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Abstract

Parallel and distributed computing systems are designed with performance in mind. Significant
past research effort has been invested in the developing approaches for performance modelling and
prediction of applications running on HPC systems. This report compares some tools for realisti-
cally modelling and predicting computer performance for a range of architectures and applications.
We consider current activity worldwide which embraces a range of approaches from high level
mathematical modelling to instruction level simulation. The different approaches are contrasted
and three tools chosen for further evaluation.
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1 INTRODUCTION 1

1 Introduction

This report compares some tools for the realistic modelling and computer performance prediction of
a range of HPC architectures and applications. Understanding the performance and cost implications
of selecting a particular computing platform for a chosen application is difficult. There are, however,
methods that allow alternative vendor systems to be compared before purchase, and the achieved
performance of a system to be verified against reliable forecasts once it has been installed. These
methods, based on application performance modelling, have tended to remain the preserve of a select
group of performance experts.

There are many possible uses for performance modelling, and these have been discussed elsewhere,
e.g. [31]. These applications can be arranged in five important categories as follows.

1. Procurement studies

e Compare machines
e Code mapping to machines
e Upgrades to machines

e Vendor result validation
2. Validation of installation

e On delivery

e Routine assurance
3. Design of future systems

e Impact of future systems on workload

e Influence the future offerings of vendors
4. Code optimisation and r-edesign

e Re-engineering

e Parameter selection
5. Workflow

e Co-scheduling
e Maximising scientific delivery

e User work planning

There are a number of challenges facing the HPC community, including increasing levels of concur-
rency (threads, cores, nodes), deeper and more complex memory hierarchies (register, cache, disk,
network), mixed hardware sets (CPUs and GPUs) and increasing scale (tens or hundreds of thousands
of processing elements). In many cases, traditional computer benchmarking is insufficient to under-
stand the performance of a large scientific application on such a system, as it typically requires access
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to physical machines of equivalent (or similar) specification and rarely relates to the “potential capa-
bility” of the application. A technique known as “application performance modelling” addresses many
of these additional requirements. Modelling allows future architectures and/ or applications to be
explored in a mathematical or simulated setting, thus enabling hypothetical questions relating to the
configuration of a potential future architecture to be assessed in terms of its impact on key scientific
codes. Modelling could therefore be used as a key tool in the software design phase of computational
science.

Some background information can also be found in other reports [6, 38]. We note that there are a
larger number of tools used for network performance prediction. Many of these tools also use discrete
event simulation [19] and may be worth reviewing.

1.1 Methodology

Application performance modelling, that is, assessing application and architecture combinations through
modelling, is an established academic field, and there are several examples of where the application
of such approaches prove to be advantageous: input and code optimisation, efficient scheduling, post-
installation performance verification, and the procurement of systems.

The process of modelling itself can be generalised to three basic approaches:

1. Modelling based on analytic (mathematical) methods, e.g. LogP [16], LogGP [3], LogPC [29];

2. Modelling based on tool support and simulation, e.g. PACE [35,[12], POSE [41],142], DiMeMaS [20,
33] and WARPP [21];

3. A hybrid approach which uses elements of both, e.g. POEMS [I] and Performance Prophet [37].

Modelling based on tool support, as proposed here, has a number of advantages over its more math-
ematical counterpart: (i) it is often based on (source) code anaysis, which absolves the user from
translating lengthy programmatic features into abstract analytical program models; (ii) tool support
allows larger scale problems to be tackled, opening up the possibility of full scale application analysis,
as opposed to analysis based on small, core application kernels; and (iii) mathematical models often
hide the mechanics of execution, subsuming complex, synchronised activities into collective mathemat-
ical expressions — in parallel codes in particular, understanding this complex synchronisation amongst
processes is often the key to understanding application features.

There are three different approaches to model construction:

1. Hand coded simulation script from “expert” code analysis;
2. Automated script generation from static source code analysis;

3. Hand coded or automated script generation from post-execution trace analysis.

Hammond et al. [21] noted that method (1) provides the most accurate performance models, especially
when the abstract model is built from execution profiles of fairly small blocks of code, similar to a
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“basic block” which would be considered by a compiler (e.g. a loop body or a sequence of statements
between function calls). There is a trade-off between accuracy (smaller block sizes) and complexity
of model leading to long simulation times. Instruction level simulators as used in chip design were
found to be infeasible for large scale scientific applications for this reason. In our previous work we
used method (3), but some of the models were adjusted with “expert” input from the application
developers.

