&) (1M1 + O 112 gl ] + O(e2). =20

Taking into account that, is computed in Algorithn2.1 using the single-precision
Gaussian factorization of, we have

[Mzo — bl < f(e)n[[All[|[Zo] T,
where, given the computedandU,

_ lizoi

r
1A]l
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Then we can further simplify the right-hand side 8f47), taking into account that
|A = M| < nVeT| Al
so that we have

gkl < L3|1AZx = bll + c15(n) (f(e) + vE) TNAIl (llzoll + 2]l )+

o ) (3.28)
c16(n) ()T AL 12l 3l + O(e2).
Moreover, if
p = 13e16(n) f() TIIA] 1 Za]l < 1, (3.29)
then we have
gkl < 15 1Az — ]|+ (3.30)
() + V&) exsm T 1Al (7o + lall)| + O(=2).
Substituting the upper bound .80 for ||gx|| in (3.7) and assuming that
1.3 c17(n -
= 13er® o gz <1 331)
—p
we have the final bound
_ e c18(n) _ _
_ < s\l
b= Azl < S I00+ 4] (2ol + 2] x 332

(1+ (£ + VEIT A1 Zel ) | + O ),

Therefore, ifl" is not too big and|zy|| ~ ||Zx|| then we have normwise backward stability.

REMARK 3.5. We point out that a similar analysis can be made for GMRESjinlitg
bounds better than those ifd]] However, if we use double precisiorfi(E) = ) during
the forward and backward substitution in the solution ®2() and ifI" ~ 1, the improved
bound on the residual for GMRES shows that GMRES is as statf&MRES because in
the bound 8.22 we havef(c¢) = . Unfortunately, for sparse Gaussian factorization the
conditionI” =~ 1 is seldom satisfied as the results df $how.

REMARK 3.6. We observe that formula&.26 and (3.27) indicate that the algorithm
could significantly benefit from a restarting procedure. Weerthat both GMRES and FGM-
RES restarting at each iteration are numerically equivaterterative refinement. Moreover,
after each restart the norm of the néyy s closer to the final|z||.

REMARK 3.7. Of course, we should point out tha.29 and (3.31) provide sufficient
conditions for backward stability. That they are not neeggss seen from our numerical
results on a very ill-conditioned problem (bcsstk20 in &fhll) where our approach is still
very successful. We point out that for all our sparse casesntirm ofZ;, is not too big
because the value éfis quite small.

4. Construction of test matrices. We generate test matrices with specified condition
numbers and singular value distributions by a standarchiqak. First, we generate a diag-
onal matrix with the required properties, and then we pre& post-multiply it by random
orthogonal matrices. Thus, if we choose the mablito bediag{d;}, where

d; =10°G=)", (4.1)
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then the singular values lie betweeand10~¢, the condition number i80¢, and the singular

value distribution is skewed by altering v = 1 gives a log-linear uniform distribution,
~ > 1 gives a distribution skewed toward one, anet 1 gives a distribution skewed toward
10—¢. We then use MATLAB in a standard fashion to generate randdhogonal matrices

H andV and run our factorization and solution algorithms on therixat

A=HDV. (4.2)
Prob. # Total/lnnerit RR NAZ 11 Z] 13 |l
1 14/14 9.6e-17 1.5e+00 2.0e+01
2 13/13 1.0e-16 1.5e+00 1.8e+01
3 14/14 4.8e-17 1.7e+00 2.0e+01
4 14/14 1.3e-16 1.5e+00 2.2e+01
5 14/14 9.0e-17 1.7e+00 1.9e+01
6 14/14 9.7e-17 1.6e+00 2.2e+01
7 14/14 6.7e-17 1.6e+00 2.0e+01
8 13/13 7.3e-17 1.5e+00 1.9e+01
9 13/13 5.7e-17 1.4e+00 1.8e+01
10 13/13 1.1e-16 1.4e+00 1.9e+01
TABLE 5.1

Random dense matrices.= 200, ¢ = 8.2, v = 0.5, and backward and forward substitutions in single preaisio

