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Core Boundary Conditions in the Full-Potential LMTO Code

LMF

Jerome Jackson
(a)

STFC Daresbury Laboratory

11st January 2018

Abstract –The accuracy of alternative core treatments in relativistic density functional theory calculations is discussed
for the full-potential linearised-muffin-tin-orbital code lmf. Atomic solutions are compared with reference data and
HCP titanium is used as a representative band problem, where results are compared with those obtained using the
full-potential augmented plane-wave code fleur. Self-consist update of the core density is shown to be less important
than the correct incorporation of charge leaking form the core into the interstitial.

Introduction. – Modern approaches to solving the electronic structure problem for crystalline materials
distinguish between core and valence states. Different numerical techniques are applied for the solution of the
tightly bound core states and for the valence states, which participate in band formation. Because the core
states only indirectly influence band formation, they frequently receive more approximate treatment than the
valence states. The various pseudopotential schemes model the effect of the nucleus and core states by an
effective, but l-dependent, potential with the corresponding pseudo-wave functions are essentially smooth in
space and easily represented by a small plane-wave basis.

Augmented methods, which rely upon Slater’s muffin-tin decomposition of space between atomic spheres
and interstitial, allow the simultaneous solution of the core and valence states and are often called all-electron
methods. There is are a variety of all-electron methods differing principally in the basis and in the representation
of the potential and density. The highest level of accuracy is only afforded by those methods which are capable
of describing faithfully the variation of the potential and density in the interstitial: these are the full-potential
all-electron methods, which are the subject of this Report.

Modern full-potential all-electron schemes rely upon Andersen’s linearisation [1], which means that the band
problem is accurately solved only within a certain energy range (∼Hartree around the Fermi level). Core states
lie well beyond this energy range and to allow their description on the same footing as valence states, while
possible in principle, would require having several such windows , a significant increase in complexity. Instead
core states are often solved under the simplifying assumptions that they do not participate in bonding and that
they experience a central potential. The core problem thereby becomes a radial problem with fixed boundary
conditions which is easily solved. The core density can be evaluated and used in the calculation of the potential
experienced by the valence states; approximate orthogonality of the valence states to the core states is afforded
by the correct nodal structure of the valence states in the augmented methods. The core states (density) may
be determined once and for all in an atomic calculation or may be updated self-consistently during the solution
of the crystal problem.

This Report discusses the effects of different core electron treatment choices in high accuracy total energy
calculations for solids in the framework of density functional theory. The specific core treatment options
considered are the use of the frozen atomic core density or the self-consistently updated density in the spherical
component of the crystal potential, whether or not to allow the core density to extend into the interstitial region,
and the effect of including some core states in the valence set explicitly. This latter possibility is allowed in
both of the tested codes by the use of local orbitals .
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core radial Dirac equation rel. LDA/VWN spherical potential

valence
within rmt: radial Pauli equation (scalar-relativistic)

rel. LDA/VWN full potential
interstitial: non-relativistic

Table 1: Description of the relativistic local density approximation (RLDA) used in this Report for the core, augmentation
and interstitial parts in the LMTO/APW methods. In these methods, the basis within the augmentation region is
calculated within the spherical part of the crystal potential; this basis is then used to express solutions to the full

potential problem.

Computational Details. –

HCP Titanium. HCP titanium at the experimental lattice structure (a = 2.95111Å, c/a = 1.5873 [2]), is
chosen as a simple test case; the 3p state is relatively shallow in titanium and its inclusion in the core or valence
can be used to illustrate the effect of the core state boundary conditions. As a light element, the effects of
relativity in titanium can be expected to be small (calculations below show what small means in this context).
Although there are few core states in titanium, the essential complexity of the problem is common to all the
non-magnetic elemental d-block materials. The typical division for titanium is core: 1s2,2s2,2p6,3s2,3p6 (18
electrons) and valence: 4s2, 3d2. High quality LAPW calculations for titanium were first presented 30 years
ago by Lu, Singh and Krakauer [3].

