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Abstract. We consider the triangular factorization of matrices in single-precision arithmetic and show how
these factors can be used to obtain a backward stable solution. Our aim is to obtain double-precision accuracy even
when the system is ill-conditioned. We examine the use of iterative refinement and show by example that it may not
converge. We then show both theoretically and practically that the use of FGMRES will give us the result that we
desire with fairly mild conditions on the matrix and the direct factorization. We perform extensive experiments on
dense matrices using MATLAB and indicate how our work extends to sparse matrix factorization and solution.
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1. Introduction. We are concerned with the solution of

Ax = b, (1.1)

whenA is ann×n matrix andx andb are vectors of lengthn. For most of our discussion the
matrixA is dense and unsymmetric, although we will consider the caseof sparse symmetric
A in Section6. We will solve these systems using a direct method where the matrix A is first
factorized as

A → LU,

whereL andU are triangular matrices. The solution is then obtained through forward elimi-
nation

Ly = b

followed by back substitution

Ux = y,

where we have omitted permutations required for numerical stability and sparsity preservation
for the sake of clarity. WhenA is symmetric, we use anLDLT factorization where the matrix
D is block diagonal with blocks of order 1 and 2, so that we can stably factorize indefinite
systems.

On many emerging computer architectures, single-precision arithmetic (by which we
mean working with 32-bit floating-point numbers) is faster than double-precision arithmetic.
In fact on the Cell processor, using single precision can be more than ten times as fast as using
double precision [4]. In addition, single-precision numbers require half the storage of double-
precision numbers, and the movement of data between memory,cache, and processing units
is much reduced by using single rather than double precision. However, in many applications,
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a higher accuracy is required than single precision (with a value of machine precision around
10−7), because the matrix can be so ill-conditioned that single-precision calculation is unable
to obtain accuracy to even one significant figure — that is, theresults are meaningless.

The loss of accuracy due to ill-conditioning could be even more dramatic if we want to
achieve extended-precision accuracy in the residual when the LU factorization is performed
in double precision [7]. In some applications it is well known that the matrix will be very
ill-conditioned, but a reasonable solution is still required. Because extended precision is typ-
ically implemented in software, an extended-precision LU factorization will be prohibitively
slow.

In this paper, we show how to use selective double-precisionpost-processing to obtain
solutions with a backward error (scaled residual) of double-precision accuracy (machine pre-
cision ε ≈ 10−16) even when the factorization is computed in single precision. We show
that iterative refinement in double precision may fail when the matrix is ill-conditioned, and
then show that, even for such badly-behaved matrices, the use of FGMRES [15] can pro-
duce answers to the desired level of accuracy; that is, the solution process using FGMRES is
backward stable at the level of double precision. We prove that, under realistic assumptions
on the matrix and the factorization, a double-precision FGMRES iteration preconditioned
with a single-precision LU factorization is backward stable. Buttari et al. [4] have performed
extensive performance testing of similar algorithms on a range of modern architectures and
illustrate well that such an approach can be beneficial, but they have no analysis of the algo-
rithms. For the case whenA is sparse, which we discuss in Section 6, extensive numerical
experiments have been performed by Buttari et al. [5] and Hogg and Scott [10], although
again neither paper has any analysis. This paper expands on existing theory of the authors
and others to provide a rigorous theoretical background forsuch mixed arithmetic computa-
tions.

We observe that our analysis is still valid if we want to achieve extended-precision accu-
racy in the residual when the LU factorization is performed in double precision.

We briefly discuss iterative refinement and FGMRES in Section2 and prove the conver-
gence of the mixed-precision FGMRES algorithm in Section3. We describe our construction
of dense test matrices in Section4 and illustrate the performance of our algorithms in Sec-
tion 5. We then show how this can be extended to sparse matrices in Section 6 where we
perform the single-precision factorization using the HSL codeMA57[6]. We present some
conclusions in Section7.

2. Iterative refinement and FGMRES. The standard technique for improving a solu-
tion to (1.1) is iterative refinement. This consists of computing the residual

r(k) = b − Ax(k) (2.1)

to the current approximate solutionx(k) and calculating a correction tox(k) by solving

Aδx(k) = r(k). (2.2)

The new estimate is then

x(k+1) = x(k) + δx(k).

The solution of the correction equation (2.2) will of course use the original factorization of
A, and so can be performed relatively quickly. It is easy to seethat the condition for the
convergence of iterative refinement is that the spectral radius of I − MA is less than one,
whereM is the approximation toA−1 obtained using the factorization ofA.
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Originally, it was customary to compute the residual in higher precision [18]. More re-
cently, Skeel [17] established that in order to reduce the scaled residual (backward error) to
machine precision, it is only necessary to compute the residual and correction in the same pre-
cision as the original computation. However, since we wish to obtain solutions with double-
precision accuracy when using a single-precision factorization, we will follow the original
recommendation and compute the residuals in double precision.