2 CCLRC Methodology c.2002

The following discussion is taken from [6]. The methodology adopted by Rob Allan, Martyn Guest and
Paul Sherwood at Daresbury Laboratory used a method of hand crafted model building using infor-
mation from run time traces, mathematical models and other fitting procedures to capture scalability
with problem size and processing element count.

2.1 Code Analysis using VAMPIR

Our code analysis tool of choice in 2002 was VAMPIR [48]. Alternatives identified in a related
report [5] included Paragraph, Apprentice and VT. To collect the required information it would also
be possible to use simpler non-visual event tracing. All these methods were time consuming and
required repeated runs of the codes on large problem sizes with large numbers of nodes. As noted
below, the traces obtained are notoriously hard to analyse. Such tools are nevertheless useful as part
of the code optimisation process because they can help to identify bottlnecks and inconsistent run
time behaviour.

VAMPIR (Visualisation and Analysis of MPI Resources) is a commercial post-mortem trace visuali-
sation tool [48]. It uses profiling extensions to MPI (see [5]) and permits analysis of message events
during parallel execution. An event trace file is produced using the VAMPIRTrace library. Event
ordering, message lengths and times can then be analysed viaually via the VAMPIR X11 interface.

Typical steps in code analysis are:

1. Instrumentation — trace calls are added around time critical program sections to start and stop
the trace and at user defied event flags;

2. Amdahl’s Law fitting may be carried out for cpu phases if a detailed complexity analysis is not
available. Other more sophisticated analytic fits to measured data might be used [22];

3. Message lengths can be identified as a function of problem size and a fitting procedure used;
4. Use approximate models for MPI timings (latency/ bandwidth, logP etc. [22] [16];

e However there is no treatment of contention, SMP etc. could not be modelled at this time;

e Could replace fits with data from simulation, lookup tables etc.
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2.2 Detailed Cost Models

Following VAMPIR characterisation and fits to the observed data, and as an alternative to simulation,
detailed models were built of the time determining steps of each code. These had been identified partly
from the traces and partly from a knowledge of the code itself. Typically the steps taken in modelling
and predicting parallel code performance were:

1. Identify scalability rules for code kernels. We did this mainly using VAMPIR, as described above;

2. Identify scalability rules for computational parts of code depending on parameters which define
the scientific problem;

3. These scalability rules should be based on reasonable architecture parameters;
4. Build an application module for a simulator encapsulating the above rules;
5. Build an module for the simulator encapsulating architecture parameters;

6. Combine the modules in a two tier structure which is used to predict the application performance
for given problem and architecture parameters.

In our case the simulator was written as straightforward Fortran 90 code which accepted as input
data the number of nodes, size of problem and distribution of data for the job etc. In the two
tier construction, architecture specific information is isolated from application or algorithm specific
information. The simplest case is if the computational and communication parts of the applications
can be separated. If this is not the case, with asynchronous communications or i/o, it must be known
at what point in the code the communications or i/o start and finish. The time taken is then the
higher of the communications or i/o and computation time for that section of code. The use of BSP
like “supersteps” was found useful in doing this [9]. Within the modelling methodology we attempted
to identify “algorithm classes” which span a number of applications and can be given their own sub-
models. These were reflected in the model API which had methods for each class, point to point
communication and sequential computation being the simplest ones. The class methods each inherit
the machine parameters and input data and yield a wall clock time.

Parameters for a “flat MPI” paradigm were used initially, but some predictions of tuned perfor-
mance have also been attempted using “hypercube” algorithms incorporating SMP parameters for
fine grained reduction operations. Values of parameters used in the architecture models thus reflected
and distinguished the algorithm was used, e.g. memory intensive, point to point or collective. This
basic data was obtained by benchmarking algorithm classes with these features and from discussion
with vendors.

CPU parameters implicitly included information about cache, memory, page and TLB structure which
were not included separately. We did not attempt to do this accurately as in some other work and
in particular we did not consider machine state. However the use of algorithm classes enabled a
reasonable account of the machine behaviour in typical conditions for the applications of interest. A
similar approach was used by Burkhart et al. [11].

For either computational or message passing parts of the code, calls to methods in the model simulator
yielded estimated elapsed times. Summation of these times yielded results that compared well to
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measured benchmark performance. However we did not strive for ultimate accuracy, but rather
focused on scalability and differentiating between different algorithmic approaches.

The application codes considered using the above methodology were ANGUS, CETEP, and DL_POLY [6].