Prob. # Total/lnnerit RR NAZ 11 Z] gl |l
1 14/14 8.3e-17 1.5e+00 2.0e+01
2 13/13 1.0e-16 1.5e+00 1.8e+01
3 12/12 1.5e-16 1.6e+00 1.9e+01
4 13/13 1.2e-16 1.5e+00 2.1e+01
5 14/14 7.2e-17 1.5e+00 1.9e+01
6 14/14 1.1e-16 1.5e+00 2.0e+01
7 14/14 4.8e-17 1.6e+00 2.0e+01
8 13/13 8.8e-17 1.5e+00 1.9e+01
9 13/13 6.0e-17 1.4e+00 1.8e+01
10 13/13 9.1e-17 1.3e+00 1.8e+01

TABLE 5.2

Random dense matrices.= 200, ¢ = 8.2, v = 0.5, and backward and forward substitutions in double precisio

5. Experimental results. In this section we report on our experiments on dense un-
symmetric matrices generated as described in Sedtioffe conduct these experiments us-
ing MATLAB. We perform the single-precision factorizatiosingSGETRHFArom LAPACK.
More precisely, given the randomly generated matrixs in equation4.2), we use the MAT-
LAB command

[L,U] = lu(single(A))
in order to generate the single-precision factbrandU. As mentioned in Sectiofi, we
will use this single-precision factorization as a prectinder for Richardson’s method (that
is iterative refinement) or FGMRES.

We present two variants of the preconditioning:

1. the vectory, is computed using the forward and backward substitutioarétgm in
single precision on the single-precision conversion otweg,

2. the vectog,, is computed using the forward and backward substitutioarélgm in
double precision omy, after we converted the factofsandU to double precision.
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Prob. # Total/lnnerit RR NAZ N 11Zl gz |l

1 26/26 2.5e-16 7.4e+00 1.9e+02
2 27127 6.6e-16  4.2e+00 4.7e+02
3 25/25 1.7e-16 3.3e+00 5.9e+01
4 52/52 3.9e-15 4.6e+01 3.0e+03

88/36 1.1e-16 4.6e+01 6.0e-04
5 2424 1.3e-16  2.0e+00 3.8e+01
6 31/31 2.5e-16 8.8e+00 1.7e+02
7 24/24 2.0e-16  3.5e+00 1.2e+02
8 2424 1.8e-16 2.7e+00 8.8e+01
9 26/26 2.7e-16  3.2e+00 1.5e+02
10 44/44 5.7e-16 1.9e+01 5.9e+02

TABLE 5.3

Random dense matrices.= 200, ¢ = 8.2, v = 1, and backward and forward substitutions in single preaisio

Prob. # Total/lnnerit RR NAZ N 11Z] gz |l
1 20/20 1.7e-16 8.0e+00 7.3e+01
2 20/20 2.0e-16  3.9e+00 5.9e+01
3 20/20 2.7e-16  3.5e+00 4.0e+01
4 20/20 1.1e-15 4.5e+01 4.7e+02

25/5 1.5e-16 4.8e+01 1.5e-05
5 20/20 2.6e-16  2.2e+00 2.8e+01
6 20/20 1.9e-16 1.1e+01 8.4e+01
7 20/20 2.0e-16  3.9e+00 6.9e+01
8 20/20 6.2e-16  3.0e+00 5.8e+01
9 20/20 3.2e-16  3.5e+00 3.6e+01
10 20/20 4.0e-16  2.0e+01 1.6e+02

TABLE 5.4

Random dense matrices.= 200, ¢ = 8.2, v = 1, and backward and forward substitutions in double precisio

Note that all other computations are in double precisiore 3écond case has the disadvan-
tage of using more memory but makes the algorithm more robMstreover, even if the
number of restarts increases, the total number of iteratitatreases significantly in some
examples. Note that our problems are essentially singnlainigle precision (we takein
equation 4.1) to be8.2), so we should not be surprised if sometimes many iteratioas
required for full convergence to a scaled residual (backwearor) at double-precision accu-
racy.