One potentially major restriction when using iterative refinement is the condition on the
spectral radius ofI −MA. If M is not a very accurate factorization forA then this condition
may not be met. We have discussed [1] at length the case whenA is sparse and the factoriza-
tion is computed using static pivoting, for example using the HSL codeMA57[6]. There we
have shown that in cases when iterative refinement fails, FGMRES [15] will normally work
and is far more robust than either iterative refinement or GMRES [16].

In this current work, we also compute anM which is potentially far fromA−1 because
we compute it in single precision. This will be particularlythe case when the condition
number of the matrix is large, say around the inverse of single-precision rounding (107). We
study the use of FGMRES in this context both experimentally (Section5) and theoretically
(Section3).

The FGMRES algorithm is an Arnoldi method based on Krylov sequences, and we
present its restarted variant in detail as Algorithm2.1. The main reason why FGMRES is
superior to GMRES is that FGMRES computes and stores a secondset of vectorsZk corre-
sponding to the preconditioned problem along with the usualorthonormal sequencevk [1].

ALGORITHM 2.1.

procedure [x] = FGMRES(A,Mi,b,maxit)
x0 = M−1

0 b, r0 = b − Ax0 andβ = ‖r0‖
v1 = r0/β; k = 0; it = 0; convergence = false;
while convergence = false andit < maxit

k = k + 1; it = it + 1 ;
zk = M−1

k vk; w = Azk;
for i = 1, . . . , k do

hi,k = vT
i w;

w = w − hi,kvi;
end for;
hk+1,k = ‖w‖;
Zk = [z1, . . . , zk]; Hk = {hi,j}1≤i≤j+1;1≤j≤k;
yk = argminy ‖βe1 − Hky‖;
if ‖βe1 − Hkyk‖ ≤ ε (‖b‖ + ‖A‖ ‖xk‖) do

xk = x0 + Zkyk andr = b − Axk;
if ‖r‖ > ε (‖b‖ + ‖A‖ ‖xk‖) do

x0 = xk, r0 = b − Axk, andβ = ‖r0‖ ;
v1 = r0/β; k = 0; convergence = false;

else
convergence = true ;

end if
else

vk+1 = w/hk+1,k; Vk+1 = [v1, . . . , vk+1];
end if

end while;
end procedure.
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3. Theoretical proof of convergence for FGMRES.We present here an improved ver-
sion of Theorem 5.1 in [1] using componentwise bounds for the matrix by vector products.
This simplifies the proof given in [1] and gives more accurate bounds on the norm of the
residual. In Section3.1, we discuss the restarting process and we indicate how we useit
to achieve normwise backward stability. The first part of ouranalysis is independent of the
choice of the matricesMi in FGMRES (Algorithm2.1). The only thing that we assume is
that the computed version of theZk matrix

Zk = [z1, . . . , zk]

is of rankk for all values ofk ≤ n. This guarantees convergence of the algorithm. We later
show how mixed precision influences the rank ofZk and the convergence of the algorithm.
Furthermore, the roundoff error analysis of FGMRES in Theorem3.1 is independent of the
specific choice of the computed̄zk at each step if the resulting computedZ̄k is full rank.

Under this assumption and following the discussion in [1], we decompose Algorithm2.1
into three main sub-algorithms:

• Computation of the matricesC(k), Vk, andRk by the Modified Gram-Schmidt al-
gorithm (MGS) such that

C(k) = [r0, AZk] = Vk+1Rk; V T
j Vj = Ij ∀j, (3.1)

where

Rk =
[

βe1 Hk

]

, (3.2)

AZk = Vk+1Hk, (3.3)

andHk is upper Hessenberg. Columnk+1 of C(k+1) is computed after thekth step
of MGS in (3.1) and (3.2) by computing or choosing a new̄zk+1. We then generate
the next column ofVk+2 andRk+1.

• Computation of the vectoryk by solving the least-squares problem

min
y

‖βe1 − Hky‖ (3.4)

using a QR algorithm based on Givens rotations and the upper Hessenberg structure
of Hk.

• Computation ofxk = x0 + Zkyk when the residual‖βe1 − Hkyk‖ is less than or
equal to the prescribed threshold.

In the following, we denote bycp(n, j) functions that depend only on the dimensionn
and the integerj. If the second index is omitted then the function depends only on n. We
avoid a precise formulation of these dependences, but we assume that eachcp(n, j) grows
moderately withn andj. Finally, if B ∈ R

p×q, p ≥ q is a full rank matrix, we denote by
κ(B) = ‖B‖ ‖B†‖ its spectral condition number, whereB† = (BT B)−1B. For all matrices
and vectors we denote by|B| the matrix or vector of the absolute values. Furthermore, we
denote the computed quantities ofRk, Vk, Hk, yk, rk, andxk by the same symbol with a bar
above it, i.e., the matrix̄Hk will be the computed value of the matrixHk.