3 Barcelona Supercomputing Centre

Jesus Labarta is head of the Computer Sciences Department at BSC, and Judit Giménez is leader
of the Performance Tools Group. Her group is working on the design of tools to instrument, analyse
and predict the behaviour of applications on large parallel systems. Flexibility, simplicity and the
appropriate combination of qualitative and quantitative information are some of the issues considered
in the design of these tools. Scalability and management of the high volumes of performance data are
also two issues that need to be considered to handle long running applications that use hundreds or
thousands of processors. The team is also working in the definition of methodologies and procedures
that would simplify and facilitate the process of analysis and optimization. See http://www.bsc.es/
plantillaF.php7cat_id=b52.

The group currently supports the following.

e Paraver: A very powerful performance visualization and analysis tool based on traces that can
be used to analyse any information that is expressed on its input trace format;

e DiMeMas: Simulation tool for the parametric analysis of the behaviour of message passing
applications on a configurable parallel platform;

e Instrumentation packages: Set of programs and libraries to generate or translate Paraver and
Dimemas traces. We have packages for instrumenting different programming models (MPI,
OpenMP, mixed) under different platforms (IBM AIX, Linux, SGI IRIX, HP Alpha) and trans-
lators from IBM AlIXtrace and LTT formats;

e Utilities: Set of small programs to process Paraver traces to cut, summarise, translate or ac-
cumulate the performance data. They can be used independently but they are also integrated
within Paraver.

There seems to be little current information available about these tools, so the following notes are
taken from our previous work [6].

3.1 DiMeMas

DiMeMas [45] is an execution simulation tool that was for some time commercially available from
PALLAS GmbH. There appears to have been no active development of this tool since ¢.2005. It is
however still in use at Barcelona Supercomputer Centre [13].

DiMeMas [20} B3] alleviates the instruction based simulation approach through replay of traces ob-
tained during a run of the application. Evaluation of the context of different machine sizes is supported
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through the re-generation of a trace, subject to the user’s specification. This approach has been suc-
cessfully demonstrated on machine sizes of up to 1,000 processing elements. The reliance on traces
however acts as an inhibitor to the manual tuning or changing of a performance model, since the code
behaviour is implicitly contained within the trace rather than explicitly captured in a user editable
abstract model. Editing such a complex structure is non-trivial and the initial creation requires that
the code actually be written and run. Modelling led prototyping of algorithms is therefore not possi-
ble. The traces employed are also large in size requiring considerable disk space and system memory,
placing severe limits on the maximum model size that can be processed on an individual workstation
in a feasible time.

3.2 CCLRC work using DiMeMas c.2002

The DiMeMas tool was designed to model MPI programs running on SMP and distributed memory
architectures, using a VAMPIR or Paraver trace file produced on p processes to simulate performance
on n SMP nodes having p/n processes each. DiMeMas simulation can be usedto add knowledge about
what is contained in a trace file because paramenters can be changed to estimate:

1. Effect of overlapping computation and communication;
2. Effect of contention:

e Number of links between nodes and network;

e Number of messages on network;
3. Performance on different architectures:

e Assume uniform cpu scaling;
e Use known communication parameters;

e Must have same total number of processors as measured data;
4. Simulation of MPI model on SMP architecture:

e Intra vs. inter node communication parameters can be included;

e Mapping of tasks to SMP nodes;

5. Modified algorithms for collective operations etc. can be tested

We perceived the advantages of the DiMeMas approach, as compared to qualitative latency/ bandwidth
models, to be that input parameters can account for the overlapping of computation and communica-
tion and contention can be incorporated as arising from a limited number of links between nodes and
the network. It can also include a limit to the number of messages active on the network at any time.

Differentiation between intra- and inter-node communication capabilities allows the simulation of MPI
models on SMP architectures. It is possible to consider the effects of different mappings of tasks to
SMP nodes, and of modified algorithms for collective communications, domain decomposition etc.

In our work, DiMeMas used the trace file produced by VAMPIRtrace which contains information
produced using the MPI profiling interface. Since the trace file does not contain information about
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the point to point message passing underlying collective operatins (a feature of the MPI profiling
procedure) we had to build a separate set of kernels for these operations. The kernels comprised of
point to point routines based on a binary spanning tree which could replace the usual MPI library
collective operations. Performance of this was compared to the real MPI routines in the applications
considered [6]. We noted that an accurate cpu timer or elapsed timer was needed, which was not then
available on every platform.