FP-LMTO and FP-LAPW Codes. The two full-potential all-electron codes are fleur [4,5] (version “Max-
release 1.3”), which is an implementation of the linearised augmented planewave (LAPW) method, and lmf

[6,7] (version “7.11.j”, build ref: f2a1c5c) which is based on the linearised muffin-tin orbital (LMTO) technique.
The LAPW and LMTO methods both separate space into non-overlapping spherical regions surrounding the

nuclei, muffin-tin or augmentation spheres with radius rmt, and the remaining interstitial region. The single-
particle Schrödinger equation is then solved separately in these two regions, with solutions that are matched
at rmt. The boundary of the augmentation sphere radius also represents the limit of outwards integration of
the core states. The total energies calculated by the LAPW and LMTO schemes are (differently) sensitive to
rmt, which must be chosen by the user. In order to allow a detailed comparison of total energies, identical rmt

are chosen with value 2.65Bohr. This is a typical choice for LMTO calculations, being somewhat smaller than
the touching sphere radius and so maximising the volume of the augmentation region: here the quality of the
solution is expected to be better than in the interstitial. This concern is particularly applicable to the LMTO
method, which relies on an almost minimal basis for the interstitial.

For the purposes of this comparison, three modifications to lmf have been made to increase the core grid
limits in some subroutines, to enable the use of relativistic exchange in libxc and to activate the Dirac solver
in the self-consistent case. These developments will be available in a forthcoming release.

Relativistic Local Density Approximation. Scalar-relativistic solvers – which include relativistic effects in
the kinetic energy except the spin-orbit term (see [8] for discussion and [9] for implementation considerations)
– are used consistently in the codes for the valence calculations. lmf features both scalar- and fully-relativistic
(Dirac) core solvers; in fleur only the Dirac solver is implemented. The local density approximation is used for
exchange and correlation as parameterised by Vosko, Wilk and Nussair [10]. Relativistic effects are not usually
included in the exchange correlation functional, but doing so (in the framework of MacDonald and Vosko [11])
allows for direct comparison with high precision reference data. In the lmf code, the relativistic correction
to exchange is provided by the libxc library [12]. The combined use of the Dirac core solver and relativistic
density functional is referred to here as relativistic local density approximation (RLDA).

While lmf and fleur codes were developed independently and many implementation details are different,
both codes have adopted the same radial meshing for the augmentation region: ri = r0(exp(a(i − 1))− 1), for
grid points i = 1...n. The radial mesh is specified by the number of points, rmt and the parameter a. The
best meshing possible in lmf is with n = 1473 (the limit is 2000) and a = 0.0065. This has been used in both
codes for convenience of plotting the core density. Tests with fleur show that for this choice of radial grid
the total energy (in the crystal case) is within 25µHartree of the converged result. ~k is sampled in both codes
using a Monkhorst-Pack grid of 28 × 28 × 15 (640 points in the irreducible wedge), which is sufficient for 1
µHartree convergence. For lmf an spdf/spd MTO basis was used with Hankel energies and spearing widths
chosen automatically, combined with lmax = 4 augmentation. The specific basis definitions are given in listing2.
fleur calculations employ a Kmax = 3.7 (Gmax = 10Bohr−1) and augmentation cutoff lmax = 10. Sample lmf
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and fleur inputs are provided in listings 1,3.

Atomic Problem. – Table 2 compares the lmf core eigenvalues and total energy with high quality
reference data in the RLDA formalism for the case of atomic titanium provided by Kotochigova, Levine, Stiles
and Clark at NIST [11]. The agreement of core eigenvalues and the total energy are better than 1mHartree;
this suggests that energies larger than this can be considered accurate.

lmf NIST [13]

1s -178.025331 -178.025322
2s -19.642807 -19.642824
2pM -16.439494 -16.439503
2pP -16.228617 -16.228623
3s -2.284593 -2.284637
3pM -1.441010 -1.441054
3pP -1.416620 -1.416663
Etotal -851.162158 -851.162463

Table 2: Atomic Ti core eigenvalues calculated using lmf compared with standardised data for the solutions of the radial
Dirac equation with relativistic LDA exchange-correlation [11] (RLDA). “P” denotes j = l + 1/2, “M” for j = l − 1/2.
Units are Hartree. Radial mesh parameter a = 0.0065.