THEOREM 3.1. If we apply Algorithm2.1to solve (1.1), using finite-precision arithmetic
conforming to IEEE standard with relative precisionε and under the following hypotheses:

2.12(n + 1)ε < 0.01 and c0(n)ε κ(C(k)) < 0.1 ∀k, (3.5)

where

c0(n) = 18.53n
3

2
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and

|s̄k| < 1 − ε , ∀k, (3.6)

where s̄k are the sines computed during the Givens algorithm applied to H̄k in order to
computēyk, then there existŝk, k̂ ≤ n, such that,∀k ≥ k̂, we have

‖b − Ax̄k‖ ≤ c1(n, k)ε
(

‖b‖ + ‖A‖ ‖x̄0‖+
‖A‖ ‖ |Z̄k| |ȳk| ‖ + ‖AZ̄k‖ ‖ȳk‖

)

+ O(ε 2).
(3.7)

The proof is based on the following two lemmata. Note that we will use some compo-
nentwise bounds to obtain the factor‖ |Z̄k| |ȳk| ‖ in the bound (3.7). In our earlier analysis
we had replaced this with the majorizing quantity‖Z̄k‖ ‖ȳk‖ but found that this was too loose
a bound and that the quantity‖Z̄k‖ ‖ȳk‖ could be very large in our numerical experiments.

LEMMA 3.2. If we apply MGS to factorizeC(k) in (3.1), using finite-precision arithmetic
conforming to IEEE standard with relative precisionε and under the hypotheses (3.5), then
there exist orthonormal matriceŝVk such that

C̄(k) = [r0 + f, AZ̄k + Ek] = V̂k+1R̄k ∀k ≤ n (3.8)

with

‖f‖ ≤ c2(n, 1)ε (‖b‖ + ‖A‖ ‖x̄0‖) + O(ε 2) and
|Ek| ≤ c3(n, k)ε (‖AZ̄k‖unu

T
k + |A| |Z̄k|) + O(ε 2),

(3.9)

where we denote byuj the vectors of orderj with all entries equal to1. Moreover, the
computed value of̄Vk satisfies the relation

‖V̄ +
k ‖ ≤ 1.3. (3.10)

Proof. By standard techniques [9], the computed matrix by vector products and the initial
residual̄r0 satisfy the relations

r̄0 = r0 + f1 ‖f1‖ ≤ c4(n, 1)ε (‖b‖ + ‖A‖ ‖x̄0‖) + O(ε 2), (3.11)

fl(AZ̄k) = AZ̄k + F
(1)
k , |F (1)

k | ≤ c5(n, k)ε |A| |Z̄k| + O(ε 2). (3.12)

Following [3] and [8], the Gram-Schmidt orthogonalization process applied tofl(C(k))
computes an upper triangular matrix̄Rk for which there exists an orthonormal matrix̂Vk+1

that satisfies the relations:
{

[r̄0; fl(AZ̄k)] + [f2; F
(2)
k ] = V̂k+1R̄k, V̂ T

k+1V̂k+1 = Ik+1

‖f2‖ ≤ c6(n, 1)ε ‖r0‖ + O(ε 2) ‖F (2)
k ‖ ≤ c7(n, k)ε ‖AZ̄k‖ + O(ε 2)

(3.13)

under the hypothesis (3.5).
By combining (3.11), (3.12), and (3.13), we have











[r0; AZ̄k] + [f1 + f2; F
(1)
k + F

(2)
k ] = V̂k+1R̄k,

‖f1 + f2‖ = ‖f‖ ≤ c2(n, 1)ε (‖b‖ + ‖A‖ ‖x̄0‖) + O(ε 2) and

|F (1)
k + F

(2)
k | = |Ek| ≤ c3(n, k)ε (‖AZ̄k‖unu

T
k + |A| |Z̄k|) + O(ε 2).

(3.14)
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We note that the third bound in (3.14) is a componentwise bound. This is in contrast to the
normwise bound of [1] and gives us the final tighter bound in our main result (3.7).

Finally, a proof of relation (3.10) can be found in [8, 14].
LEMMA 3.3. Applying the QR factorization with Givens rotations to solve

min
y

‖β̄e1 − H̄ky‖ , (3.15)

using finite-precision arithmetic conforming to IEEE standard with relative precisionε and
under the condition

0.1 > c0(n)ε κ(H̄k) + O(ε 2) ∀k, (3.16)

there exist an orthonormal matrix̂G[k], a vectorg[k], and an upper Hessenberg matrix∆H
such that the computed valueȳk satisfies the following relations

{

ȳk = arg miny ‖Ĝ[k]
(

β̄e1 + g[k] − (H̄k + ∆Hk)y
)

‖,
‖∆Hk‖ ≤ c8(k, 1)ε ‖H̄k‖ + O(ε 2) and‖g[k]‖ ≤ c9(k, 1)ε β̄ + O(ε 2).