In all the tables, the second column reports the total numbigzrations and the number
of iterations after the last restart (Total/Inner). Thesenhers are of course the same if no
restarting is required. Our restart algorithm is automatie stop when the Arnoldi residual
is at machine precision and restart only if the actual redigdunot. Finally, in all the tables
we denote byR R the value

16 — Az |

RR = , :
(LAl ]+ 1o])

In Tables5.1-5.6, we show the numerical results fdrof dimensior200. We point out
that for values ofy in (4.1 less thanl, both variants of FGMRES (see Tabled and5.2)
converge rapidly even for a condition number greater ttt&n Note that the bounding quan-
tities of equation 3.7) that are shown in columns 4 and 5 are very reasonable. Faake
~ = 0.5, the iterative refinement algorithm also usually convertfesugh in somewhat more
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Prob. # Total/lnnerit RR VAZ N 111 Za] gl |l
1 200/200 3.6e-09 2.2e+01 3.5e+09
247147 2.0e-16  2.3e+01 3.4e+01
> 200/200 2.0e-09 4.9e+01 2.1e+09
256/56 2.0e-16  4.9e+01 8.5e+00
3 131/131 8.7e-13 8.8e+02 9.4e+05
253/122 2.0e-16  9.1e+02 9.4e-01
4 58/58 7.8e-15 1.1le+01 3.6e+03
89/31 1.8e-16 1.2e+01 3.2e-05
5 108/108 4.2e-14 1.2e+02 3.8e+04
195/87 1.7e-16  1.1e+02 9.2e-02
6 200/200 3.6e-09 2.3e+02 4.3e+09
299/99 2.0e-16  2.3e+02 7.9e+01
7 200/200 4.9e-10 3.3e+03 6.9e+08
338/138 7.2e-16  3.2e+03 6.5e+02
8 78/78 1.4e-14 2.8e+01 1.0e+04
128/50 2.0e-16  3.0e+01 6.5e-04
9 79179 2.7e-15 1.9e+01 2.3e+03
117/38 2.0e-16  2.0e+01 9.3e-05
10 48/48 1.4e-15 7.6e+00 6.9e+02
75127 2.0e-16  7.9e+00 5.3e-06
TABLE 5.5

Random dense matrices.= 200, ¢ = 8.2, v = 2, and backward and forward substitutions in single precisio

Prob. # Total/lnnerit RR NAZ ) 11 Z:] gl |l
20/20 9.1e-11 6.1e+00 3.1e+02
1 40/20 1.8e-15 6.4e+00 1.5e-01
56/16 2.1e-16  6.1e+00 5.7e-06
> 20/20 2.5e-11 1.4e+01 7.9e+02
40/20 9.5e-16 1.4e+01 9.5e-02
3 20/20 5.7e-11  8.2e+02 1.0e+05
40/20 2.3e-16  7.2e+02 2.1e+01
4 20/20 4.7e-12 1.4e+01 1.9e+02
39/19 2.0e-16 1.2e+01 1.8e-02
5 20/20 2.0e-11 1.2e+02 1.3e+03
40/20 2.2e-16  1.2e+02 3.9e-01
20/20 4.2e-10 7.0e+01 1.4e+04
6 40/20 8.0e-15 7.2e+01 1.6e+01
56/16 2.2e-16 6.7e+01 1.3e-04
7 20/20 1.1e-12 8.8e+02 1.3e+04
38/18 1.9e-16 9.1e+02 1.7e-01
8 20/20 6.1e-12 3.1e+01 1.1e+03
40/20 2.0e-16 2.9e+01 5.3e-02
9 20/20 4.4e-12 1.9e+01 5.5e+02
39/19 2.0e-16 2.1e+01 5.4e-02
10 20/20 5.5e-13  9.6e+00 1.7e+02
36/16 2.1e-16 1.0e+01 2.6e-03
TABLE 5.6

Random dense matrices.= 200, ¢ = 8.2, v = 2, and backward and forward substitutions in double precisio
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iterations. Fory = 1, however, iterative refinement either does not convergeoverges
very slowly. We see in Tables.3 and 5.4 that both FGMRES variants converge and, al-
though the bounding quantities are larger than in Tabléand5.2, they are still reasonable,
except for the fourth problem. Here we need to restart togaiergence to full precision. In
the last case, when = 2, the behavior of all our algorithms deteriorates, and b@MRES
variants restart after we detect a small residual for thetisquares internal problem but the
computed residud|b — Az| > ¢ (Zj is the computed solution). However, both variants
converge after a few restarts (see Taldlésand5.6). Again, on convergence, the bounding
guantities are reasonable.