The total energy is also listed; note that in lmf the valence 4s and 3d states do not include the spin-orbit
interaction (they are scalar-relativistic), while the NIST reference data is entirely within Dirac formalism. This
gives rise in this case to no significant error in the calculated total energy. lmf calculates the amount of charge
of each state beyond rmt; here the leakage is negligible except for the 3s state, q(r > rmt) = 0.00143e/atom and
3p, where each state leaks q(r > rmt) = 0.00557e/atom.

Solid State Calculations. –

Frozen Overlapping Core Approximation. The simplest scheme is to include the core density from a free
atom calculation directly and without modification in the band calculation. The core density is added to the
valence density when calculating the Hartree and exchange-correlation energies and potentials. If the free atom
core density is allowed to extend into the interstitial and overlap with that of other atoms when the crystal is
formed, this additional density must also be included in the interstitial problem. This frozen overlapping core
approximation (FOCA) is implemented in the lmf code. The core density, which is also spherically symmetric,
is fitted in lmf to a Hankel function with l = 0: beyond rmt, atomic wave functions die away exponentially and
a single smoothed Hankel function is an appropriate fit (see fig. 1). Details can be found in the NFP Manual
by M. Methfessel (October 10,1997), which documents an earlier version of the lmf code [14]. The default
smoothing radius for the representation of the core density tail is used (1.06bohr); this small value corresponds
to a very weakly smoothed Hankel function.

Hankel fit
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Fig. 1: Atomic Ti core density beyond rmt = 2.65Bohr and corresponding l = 0 Hankel fit, RLDA as calculated using
lmf.
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Self-consistent Core. Because core states are energetically deep and localised close to the nucleus of the
atom, where the potential landscape is dominated by the nuclear potential, it has proven reliable to replace the
full potential by its spherically symmetric component. For the valence states, the potential within the muffin-tin
sphere is typically expanded by angular momentum, and it is therefore a straightforward task to provide the
spherical part to be used in evaluation of the core states. An important caveat is that the potential is expanded
by l in this way only within the augmentation sphere: there is no obvious radial tabulation of V for r > rmt.
Accordingly, the choice is often made to require core wave functions and their first derivatives to be zero at rmt.
This choice is made in lmf when self-consistent core treatment is chosen by the user.

The fleur implementation addresses this difficulty by extrapolating the potential beyond rmt using a simple
quadratic function determined by the value of the potential at the muffin tin boundary (the potential is shown
in fig.2). The core states are obtained as solutions to this extrapolated potential and any charge beyond rmt

can be included (either using Hankel tails up to lmax = 6, or simply averaged over the interstitial volume) in
the interstitial density. Some discussion about the form of the potential for r > rmt may be found in Zabloudil
et al.’s, treatise [15].

extrapolation
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Fig. 2: Extrapolation of the core potential beyond rmt in fleur to form a quadratic confining potential.

The RLDA core eigenvalues calculated self-consistently in the crystal case are presented in table 3, where
differences in the summed core eigenvalues and kinetic energies are seen in the mHartree range.

lmf fleur

1s -177.799011 -177.800568
2s -19.423005 -19.423376
2pM -16.218969 -16.219412
2pP -16.008128 -16.008562
3s -2.060614 -2.059892
sum T core 805.5763 805.5772
sum ei core -495.0357 -495.0407

Table 3: Ti core eigenvalues self consistently calculated in the crystalline environment. RLDA: “P” denotes j = l+ 1/2,
“M” for j = l−1/2, ei−eF are tabulated in Hartree. In lmf the self-consistent core mode is selected by setting LFOCA=0.