(3.17)

Moreover, the residuals

αk = ‖β̄e1 + g[k] − (H̄k + ∆Hk)ȳk‖,

satisfy the equations

{

αk = β̄
(

∏k
j=0 |s̄j |

)(

∏k
j=0(1 + ζj)

)

|ζj | ≤ ε ∀ j.
(3.18)

Under hypothesis (3.6), we have thatαk is strictly decreasing to zero andαk̂ = 0 for some

value ofk̂ ≤ n.
Proof. See [2].

We point out that hypothesis (3.5) implies hypothesis (3.16).
The proof of Theorem3.1, and in particular the proof of inequality (3.7), follows the

proof presented in Appendix A of [1], where we take into account the new bounds (3.14) and
that the valuēxk satisfies the relations

{

x̄k = x̄0 + Z̄kȳk + δxk,
|δxk| ≤ c10(k, 1)ε |Z̄k| |ȳk| + ε |x̄0| + O(ε 2).

(3.19)

REMARK 3.4. Hypothesis (3.6) can be removed if the IEEE standard (in particular
the IEEE-754 standard) for binary floating-point arithmetic is correctly implemented on the
computer [13, page 3]. In this case, formula (3.18) can be modified as follows



















αk = β̄
(

∏k
j=0 |s̄j |

)(

∏k
j=0(1 + ζj)

)

|ζj | ≤ ε ∀ j
|s̄j | = 1 → |ζj | = 0
|s̄j | ≤ 1 ∀ j.



ETNA
Kent State University 
etna@mcs.kent.edu

FGMRES FOR MIXED PRECISION 37

3.1. Computing Z̄k using single-precision arithmetic. In this subsection, we choose
Mj = M = L̄Ū for all j in Algorithm 2.1, whereL̄ andŪ are computed by using anLU
factorization ofA based on IEEE single-precision arithmetic.

We justify the satisfactory convergence behavior of FGMRESwhen z̄j the jth column
of Z̄k is computed by solving the system

Mzj = vj . (3.20)

The computed solution̄zj satisfies the relations [9]

Mz̄j = v̄j + wj |wj | ≤ f(ε )c11(n) |L̄| |Ū | |z̄j | . (3.21)

If we use single precision during the backward and forward substitution algorithms
f(ε ) ≈ √

ε , otherwise if double precision is usedf(ε ) ≈ ε . Thus, we have the follow-
ing relations

MZ̄k = V̄k + Wk

Wk = [w1, . . . , wk]
|Wk| ≤ f(ε )c12(n) |L̄| |Ū | |Z̄k|.

(3.22)

Multiplying the first equation in (3.19) by M , we have

M(x̄k − x̄0 − δxk) = MZ̄kȳk, (3.23)

and then from (3.22) it follows that

M(x̄k − x̄0 − δxk) = V̄kȳk + Wkȳk. (3.24)

Under the hypotheses of Lemma3.2, V̄ T
k V̄k is invertible, and thus we obtain

V̄ +
k

[

M(x̄k − x̄0 − δxk) − Wk ȳk

]

= ȳk. (3.25)

Finally, combining (3.25) with (3.10), (3.19), and (3.22), we have

|ȳk| ≤ |V̄ +
k |

[

|M(x̄k − x̄0)| + ε |M | |x̄0|+
c13(n) f(ε )

(

|M | + |L̄| |Ū |
)

|Z̄k| |ȳk|
]

+ O(ε 2)
(3.26)

and

‖ȳk‖ ≤ 1.3
[

‖M(x̄k − x̄0)‖ + ε ‖M‖ ‖x̄0‖+
c14(n) f(ε )

(

‖M‖ + ‖ |L̄| |Ū | ‖
)

‖ |Z̄k| |ȳk| ‖
]

+ O(ε 2).
(3.27)

Taking into account that̄x0 is computed in Algorithm2.1 using the single-precision
Gaussian factorization ofA, we have

‖Mx̄0 − b‖ ≤ f(ε )n ‖A‖ ‖x̄0‖Γ ,

where, given the computed̄L andŪ ,

Γ =
‖ |L̄| |Ū |‖

‖A‖ .
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Then we can further simplify the right-hand side of (3.27), taking into account that

‖A − M‖ ≤ n
√

ε Γ‖A‖,

so that we have

‖ȳk‖ ≤ 1.3
[

‖Ax̄k − b‖ + c15(n) (f(ε ) +
√

ε ) Γ ‖A‖
(

‖x̄0‖ + ‖x̄k‖
)

+

c16(n) f(ε ) Γ ‖A‖ ‖Z̄k‖ ‖ȳk‖
]

+ O(ε 2).
(3.28)

Moreover, if

ρ = 1.3c16(n) f(ε ) Γ ‖A‖ ‖Z̄k‖ < 1, (3.29)

then we have

‖ȳk‖ ≤ 1.3
1−ρ

[

‖Ax̄k − b‖+
(f(ε ) +

√
ε ) c15(n) Γ ‖A‖

(

‖x̄0‖ + ‖x̄k‖
)

]