Inherent disadvantages of DiMeMas (and other similar tools) are:

1. There is no extrapolation to different numbers of processors (nodes);

2. The simulation is for the same code parameters as the measured tracefile, because there is no
built in information about the way the problem scales;

3. No scaling information for MPI collective operations;
4. The length of time required to collect the necessary trace files and amount of data to be handled;

5. Simulates MPI only and cannot predict effects of algorithm changes.

4 LANL: Los Alamos National Laboratory

The Performance and Architecture Laboratory (PAL) at Los Alamos National Laboratory uses a para-
metric approach developed by Darren Kerbyson, formerly at University of Warwick, which expresses
the execution time of a application on a machine as a mathematical logPC model [29] 30} 32].

T(S, M) = Teomp(S, M) + Teomm (S, M) + Trmem (S, M)

where Ttomp is the computation time, Ttomm is the communication time, and Tjye,, is the time spent
for memory contention within a multi-processor node. By expressing the performance of the whole
program with a such a simple expression structural information, for instance the control flow of the
program, is not preserved. This approach may therefore not be suitable for many cases of model based
performance evaluation. Paremeters are obtained via measurements on a small system.

In the PAL approach, the development of a workload model is based on a detailed static analysis of
the source code of the program, such as counting computation and communication operations. This
yields the parameterised mathematical model but requires significant human effort. The machine is not
modeled separately. Systems are characterised by a set of parameters such as number of processors
per node, number of nodes, number of communication links per node, communication latency and
bandwidth and sequential processing speed. These parameters serve as input for the model.

Kerbyson et al. [32] report performance prediction results for various systems with average error
between 4% and 12%. In the PAL approach, the performance effects of the overlapping of computation
and communication phases are not considered. Therefore, models that are built based on PAL may
provide accurate results only for the class of programs where this does not significantly affect the
overall program performance.
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Figure 1: PMaC Framework Overview

The methodology has been used to study the SAGE application on ASCI (Accelerated Strategic
Computing Initiative) Q system. More recently they have published papers on the performance of
applications on Intel Nehalem processors, Sweep3d on IBM/ Sony Cell/BE, buffering in quad core
Opteron and Cell/BE and the architecture and performance of the IBM Roadrunner system.

For more information on PAL see http://www.ccs3.lanl.gov/pal.

5 PMaC Precision Framework

The Performance Modelling and Characterization Group at San Diego Supercomputer Centre is led
by Allan Snavely. For more information on PMaC see http://www.sdsc.edu/pmac.

The PMaC Prediction Framework is an implementation of an automated prediction model. In this
context, a prediction model is a calculable expression that takes as parameters and attributes of
application software and target machine hardware plus other factors to compute expected performance,
in this case the expected runtime of the application.

The PMaC Framework operates by using the following three elements.

e Machine Profile — Characterization of the rates at which a machine can (or is projected to) carry
out fundamental operations abstract from any particular application.

e Application Signature — Detailed summaries of the fundamental operations carried out by the
application independent of any particular machine.

e Convolution Methods — Algebraic mappings of the Application Signatures on to the Machine
profiles to arrive at a performance prediction.
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In the PMaC approach, the machine profile is obtained from basic benchmarking of a system’s fun-
damental parameters. In addition to CPU performance, performance of the memory sub-system is
measured using PMaC’s MultiMAPS benchmark on a single node, see http://www.sdsc.edu/pmap/
projects/mmaps.html. MultiMAPS measures the bandwidth achieved by the machine while retriev-
ing a variety of data sizes using different strides and line sizes. Network performance is measured by
a simple MPI ping-pong benchmark run on 2 nodes of the system in various ways.

The application signature is principally based on memory and network operations. Information is
obtained by instrumetation and tracing. PMaCinst is a binary re-writer that instruments memory
and floating point operations. The memory address stream of those operations is processed on the fly
through a cache simulator which is capable of simulating more than 20 different cache structures. The
PSiNS tracer is a link time instrumentation tool which captures information about MPI calls. PSiNS
combines the minimal features of MPIDTrace and IPM tools. MPI calls are traced using MPIDTrace
which is part of the Dimemas project, see Section MPIDTrace creates an event trace file, which
is used by DiMeMas for simulation in one of the convolution steps.