Local Orbitals for Semi-core States. When it is questionable whether some atomic state should be treated
as core, it may be additionally included in the valence using local orbitals (LO) [16]. In the conventional
implementation, local orbitals are solutions to the radial problem that are constructed to be only non-zero
within the augmentation sphere. These functions are added to the basis within the augmentation region and
allow, in combination with the usual valence augmentation, the additional description of states with different
quantum number, for some l. Depending upon construction of the local orbital, it can be used to describe
semi-core states (with lower quantum number) or unoccupied states (by using a higher quantum number in
setting up the local orbital). Conventional local orbitals use the same basis functions in the interstitial as the
main valence band. In LMTO, the basis functions (smoothed Hankel functions) are optimal for the valence
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band and are poor in describing deeper semi-core states and it is advantageous to form extended local orbitals,
where additional Hankel functions are fitted to match the local orbital in value and gradient at rmt.

Total Energy Comparison. The HCP total energies at the experimental lattice constant are given in table
4. The fleur code, in which the core density is always allowed to extend into the interstitial, shows particularly

code method qcore loss Etotal [Hartree/at]

lmf scf core, constrained to rmt 0 -851.460199
scf core, constrained to rmt, 3p-LO(conventional) 0 -851.431693
scf core, constrained to rmt, 3p-LO(extended) 0 -851.436017
frozen core, overlapping tail 0.0363 -851.434890
frozen core, overlapping tail, 3p-LO(conventional) 0.0029 -851.430236
frozen core, overlapping tail, 3p-LO(extended) 0.0029 -851.434559

fleur scf core, tail averaged in interstitial 0.0430 -851.434720
scf core, overlapping tail 0.0431 -851.434789
scf core, overlapping tail, 3p-LO(conventional) 0.0032 -851.434657

Table 4: Total RLDA energies for HCP titanium for different core treatments.

consistent total energies when calculated with different core options. The use of the confining potential for
treating the core states is justified by the close agreement with the results obtained by explicit inclusion of the
3p core states in the valence. The lmf results calculated with self-consistent core treatment – which implies
that the core states are restricted to rmt – differ significantly, while the overlapping frozen core treatment gives
results in much closer agreement with the fleur calculations. When the 3p states are included in the valence,
either using conventional or extended local orbitals, the agreement between lmf results with self-consistent and
frozen cores is much improved, although a difference of 1.5mHartree persists. When extended local orbitals are
used in lmf, the agreement with fleur is much improved compared to the use of conventional local orbitals.
The difference in the core loss between lmf and fleur (0.036e/at compared with 0.043e/at) suggests that the 3p
states extend more into the interstitial (i.e. beyond rmt) in the crystal case than in the atomic limit – consistent
with some hybridisation of the 3p states.

Equation of State. At fixed c/a, the total energy is calculated for cell volumes between 224.6 and 218.5Bohr3

allowing Birch-Murnaghan equation of state parameters to be calculated (table 5). Muffin-tin spheres almost
touch at the smallest volume and basis parameters are unchanged for all volumes. The lmf calculations show
some scatter, in particular the self-consistent core gives an outlying estimate of the lattice constant. The frozen
core results with and without 3p local orbitals are in better agreement. Although the range of minimum energies
is smaller in fleur, the bulk modulus clearly depends upon the inclusion of 3p LO. The fleur and lmf results
including the 3p LO with overlapping core tails are in very good agreement. Because these setups may be
considered to be the best in that they have the largest basis (and so variational freedom), and because they
show consistent agreement, it is reasonable to interpret these results as the most accurate RLDA description.
The extremely good agreement of these calculations show that the core relaxation, which is present in fleur

but not the lmf calculations, is of negligible importance here. It is not clear why the overlapping tail without
LO in fleur deviates more than the corresponding lmf calculation.