+ O(ε 2).
(3.30)

Substituting the upper bound of (3.30) for ‖ȳk‖ in (3.7) and assuming that

χ =
1.3 c17(n)

1 − ρ
ε ‖A‖ ‖Z̄k‖ < 1, (3.31)

we have the final bound

‖b − Ax̄k‖ ≤ ε c18(n)
1 − χ

[

‖b‖ + ‖A‖
(

‖x̄0‖ + ‖x̄k‖
)

×
(

1 + ( f(ε ) +
√

ε ) Γ ‖A‖ ‖Z̄k‖
) ]

+ O(ε 2).
(3.32)

Therefore, ifΓ is not too big and‖x̄0‖ ≈ ‖x̄k‖ then we have normwise backward stability.
REMARK 3.5. We point out that a similar analysis can be made for GMRES, obtaining

bounds better than those in [1]. However, if we use double precision (f(ε ) = ε ) during
the forward and backward substitution in the solution of (3.20) and if Γ ≈ 1, the improved
bound on the residual for GMRES shows that GMRES is as stable as FGMRES because in
the bound (3.22) we havef(ε ) = ε . Unfortunately, for sparse Gaussian factorization the
conditionΓ ≈ 1 is seldom satisfied as the results of [1] show.

REMARK 3.6. We observe that formulae (3.26) and (3.27) indicate that the algorithm
could significantly benefit from a restarting procedure. We note that both GMRES and FGM-
RES restarting at each iteration are numerically equivalent to iterative refinement. Moreover,
after each restart the norm of the new̄x0 is closer to the final‖x̄k‖.

REMARK 3.7. Of course, we should point out that (3.29) and (3.31) provide sufficient
conditions for backward stability. That they are not necessary is seen from our numerical
results on a very ill-conditioned problem (bcsstk20 in Table 6.1) where our approach is still
very successful. We point out that for all our sparse cases the norm ofZ̄k is not too big
because the value ofk is quite small.

4. Construction of test matrices. We generate test matrices with specified condition
numbers and singular value distributions by a standard technique. First, we generate a diag-
onal matrix with the required properties, and then we pre- and post-multiply it by random
orthogonal matrices. Thus, if we choose the matrixD to bediag{di}, where

di = 10−c( i−1

n−1 )
γ

, (4.1)
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then the singular values lie between1 and10−c, the condition number is10c, and the singular
value distribution is skewed by alteringγ: γ = 1 gives a log-linear uniform distribution,
γ > 1 gives a distribution skewed toward one, andγ < 1 gives a distribution skewed toward
10−c. We then use MATLAB in a standard fashion to generate random orthogonal matrices
H andV and run our factorization and solution algorithms on the matrix

A = HDV. (4.2)

Prob. # Total/Inner it RR ‖AZ̄
k̂
‖ ‖ |Z̄

k̂
| |ȳ

k̂
| ‖

1 14/14 9.6e-17 1.5e+00 2.0e+01
2 13/13 1.0e-16 1.5e+00 1.8e+01
3 14/14 4.8e-17 1.7e+00 2.0e+01
4 14/14 1.3e-16 1.5e+00 2.2e+01
5 14/14 9.0e-17 1.7e+00 1.9e+01
6 14/14 9.7e-17 1.6e+00 2.2e+01
7 14/14 6.7e-17 1.6e+00 2.0e+01
8 13/13 7.3e-17 1.5e+00 1.9e+01
9 13/13 5.7e-17 1.4e+00 1.8e+01
10 13/13 1.1e-16 1.4e+00 1.9e+01

TABLE 5.1
Random dense matrices.n = 200, c = 8.2, γ = 0.5, and backward and forward substitutions in single precision.

Prob. # Total/Inner it RR ‖AZ̄
k̂
‖ ‖ |Z̄

k̂
| |ȳ

k̂
| ‖

1 14/14 8.3e-17 1.5e+00 2.0e+01
2 13/13 1.0e-16 1.5e+00 1.8e+01
3 12/12 1.5e-16 1.6e+00 1.9e+01
4 13/13 1.2e-16 1.5e+00 2.1e+01
5 14/14 7.2e-17 1.5e+00 1.9e+01
6 14/14 1.1e-16 1.5e+00 2.0e+01
7 14/14 4.8e-17 1.6e+00 2.0e+01
8 13/13 8.8e-17 1.5e+00 1.9e+01
9 13/13 6.0e-17 1.4e+00 1.8e+01
10 13/13 9.1e-17 1.3e+00 1.8e+01

TABLE 5.2
Random dense matrices.n = 200, c = 8.2, γ = 0.5, and backward and forward substitutions in double precision.

5. Experimental results. In this section we report on our experiments on dense un-
symmetric matrices generated as described in Section4. We conduct these experiments us-
ing MATLAB. We perform the single-precision factorizationusingSGETRFfrom LAPACK.
More precisely, given the randomly generated matrixA as in equation (4.2), we use the MAT-
LAB command

[L,U] = lu(single(A))

in order to generate the single-precision factorsL andU . As mentioned in Section1, we
will use this single-precision factorization as a preconditioner for Richardson’s method (that
is iterative refinement) or FGMRES.