Following this characterisation, two convolution steps are applied. The PMaC Convolver uses the
trace results from PMaCinst and the memory profile data to produce an estimated time for the work
done on the processor in between communication events on the target machine for that application.
PSiNS simulator is similar to Dimemas and uses the estimated time from the PMaC convolver along
with MPI call trace produced by different tools (PSiNS tracer, MPIDTrace) to simulate the execution
of the application on the target system and emits the execution time as well as significant information
on the decompostion of execution time to program components similar to the information given by
IPM. DiMeMas can also be use the estimated time from the PMaC convolver along with the event
trace produced by MPIDtrace to simulate the full execution time.

The PSiINS tracer and simulator can be obtained here http://www.sdsc.edu/pmac/projects/psins.
html.

5.1 IPM: Integrated Performance Monitoring

IPM is a portable profiling infrastructure for parallel codes which binds together a number of lightweight
instruments, see http://www.sdsc.edu/pmac/projects/IPM.html. In this way it can provide a low
overhead performance summary of the computation and communication in an application. The amount
of detail reported can be selected at run time via environment variables or through a MPI_Pcontrol
interface. IPM has extremely low overhead, is scalable and easy to use requiring no source code
modification.

The current version is in use at NSF, DOE, and DOD HPC centres in the USA. IPM has unique features
that make it effective for ongoing monitoring of application performance by system administrators as
well as application scientists.

IPM brings together several types of information important to developers and users of parallel HPC
codes. The information is gathered in a way that tries to minimize the impact on the running code,
maintaining a small fixed memory footprint and using minimal amounts of CPU. When the profile is
generated the data from individual tasks is aggregated in a scalable way.
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The monitors that IPM currently integrates are as follows.

e MPI — communication topology and statistics for each MPI call and buffer size;

e HPM — PAPI (many) or PMAPI (AIX) performance events;

Memory — wallclock, user and system timings;

Switch — Communication volume and packet loss.

NSF awarded a grant from 2007-2010 for further development of the IPM tools to provide: (1) a tool
for capturing program’s performance data with special emphasis on low overhead and scalability for
up to millions of processors; (2) easy to understand application profiles which capture communication
volumes and patterns, processor and memory system counter information, and topology-aware coun-
ters from network adapters and switches; (3) a database backend for workload characterisation and
comparison of architectures; and (4) support for community driven enhancements through portable,
extensible, open source software.

IPM can be obtained from http://ipm-hpc.sourceforge.net/.

6 POEMS: Performance Oriented End to end Modelling System

The aim of POEMS project [I] was to develop an environment for performance modelling of parallel
computing systems. The methodology was to use multiple evaluation tools developed by a consortium
of researchers from several universities in the USA. The project ran from 1997-2000 and, whilst included
for completeness, will not be considered it further.

The system model was composed of component models. POEMS authors stated that each component
of the system model could be evaluated by the corresponding evaluation tool — the output of a tool
serving as input for the subsequent tool [I]. In general, the component models may be of different
kinds and at different levels of abstraction. It is therefore difficult to see how the output of one
evaluation tool may to be interpretable by the subsequent evaluation tool unless very careful design
considerations are made.

POEMS devised a graphical “workflow” representation for parallel applications which is based on task
graphs. Each node of the task graph may represent a set of parallel tasks. Edges of the task graph
may represent data flow or task precedence. However, POEMS did not provide the corresponding
tool support for graphical model composition. There was however an automatic task graph generator
for High Performance Fortran (HPF) programs [2]. The tool support was provided by an extended
version of the dHPF compiler [44].

The automatic development of a machine model was not adequately addressed. The authors claimed
that the machine model may be automatically composed from existing components but not all the
required components were developed. The processor and memory sub-systems were simulated with
the SimpleScalar tool [10], the network is simulated based on the Parsec simulation language and the
I/O subsystem was simulated with PIOSIM [7].
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For more information on POEMS see http://pages.cs.wisc.edu/ vernon/poems.publications.
html.

7 University of Illinois at Urbana Champaign

POSE: Parallel Object Oriented Simulation Environment [41] is a parallel discrete event simulator.
POSE is used for simulation of the performance behaviour of applications that are executed on large
scale machines such as IBM’s BlueGene [42].

A detailed simulation of such large machines may require processing and memory resources that are
not available on the desktop, therefore, such simulations are themselves executed on multi-processor
systems. POSE is implemented on an existing object oriented parallel programming environment based
on Charm++ [28], which is a parallel C++ library. The simulation entities of POSE are represented
as Charm++4 objects. Each object has a data member for tracking the simulation time and a set of
methods for event handling. Typically, sequential discrete event simulators are about ten times faster
than parallel discrete event simulators if a single processor machine is used for model evaluation. This
is due to the synchronisation and communication overhead of parallel code. If a machine with more
than ten processors is available for model evaluation, then the parallel simulator will perform best [41].