code method E(V0) [Hartree/at] a0 [Bohr] B0 [GPa]

lmf scf core, constrained to rmt -851.462383 5.3898 118.6
frozen core, overlapping tail -851.436255 5.4379 132.9
frozen core, overlapping tail, 3p-LO(extended) -851.436116 5.4274 130.9

fleur scf core, tail averaged in interstitial -851.436776 5.3966 119.5
scf core, overlapping tail -851.436951 5.3904 117.4
scf core, overlapping tail, 3p-LO(conventional) -851.436132 5.4320 132.5

Table 5: Calculated RLDA HCP titanium lattice parameter, minimum energy and bulk modulus for different core
treatments with fixed c/a = 1.5873.

Effect of Relativity. The different treatment of relativity for the core is significant for total energy compar-
isons but gives only small changes to the equilibrium lattice parameters (the bulk-modulus is more sensitive).
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The scalar-relativistic treatment is inferior to the full Dirac treatment because the spin-orbit interaction is sig-
nificant for the core states and does cause a change in the core density. The use of the relativistic variant of the
LDA gives rise to significant differences to the total energy; these are larger than the differences between using
the Dirac equation or the simpler scalar relativistic equations for the core solver. Whether or not to use rela-
tivistic corrections to the exchange-correlation functional is an open question since the theory of current-density
functional theory remains incomplete.

E(V0) [Hartree/at] a0 [Bohr] B0 [GPa]

RLDA -851.436116 5.4274 130.9
scalar core, relativistic LDA -851.428497 5.4274 109.9
scalar core, usual (non-rel.) LDA -852.007063 5.4266 109.8

Table 6: Calculated HCP titanium lattice parameter with fixed c/a = 1.5873 for different models for relativity. Calcu-
lations using lmf with frozen overlapping core and 3p-LO(extended).

Conclusions. – The Report:

1. illustrates the relatively minor role of self-consistency in the core compared with inclusion of core density
in the interstitial

2. demonstrates that agreement in the total energy better than mHartree is possible between the codes
tested, when each is well converged

3. shows that different treatment of relativity in the core leads to energy differences greater than 1mHartree,
even in titanium where this would not be expected

4. verifies lmf’s core eigenvalues against robust reference data

5. shows that the spatial distribution of leaked core charge in the interstitial is less significant than the
amount of leaked charge: a uniform distribution is of quality comparable to an l−expansion of Hankel
functions

6. confirms that the current lmf frozen core implementation is adequate for accurate calculations

7. shows the utility of local orbitals for improving the treatment of semi-core states; in lmf extended local
orbitals should be strongly preferred over the conventional type.

Here good is understood to mean agreement of total energy better than 1mHartree.
The response of the core to changes in the valence states should be considered only for high-accuracy

calculations, but at present this is prevented in lmf by the loss of accuracy incurred by the boundary conditions.
The close agreement of fleur results with self-consistent core and LO methods suggests that the inclusion of
a confining potential (or alternative means of extending the core integration beyond rmt) is necessary for self-
consistent core calculations, but, when this is done, that such core schemes do allow very high accuracy.

The use of extended local orbitals in lmf is recommended for semi-core states such as the 3p in Ti whenever
high accuracy is required. A working definition of semi-core corresponds to those states deeper than ∼ −1.25
Hartree in the atomic problem, or where the charge corresponding to the state beyond rmt exceeds 0.002e; these
are inclusive criteria but, wherever there is doubt, testing should confirm whether or not the inclusion of the
semi-core state affects the calculated properties.