We present two variants of the preconditioning:
1. the vector̄zk is computed using the forward and backward substitution algorithm in

single precision on the single-precision conversion of vector v̄k,
2. the vector̄zk is computed using the forward and backward substitution algorithm in

double precision on̄vk after we converted the factorsL andU to double precision.
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Prob. # Total/Inner it RR ‖AZ̄
k̂
‖ ‖ |Z̄

k̂
| |ȳ

k̂
| ‖

1 26/26 2.5e-16 7.4e+00 1.9e+02
2 27/27 6.6e-16 4.2e+00 4.7e+02
3 25/25 1.7e-16 3.3e+00 5.9e+01

4
52/52 3.9e-15 4.6e+01 3.0e+03
88/36 1.1e-16 4.6e+01 6.0e-04

5 24/24 1.3e-16 2.0e+00 3.8e+01
6 31/31 2.5e-16 8.8e+00 1.7e+02
7 24/24 2.0e-16 3.5e+00 1.2e+02
8 24/24 1.8e-16 2.7e+00 8.8e+01
9 26/26 2.7e-16 3.2e+00 1.5e+02
10 44/44 5.7e-16 1.9e+01 5.9e+02

TABLE 5.3
Random dense matrices.n = 200, c = 8.2, γ = 1, and backward and forward substitutions in single precision.

Prob. # Total/Inner it RR ‖AZ̄
k̂
‖ ‖ |Z̄

k̂
| |ȳ

k̂
| ‖

1 20/20 1.7e-16 8.0e+00 7.3e+01
2 20/20 2.0e-16 3.9e+00 5.9e+01
3 20/20 2.7e-16 3.5e+00 4.0e+01

4
20/20 1.1e-15 4.5e+01 4.7e+02
25/5 1.5e-16 4.8e+01 1.5e-05

5 20/20 2.6e-16 2.2e+00 2.8e+01
6 20/20 1.9e-16 1.1e+01 8.4e+01
7 20/20 2.0e-16 3.9e+00 6.9e+01
8 20/20 6.2e-16 3.0e+00 5.8e+01
9 20/20 3.2e-16 3.5e+00 3.6e+01
10 20/20 4.0e-16 2.0e+01 1.6e+02

TABLE 5.4
Random dense matrices.n = 200, c = 8.2, γ = 1, and backward and forward substitutions in double precision.

Note that all other computations are in double precision. The second case has the disadvan-
tage of using more memory but makes the algorithm more robust. Moreover, even if the
number of restarts increases, the total number of iterations decreases significantly in some
examples. Note that our problems are essentially singular in single precision (we takec in
equation (4.1) to be8.2), so we should not be surprised if sometimes many iterationsare
required for full convergence to a scaled residual (backward error) at double-precision accu-
racy.

In all the tables, the second column reports the total numberof iterations and the number
of iterations after the last restart (Total/Inner). These numbers are of course the same if no
restarting is required. Our restart algorithm is automatic. We stop when the Arnoldi residual
is at machine precision and restart only if the actual residual is not. Finally, in all the tables
we denote byRR the value

RR =
‖b − Ax̄k̂‖

(‖A‖ ‖x̄k̂‖ + ‖b‖) .

In Tables5.1–5.6, we show the numerical results forA of dimension200. We point out
that for values ofγ in (4.1) less than1, both variants of FGMRES (see Tables5.1 and5.2)
converge rapidly even for a condition number greater than108. Note that the bounding quan-
tities of equation (3.7) that are shown in columns 4 and 5 are very reasonable. For thecase
γ = 0.5, the iterative refinement algorithm also usually converges, though in somewhat more
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Prob. # Total/Inner it RR ‖AZ̄
k̂
‖ ‖ |Z̄

k̂
| |ȳ

k̂
| ‖

1
200/200 3.6e-09 2.2e+01 3.5e+09
247/47 2.0e-16 2.3e+01 3.4e+01

2
200/200 2.0e-09 4.9e+01 2.1e+09
256/56 2.0e-16 4.9e+01 8.5e+00

3
131/131 8.7e-13 8.8e+02 9.4e+05
253/122 2.0e-16 9.1e+02 9.4e-01

4
58/58 7.8e-15 1.1e+01 3.6e+03
89/31 1.8e-16 1.2e+01 3.2e-05

5
108/108 4.2e-14 1.2e+02 3.8e+04
195/87 1.7e-16 1.1e+02 9.2e-02

6
200/200 3.6e-09 2.3e+02 4.3e+09
299/99 2.0e-16 2.3e+02 7.9e+01

7
200/200 4.9e-10 3.3e+03 6.9e+08
338/138 7.2e-16 3.2e+03 6.5e+02

8
78/78 1.4e-14 2.8e+01 1.0e+04
128/50 2.0e-16 3.0e+01 6.5e-04

9
79/79 2.7e-15 1.9e+01 2.3e+03
117/38 2.0e-16 2.0e+01 9.3e-05

10
48/48 1.4e-15 7.6e+00 6.9e+02
75/27 2.0e-16 7.9e+00 5.3e-06

TABLE 5.5
Random dense matrices.n = 200, c = 8.2, γ = 2, and backward and forward substitutions in single precision.