Based on POSE and Charm++, a specific simulator called BigSim was developed for the BlueGene-
L [43| 42]. The machine is modelled as a set of inter-connected nodes, each node may having a set
of processing elements. The effort for the development of a detailed machine model that supports
execution driven simulation is high. Evaluating different applications may also be time consuming as
the user has to restructure the source of the model.

It has not been possible to assess the efficiency of this approach since we were unable to find a compar-
ison of prediction results of BlueGene-L simulator with measurement results on the real BlueGene-L
machine.

It is possible to download Charm++ and BigSim from the Web site [43] along with examples of
modelling the NAMD application.

8 Rice University

RSIM: Rice Simulator for ILP Multiprocessors, is a simulator of cache coherent non-uniform memory
access (CC-NUMA) shared memory machines [47, [26]. A distinguishing feature of RSIM is the ability
to simulate processors that use instruction level parallelism (ILP).

RSIM currently supports SPARC processors. Input for the RSIM simulator can be applications that
are compiled and linked (i.e. executables) on SPARC/ Solaris systems. The application therefore
has to exist and be compiled which makes this approach un-suitale for algorithm design. During the
simulation, RSIM interprets the executable of the program and provides as output the number of
executed cycles, and statistics on the utilization of components of the machine.

RSIM comprises a detailed cycle level machine model that allows the analysis of the performance
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effects of architectural parameters. The main components of the machine model include processors, the
memory hierarchy (L1 cache, L2 cache, local and remote memory), and the interconnection network.
Because of this detailed level of simulation RSIM execution is several thousands times slower than the
program execution on the real machine, so it is not suitable for evaluation of various designs of real
world applications.

It may be possible to adapt the Rice simulator to use with CC-NUMA system on offer from vendors
such as SGI, although its utility for large scale applications is questionable for the above reason.

9 SDSA; Science Driven System Architecture

This is a project of the SDSA Group at NERSC aimed at ensuring the appropriate procurement of fu-
ture computer systems and efficient utilisation of existing ones. They use a combination of performance
modelling based on a convolution of measured system and application charateristics and full workload
analysis. The NERSC application workload is encapsulated in the Sustained System Performance
(SSP) benchmark, see http://www.nersc.gov/projects/SDSA/software/?benchmark=ssp.

System information is gathered using IPM, see Section

For more information on SDSA see http://www.nersc.gov/projects/SDSA.

10 University of Vienna

Performance Prophet (PP) [46] B7] is a tool for performance modelling and prediction of parallel and
distributed computing systems. It provides a GUI, which simplifies the tasks of specification and
modification of the performance model. The user specifies the model graphically using the Unified
Modelling Language (UML) [36]. PP then automatically transforms the model from UML to C++
and evaluates it by simulation.

Because it is easy to change the model, PP is suitable for exploring a large set of possible application
versions or numerical algorithms. This rapid evaluation capability of PP is due to a methodology
that involves model simplification and the combination of mathematical modeling with discrete event
simulation. The aim is to combine the model evaluation efficiency of mathematical performance models
with the structure awareness of simulation models. The behaviour of the whole computing system
is divided into action states and waiting states. Mathematical modelling is used for the performance
behaviour of action states, whereas the performance behaviour of waiting states is simulated.

The machine model, in this case for clusters of SMPs, is composed automatically based on user
specified parameters such as the number of nodes and the number of processors per node.

PP thus uses a hybrid approach to simplify a detailed model that combines simulation and analytical
techniques to reduce the time needed to evaluate the model. Its authors [37] have assessed the accuracy
by modelling and simulating a real world materials science application that comprises about 15,000
lines of code. The average prediction error was about 7%.
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Figure 2: Performance Prophet Architecture

The Teuta graphical editor is used for the UML based modelling of parallel applications and Grid
workflow applications in Performance Prophet.

At present Teuta supports the following types of UML diagrams: Activity, Collaboration, Deployment,
and Class. Its features include:

Model checking;

Model traversing;

Easy to extend with new types of UML diagrams and modeling elements;

Generation of multiple model representations;

XML based configuration (menus, toolbars, ..);

Platform independent, requires Java programming language, J2SE 1.5.

A version of Teuta is distributed free of charge for educational and research purposes, see http://www.
par.univie.ac.at/project/prophet/node4.html. This version is suitable for modelling parallel,
but not Grid applications.