We also tested our algorithm fot of dimension400. The increased dimensionality of
the matrix and the log-linear uniform distribution of thgenvalues that causes a greater clus-
tering nearl0~¢ exacerbates some of the behavior observed for the lowemdiomal case.
Although they = 0.5 distribution still works well (also for iterative refinem@nthe algo-
rithms require more iterations (and restartsyascreases, although we eventually converge
to double-precision machine precision.

We also computed the value ¢, ||, as this appeared in our bounds derivedli WWe
found that, althougH|Zy || had a similar value td| | Z,| |y« | || for the first few iterations, it
rapidly became much larger and was typicdlly times larger than| | Zx| |7x| || for large
values ofk (k > 30).

6. Extension to sparse systemsWe cannot extend the experimental results to sparse
systems totally within MATLAB, since our version of MATLABamputes a sparse factor-
ization only in double precision. We thus compute the factmparately in a Fortran program
using a single-precision version BfA57and then convert these to data structures that we can
feed directly to MATLAB that performs the rest of the compidga in double precision. We
present the results for a selection of sparse problems ile Gab For all these test matrices,

T" > 1 because our factorization is in single precision and thelitiom numbers of the ma-
trices are greater than /2. Thus, the preconditioned matrix has a spectral radiugdtog
or greater than 1. This explains why iterative refinemenveages very slowly if at all.

Although our main intention in this paper is to investigdtte humerical feasibility of us-
ing mixed arithmetic, we show in Figufela summary of results obtained by our colleagues
Jonathan Hogg and Jennifer Scott who have developed an H&IHS®I_MA79that is based
on the theory established in this paper. In the figure, we sea subset of the Test 1 set
described in 1Q] that, for problems that are reasonably large (in terms afbte-precision
factorization time), the mixed arithmetic approach is ¢gbly 1.5 times faster than using
double precision and, of course, requires less storage eWethe reader tol[0] for further
numerical results.

7. Conclusions. We have established both by theory and by experiments thatsos
with a backward error at the double-precision level can binbd when using a single-
precision factorization that is used as a preconditioneF@VIRES. We have also found that
iterative refinement often does not work in such cases. Tinidiés that we can take advan-
tage of the faster speed of single-precision arithmetic achimes where speed or storage
considerations give advantages for this mode of workinghe illustrated that this applies
to sparse matrix factorizations as well as in the dense case.

Furthermore, all our analysis would be equally valid if exted-precision accuracy was
required from a double-precision factorization. In thiseathe penalties of using extended
precision, normally implemented in software, are very gigant.

Finally, in [11, 12] an error analysis of other Krylov based algorithms withprgcondi-
tioning is presented in detail. However, the theoreticallis suggest that the ORTHOMIN
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Iterative refinement FGMRES
Matrix Total it RR Total /inner  RR N1AZ N 111Z:] |5a] |
bcsstk20 2/2 1.4e-11 1.7e+00 4.6e+02
n = 485 30 2.1e-15 4/2 3.4e-14 1.6e+00 3.8e-01
K(A) ~ 4 x 102 6/2 7.2e-17 1.6e+00 5.6e-04
bcsstm27 2/2 5.8e-11 1.7e+00 2.7e+01
n = 1224 4/2 1.8e-11 6.3e-01 1.3e+00
k(A) = 5 x 10° 6/2 6.0e-13 2.0e+00 7.6e-02
22 1.6e-15 8/2 1.5e-13 1.7e+00 1.0e-02

10/2 1.2e-14 1.7e+00 1.9e-03
12/2 2.6e-15 1.8e+00 1.7e-04
14/2 1.8e-16 1.6e+00 4.3e-05

s3rmg4m1l 2/2 3.5e-11 1.0e+00 8.6e+01
n = 5489 16 2 26-15 4/2 2.1e-13 1.1e+00 3.2e-01
k(A) ~ 4 x 10° ' 6/2 4.5e-15 1.7e+00 6.4e-03
8/2 1.1e-16 1.6e+00 1.3e-04

s3dkg4m?2
n = 90449 53 1.1e-10 10/10 6.3e-17 1.2e+00 1.2e+03

K(A) = 7 x 101°

TABLE 6.1
Results for sparse matrices.

and GCR families of algorithms can be only conditionallyosteeven if in practice their be-
havior is quite satisfactory. Future work will involve nurigal comparison between these
methods and FGMRES.
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