Prob. # Total/Inner it RR ‖AZ̄
k̂
‖ ‖ |Z̄

k̂
| |ȳ

k̂
| ‖

1
20/20 9.1e-11 6.1e+00 3.1e+02
40/20 1.8e-15 6.4e+00 1.5e-01
56/16 2.1e-16 6.1e+00 5.7e-06

2
20/20 2.5e-11 1.4e+01 7.9e+02
40/20 9.5e-16 1.4e+01 9.5e-02

3
20/20 5.7e-11 8.2e+02 1.0e+05
40/20 2.3e-16 7.2e+02 2.1e+01

4
20/20 4.7e-12 1.4e+01 1.9e+02
39/19 2.0e-16 1.2e+01 1.8e-02

5
20/20 2.0e-11 1.2e+02 1.3e+03
40/20 2.2e-16 1.2e+02 3.9e-01

6
20/20 4.2e-10 7.0e+01 1.4e+04
40/20 8.0e-15 7.2e+01 1.6e+01
56/16 2.2e-16 6.7e+01 1.3e-04

7
20/20 1.1e-12 8.8e+02 1.3e+04
38/18 1.9e-16 9.1e+02 1.7e-01

8
20/20 6.1e-12 3.1e+01 1.1e+03
40/20 2.0e-16 2.9e+01 5.3e-02

9
20/20 4.4e-12 1.9e+01 5.5e+02
39/19 2.0e-16 2.1e+01 5.4e-02

10
20/20 5.5e-13 9.6e+00 1.7e+02
36/16 2.1e-16 1.0e+01 2.6e-03

TABLE 5.6
Random dense matrices.n = 200, c = 8.2, γ = 2, and backward and forward substitutions in double precision.
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iterations. Forγ = 1, however, iterative refinement either does not converge or converges
very slowly. We see in Tables5.3 and5.4 that both FGMRES variants converge and, al-
though the bounding quantities are larger than in Tables5.1and5.2, they are still reasonable,
except for the fourth problem. Here we need to restart to get convergence to full precision. In
the last case, whenγ = 2, the behavior of all our algorithms deteriorates, and both FGMRES
variants restart after we detect a small residual for the least-squares internal problem but the
computed residual‖b − Ax̄k‖ > ε (x̄k is the computed solution). However, both variants
converge after a few restarts (see Tables5.5 and5.6). Again, on convergence, the bounding
quantities are reasonable.

We also tested our algorithm forA of dimension400. The increased dimensionality of
the matrix and the log-linear uniform distribution of the eigenvalues that causes a greater clus-
tering near10−c exacerbates some of the behavior observed for the lower dimensional case.
Although theγ = 0.5 distribution still works well (also for iterative refinement), the algo-
rithms require more iterations (and restarts) asγ increases, although we eventually converge
to double-precision machine precision.

We also computed the value of‖Z̄k ‖, as this appeared in our bounds derived in [1]. We
found that, although‖Z̄k ‖ had a similar value to‖ |Z̄k| |ȳk| ‖ for the first few iterations, it
rapidly became much larger and was typically107 times larger than‖ |Z̄k| |ȳk| ‖ for large
values ofk (k > 30).

6. Extension to sparse systems.We cannot extend the experimental results to sparse
systems totally within MATLAB, since our version of MATLAB computes a sparse factor-
ization only in double precision. We thus compute the factors separately in a Fortran program
using a single-precision version ofMA57and then convert these to data structures that we can
feed directly to MATLAB that performs the rest of the computation in double precision. We
present the results for a selection of sparse problems in Table 6.1. For all these test matrices,
Γ ≫ 1 because our factorization is in single precision and the condition numbers of the ma-
trices are greater thanε −1/2. Thus, the preconditioned matrix has a spectral radius close to 1
or greater than 1. This explains why iterative refinement converges very slowly if at all.

Although our main intention in this paper is to investigate the numerical feasibility of us-
ing mixed arithmetic, we show in Figure6.1a summary of results obtained by our colleagues
Jonathan Hogg and Jennifer Scott who have developed an HSL codeHSL MA79that is based
on the theory established in this paper. In the figure, we see for a subset of the Test 1 set
described in [10] that, for problems that are reasonably large (in terms of double-precision
factorization time), the mixed arithmetic approach is typically 1.5 times faster than using
double precision and, of course, requires less storage. We refer the reader to [10] for further
numerical results.