11 University of Warwick

11.1 PACE: Performance Analysis and Characterisation Environment

PACE [35], 12], developed by the High Performance Systems Group at the University of Warwick,
is a performance prediction system that provides quantitative data concerning the performance of
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Figure 3: Teuta Graphical User Interface

applications running on high performance parallel and distributed computing systems. The system
works by characterising the application and the underlying hardware on which the application is to
be run, and combining the resulting models to derive predictive execution data. PACE claims to pro-
vide the capability for the rapid calculation of performance estimates without sacrificing performance
accuracy. PACE offers a mechanism for evaluating performance scenarios, for example the scaling
effect of increasing the number of processors, and the impact of modifying the mapping strategies (of
process to processor) and underlying computational algorithms [?].

Details of the PACE toolkit can be seen in Fig. 1. An important feature of the design is that the
application and resource modelling are separated and there are independent tools for each.

The PACE application tools provide a means to capture the performance aspects of an application
and its parallelisation strategy. Static source code analysis forms the basis of this process, drawing
on the control flow of the application, the frequency at which operations are performed, and the
communication structure. The resulting performance specification language (PSL) scripts can be
compiled to an application model. Although a large part of this process is automated, users can
modify the performance scripts to account for data dependent parameters and also utilise previously
generated scripts stored in an object library.

The capabilities of the available computing resources are modelled by the PACE resource tools. These
tools use a hardware modelling and configuration language (HMCL) to define the performance of the
underlying hardware. The resource tools also contain a number of benchmarking programs that allow
the performance of the CPU, network and memory components of a variety of hardware platforms
to be measured and modelled. The HMCL scripts thus provide a resource model for each hardware
component in the system. These models are static and, once a model has been created for a particular
hardware, it can be archived and reused.
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Once the application and hardware models have been generated, they can be evaluated using the
PACE evaluation engine. Using PACE the following studies can be performed: evaluation of time
predictions for different systems, mapping strategies and algorithms; exploration of the scalability of
the application and resources; predction of system resource usage, network, computation, idle time,
etc.; and generation of predictive traces through the use of standard visualisation tools.

The capabilities of PACE have been validated using ASCI high performance demonstrator applica-
tions [?, ?]. The toolkit provides a good level of predictive accuracy, with an approximate 5% average
error, and the evaluation process typically completes in a matter of seconds on a desktop PC.

[Fig.1. An outline of the PACE system including the application and resource modelling componentsa
nd the parametric evaluation engine which combines the two.]

PACE has been used in a number of other high performance settings; these include the performance
optimisation of financial applications, real time performance analysis and application steering and the
predictive performance and scalability modelling of the Sweep3D application. This work is different
from previous research of the group, in that the data predicted by PACE is integrated in and applied
to a dynamic workload steering environment. To enable such an application, new techniques have
been devised that allow PACE performance data to be generated, published and queried in real time.

11.2 WARPP: Warwick Performance Prediction Toolkit

WARPP, the WARwick Performance Prediction Toolkit Simulator, is a prototype semi-automatic
performance prediction environment which supports the exploration and analysis of an application’s
performance on machines consisting of thousands of processing elements. It was designed to support
the automated generation of performance models [21].

WARPP builds upon the PACE toolkit described above and is now a Java application available for free
download from http://www2.warwick.ac.uk/fac/sci/dcs/people/research/csrcbc/research/wppt.
The tools have been used again to model the Sweep3D benchmark application, the NAS Parallel Bench-
mark Suite and several larger scientific MPI applications. WARPP employs discrete event simulation

to model code runtimes and behaviour on large supercomputing resources containing tens of thousands

of processors. The authors claim accuracies of greater than 90%.

The results obtained from the WARPP toolkit are currently being written up for a series of publica-
tions [21]. In addition, the Warwick group is developing new profiling tools as well as automated code
analysis environments which will be integrated into the toolkit in the future.

11.2.1 WARPP Modelling Process

The WARPP toolkit combines work from multiple research projects and includes an automated code
analyser, code instrumentation facilities, process/ wall time profilers and an aggressive out of order,
discrete event simulator.