∗ ∗ ∗

Assistance in setting up local orbitals in fleur is gratefully acknowledged from Gregor Michalicek, FZ Jülich.
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Listing 1: lmf control file (3pLO will be added automatically because of the LOC=1 flag)
1 VERS LMF=7 LM=7 FP=7

2 IO VERBOS =60
3 % const gmax=10.0 # LO case
4 HAM

5 AUTOBAS [LMTO=5 MTO=2 LOC=1] # spdf/spd MTO basis with LO
6 GMAX={gmax}

7 XCFUN=0 001 007 # VWN via libxc
8 TOL=1e-16
9 REL=11 # Dirac core

10 BZ
11 % const nk= -12000

12 NKABC={nk}
13 METAL=5

14 EWALD
15 TOL=1e-16
16 ITER

17 NIT=30
18 CONV=1e-7

19 MIX[B8,b=1.0]
20 SYMGRP find
21 STRUC

22 NBAS=2 NSPEC=1
23 ALAT =5.57682 # RT, atmospheric ICSD 43416, a=2.95111 A,c/a=1.5873

24 PLAT=1 0 0 1/2 sqrt (3)/2 0 0 0 1.5873
25 SPEC

26 # lfoca=1 for frozen core , lfoca=0 for self consistent core
27 % const lmx=3 lmxa=6 a=0.0065 lfoca=1
28 ATOM=Ti Z=22 R=2.65 LMX={lmx} LMXA={lmxa} A={a} LFOCA={lfoca}

29 SITE
30 ATOM=Ti XPOS =0.0000000 0.0000000 0.0000000

31 ATOM=Ti XPOS =0.3333333 0.3333333 0.5000000

Listing 2: lmf smoothed Hankel basis definitions)
1 BASIS:

2 Ti RSMH= 1.767 1.767 1.234 1.767 EH= -0.1 -0.1 -0.1 -0.1 RSMH2= 1.767 1.767 1.234 EH2= -0.9 -0.9 -0.9 PZ= 0 13.9377

Listing 3: fleur control file with explicit 3pLO
1 <?xml version ="1.0" encoding ="UTF -8" standalone="no"?>

2 <fleurInput fleurInputVersion="0.27">
3 <comment >
4 Ti core study , setup 1

5 </comment >
6 <calculationSetup >

7 <cutoffs Kmax ="3.7" Gmax="10.0" GmaxXC ="6.0" numbands ="0"/>
8 <scfLoop itmax ="20" maxIterBroyd="99" imix="Broyden2 " alpha ="0.4" spinf ="1.0"/>
9 <coreElectrons ctail="T" frcor="F" kcrel="0"/>

10 <magnetism jspins ="1" l_noco ="F" swsp="F" lflip="F"/>
11 <bzIntegration valenceElectrons="20.0" mode="hist" fermiSmearingEnergy="0.0005" >

12 <kPointMesh nx="28" ny="28" nz ="15" gamma="F"/>
13 </bzIntegration >

14 <energyParameterLimits ellow =" -1.0" elup ="1.0"/>
15 </calculationSetup >
16 <cell >

17 <symmetryFile filename ="sym.out"/>
18 <bulkLattice scale ="1.0" latnam ="hex">

19 <a1 >5.57682 </a1>
20 <c>8.852086 </c>
21 </bulkLattice >

22 </cell >
23 <xcFunctional name="vwn" relativisticCorrections="T"/>

24 <atomSpecies >
25 <species name="Ti -1" element ="Ti" atomicNumber="22" coreStates="5" magMom ="0.0" flipSpin ="F">

26 <mtSphere radius ="2.65" gridPoints="1473" logIncrement="0.0065"/ >
27 <atomicCutoffs lmax="10" lnonsphr ="6"/>
28 <energyParameters s="4" p="4" d="3" f="4"/>

29 <lo type="SCLO" l="1" n="3" eDeriv ="0"/>
30 </species >

31 </atomSpecies >
32 <atomGroups >
33 <atomGroup species ="Ti -1">

34 <relPos >1.0/3.0 1.0/3.0 1.0/4.0 </relPos >
35 <relPos > -1.0/3.0 -1.0/3.0 -1.0/4.0 </relPos >

36 </atomGroup >
37 </atomGroups >

38 </fleurInput >
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