7. Conclusions.We have established both by theory and by experiments that solutions
with a backward error at the double-precision level can be obtained when using a single-
precision factorization that is used as a preconditioner for FGMRES. We have also found that
iterative refinement often does not work in such cases. This implies that we can take advan-
tage of the faster speed of single-precision arithmetic on machines where speed or storage
considerations give advantages for this mode of working. Wehave illustrated that this applies
to sparse matrix factorizations as well as in the dense case.

Furthermore, all our analysis would be equally valid if extended-precision accuracy was
required from a double-precision factorization. In this case, the penalties of using extended
precision, normally implemented in software, are very significant.

Finally, in [11, 12] an error analysis of other Krylov based algorithms withoutprecondi-
tioning is presented in detail. However, the theoretical results suggest that the ORTHOMIN
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Iterative refinement FGMRES

Matrix Total it RR Total / inner RR ‖AZ̄
k̂
‖ ‖ |Z̄

k̂
| |ȳ

k̂
| ‖

bcsstk20
30 2.1e-15

2 / 2 1.4e-11 1.7e+00 4.6e+02
n = 485 4 / 2 3.4e-14 1.6e+00 3.8e-01

κ(A) ≈ 4 × 1012 6 / 2 7.2e-17 1.6e+00 5.6e-04
bcsstm27

22 1.6e-15

2 / 2 5.8e-11 1.7e+00 2.7e+01
n = 1224 4 / 2 1.8e-11 6.3e-01 1.3e+00

κ(A) ≈ 5 × 109 6 / 2 6.0e-13 2.0e+00 7.6e-02
8 / 2 1.5e-13 1.7e+00 1.0e-02
10 / 2 1.2e-14 1.7e+00 1.9e-03
12 / 2 2.6e-15 1.8e+00 1.7e-04
14 / 2 1.8e-16 1.6e+00 4.3e-05

s3rmq4m1

16 2.2e-15

2 / 2 3.5e-11 1.0e+00 8.6e+01
n = 5489 4 / 2 2.1e-13 1.1e+00 3.2e-01

κ(A) ≈ 4 × 109 6 / 2 4.5e-15 1.7e+00 6.4e-03
8 / 2 1.1e-16 1.6e+00 1.3e-04

s3dkq4m2
53 1.1e-10 10 / 10 6.3e-17 1.2e+00 1.2e+03n = 90449

κ(A) ≈ 7 × 1010

TABLE 6.1
Results for sparse matrices.

and GCR families of algorithms can be only conditionally stable even if in practice their be-
havior is quite satisfactory. Future work will involve numerical comparison between these
methods and FGMRES.
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[3] Å. BJÖRCK, AND C. C. PAIGE,Loss and recapture of orthogonality in the modified Gram–Schmidt algorithm,
SIAM J. Matrix Anal. Appl., 13 (1992), pp. 176–190.

[4] A. BUTTARI , J. DONGARRA, J. LANGOU, J. LANGOU, P. LUSZCZEK, AND J. KURZAK, Mixed precision
iterative refinement techniques for the solution of dense linear systems, Int. J. of High Performance
Computing Applications, 21 (2007), pp. 457–466.

[5] A. BUTTARI , J. DONGARRA, J. KURZAK , P. LUSZCZEK, AND S. TOMOV, Using mixed precision
for sparse matrix computations to enhance the performance while achieving 64-bit accuracy, ACM
Trans. Math. Software, 34 (2008), pp. 17:1–17:22.

[6] I. S. DUFF, MA57 – A code for the solution of sparse symmetric indefinite systems, ACM Trans. Math. Soft-
ware 30 (2004), pp. 118–144.

[7] K. O. GEDDES AND W. W. ZHENG, Exploiting fast hardware floating point in high precision computationin
Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation. Philadel-
phia, PA, USA, 2003, pp. 111–118.

[8] L. G IRAUD AND J. LANGOU, When modified Gram-Schmidt generates a well-conditioned set of vectors,
IMA J. Numer. Anal., 22 (2002), pp. 521–528.

[9] N. J. HIGHAM , Accuracy and Stability of Numerical Algorithms, 2nd edition, Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2002.



ETNA
Kent State University 
etna@mcs.kent.edu

44 M. ARIOLI AND I. S. DUFF

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 1  10  100  1000  10000

tim
e(

do
ub

le
)/

tim
e(

m
ix

ed
)

time(double)

Accuracy achieved
Accuracy not achieved

FIGURE 6.1. Ratio of times to solve (1.1) in mixed precision and double precision on a test set of78 sparse

problems with a scaled residual
‖b − Ax̄

k̂
‖

(‖A‖ ‖x̄
k̂
‖ + ‖b‖)

≤ 5 × 10−15.

[10] J. D. HOGG AND J. A. SCOTT, On the use of mixed precision for the fast and robust solutionof sparse
symmetric linear systems, Technical Report RAL-TR-2008-023, Rutherford Appledon Laboratory, Ox-
fordshire, 2008.
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