The WARPP modelling process features three distinct stages (shown in grey in the Figure . The first,
source code instrumentation, is completed via automated code analysis tools. Each basic block within
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the application source code is identified and instrumented with a start and stop timer for each entry
and exit point respectively. The output of these timing statements forms the basis for simulating the
computational time required by each basic block. The second stage, machine benchmarking, involves
executing the instrumented version of the application along with a reliable MPI benchmarking utility
(e.g. Intel MPI Benchmark Utility/ MPPTest) on the target architecture. A filesystem i/o benchmark
might also be required. The output of these benchmarks which is a series of computational and
communication timings are analysed to produce input to the simulator. The third stage simulates
application control flow attributing respective timings to each basic block and i/o operations including
MPI.

11.2.2 WARPP Simulator

Simulation in WARPP requires four inputs: (i) a simulation script capturing the control flow and
event structure of the application; (ii) a set of “global” values which capture the respective timing of
each computational event; (iii) the machine’s network model; and (iv) an i/o model.

The discrete event simulator is written in Java to aid portability and ensure that results are repeatable
between runs and installations. The simulator executs a set of “virtual processors”, each being an
abstract representation of a physical processing element. During execution of the model script, control
swaps between one of the virtual processors and handlers in the simulator which process the events
being generated. The virtual processor executes the control flow of the model, halting when an event
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is reached and passing control back to the simulator. Special handlers are responsible for processing
i/o and network communications. These check that both sender and receiver has posted event details
(i.e. message size, tag, etc.) and that these agree. The communication time is computed from the
message transmission time on the branch of network identified from the machine’s topology map. The
simulator can stall virtual processors for which the communication events are not ready, and records
the waiting time.

12 Performance Analysis Tools

These tools analyse rather than model performance and are mostly based on execution traces. Most of
this information was taken from the SciDac-3 PERI Web site http://www.peri-scidac.org/perci/
tools. Many of these tools can be used during the application model building phase described above.

Paradyn and Dynlnst:

HPCToolkit: An open source suite of multi-platform tools for profile based performance analysis of
applications. http://www.hipersoft.rice.edu/hpctoolkit/

IPM: Integrated Performance Monitoring, a low overhead infrastructure combining several instru-
ments as described in Section 5| See http://ipm-hpc.sourceforge.net/

KOJAK: A trace based performance analysis tool for parallel applications supporting MPI, OpenMP,
SHMEM, and combinations thereof. Includes instrumentation, post-processing of performance
data and result presentation. http://icl.cs.utk.edu/kojak/

mpiP: A lightweight profiling library for MPI applications. http://sourceforge.net/projects/
mp1ip

PAPI: Performance Application Programming Interface — provides a cross platform interface to the
hardware performance counters found in most modern microprocessors. http://icl.cs.utk.
edu/papi/

Paraver: A very powerful performance visualization and analysis tool based on traces that can be
used to analyse any information that is expressed on its input trace format. http://www.bsc.
es/plantillaF.php?7cat_id=52

PDT: Program Database Toolkit — a framework for analysing source code written in several pro-
gramming languages and for making rich program knowledge accessible to developers of static
and dynamic analysis tools. http://www.cs.uoregon.edu/research/pdt

SvPablo: A graphical performance analysis environment for performance tuning and visualization.
Supports both interactive and automatic source code instrumentation. http://www.renci.org/
projects/pablo.php

TAU: A portable profiling and tracing toolkit for performance analysis of parallel programs written
in Fortran, C, C4++, Java and Python. http://www.cs.uoregon.edu/research/tau

VAMPIR: Visualisation and Analysis of MPI Resources — a commercial post-mortem trace visuali-
sation tool. http://www.vampir.eu
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13 Conclusions

Most approaches for performance modelling and prediction of parallel and distributed applications
are currently of limited use to support performance oriented software engineering and computational
science for the following reasons: (1) the use of a notation that is not based on widely accepted
standards; and (2) the requirement that the software engineer has a thorough understanding of the
underlying performance modelling technique. Some approaches aim to bridge this gap between the
performance modeling and the software engineering by incorporating UML [36].

Few approaches are able to cope with anything more than small programs such as matrix vector
multiplication. There are several reasons for this lack of scalability: (1) a very complex code analysis
is used during the workload modelling that does not scale up to the size and complexity of real
world applications; (2) a detailed machine model is used that is so slow that makes the simulation
of such applications intractable; or (3) the simulator requires very large resources, typically memory,
that may not be available. Some approaches have addressed this issue by using model simplification
techniques, combination of mathematical modelling with discrete event simulation, using a simple
machine simulation model or a parallelisation of the simulator.

Based on the above survey we have chosen the following tools for further evaluation: Performance
Prophet; POSE; WARPP.
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