How to Communicate with ICAT via SOAP

Chris Oliver,

Software Engineering Group,
Scientific Computing Department,
Rutherford Appleton Laboratory,

chris.oliver@stfc.ac.uk

March 2018

Abstract

This document describes and demonstrates how to communicate with an
ICAT instance to find and download facility data. The general process
for accessing data is described, which entails metadata retrieval from the
ICAT Server, followed by data preparation and data retrieval from the
ICAT Data Store (IDS). Then, specific implementations of this are shown.
Firstly, communication using the ICAT Server SOAP interface together
with the IDS REST API is demonstrated. Finally, the use of the Python-
ICAT Python module to abstract away details of the SOAP interface is
shown.

1 Introduction

The aim of this document is to describe and demonstrate how to communicate
with an ICAT instance to find and download data.

Data can be stored in a facility in two ways; either on a disk in a cluster, or
on a tape in an archive. This is referred to as two-level storage. Since the read
time for tape-stored data is much longer than the read time for disk-stored data
(minutes vs. seconds), ICAT is designed in a special way. For more information
on ICAT, see the ICAT Project site [1].


mailto:chris.oliver@stfc.ac.uk

Two-level
storage

Figure 1: The process to find and download data from ICAT.

A typical ICAT instance has two main components: the ICAT Server and the
ICAT Data Store (IDS). To download some data, the user first communicates
with the ICAT Server to get metadata. They then communicate with the IDS,
using the metadata to either retrieve the data almost instantly or to prepare it
for download (i.e. read it from the tape), depending on how the data is stored.
This is summarised in figure 1.

Communication with ICAT Server can be via REST or SOAP, and communi-
cation with the IDS is via REST only. A Python module, Python-ICAT, has
been developed to act as a wrapper around the SOAP-based ICAT Server and
REST-based IDS communications. It is useful if the application to be developed
uses Python. An important point is that the ICAT Server REST API will soon
be redesigned and the current version deprecated within about a year of writing.
This means that any applications developed in that time-frame should perhaps
be SOAP-based rather than REST-based. For this reason, the ICAT Server
REST API is not discussed further in this document. For more information
about these interfaces, see the online documentation [2] 3], 4} [5].

The data are represented in ICAT in a logical structure defined by the ICAT
Schema. The full schema is complex, involving many entities and relationships,
but for most purposes it is sufficient to know the following. The most basic entity
is a datafile, which is a single file of data in some format. Multiple datafiles
come together to form a dataset, and multiple datasets form an investigation.



An investigation corresponds to one experiment proposal (this is not part of the
schema, but may help with understanding). Investigations have an attribute
called a Visit ID, which a typical user would know. It is therefore a useful
starting point in querying ICAT, as shall be shown later. For more information
on the ICAT schema, see the online documentation [6].

The document is structured as follows. Section 2 shows how to communicate
with ICAT using the ICAT Server SOAP interface, followed by the IDS REST
API. Section 3 shows the same process but using the Python-ICAT wrapper for
comparison, and is followed by a conclusion. The appendices show the Python
code corresponding to Sections 2 and 3.

2 ICAT Server SOAP Interface

The Python code shown in Appendix A communicates with an ICAT instance
to find all Visit IDs, and then find all associated datasets and datafiles before
downloading selected datasets or datafiles.

The function queryICAT logs into ICAT using the user-provided username and
password. It obtains a session ID and then uses this to make a number of
queries, in JPQL syntax.

The first query obtains all visit IDs, and these are then iterated over to construct
a Python dictionary of metadata about each visit. This dictionary is then
returned.

The fetchDataFromICAT function uses this metadata to download user-specified
datafiles. It passes the Session ID and dataset ID or datafile IDs to the IDS
which then starts preparing the data for download. It returns a Prepared ID
to represent the data to be prepared. The function then queries the IDS with
the Prepared ID periodically to check if the data is ready yet. Once the data
is prepared, it is downloaded via a get request. If the filesList is empty,
the function downloads the whole dataset specified by datasetID. Otherwise,
it downloads the specific files.

The function copyfile handles the actual copying of files, and is called by
fetchDataFromICAT. The function checkSessionId will check if the session ID
is still valid (they expire after around two hours). If not, it is renewed.

3 Python-ICAT

The code in Appendix B shows similar code to that in Appendix A, but using the
Python-ICAT module to abstract away some details. It is clearly much shorter
than the code in Appendix A, owing to the fact that Python-ICAT hides a lot
of detail. However, the code is not able to download datasets properly. This is



because, unlike the code in Appendix A, the getPreparedData function returns
a Python file-like object. It is not clear how to handle these to produce zip files.
For this reason, the code in Appendix B is not as well-developed as the code in
Appendix A.

4 Conclusion

This document has described and demonstrated how to communicate with an
ICAT instance to download data.

After a general introduction to how ICAT works, which involves querying the
ICAT Server to obtain metadata, and then using this metadata to download
data from the IDS, communication via the ICAT Server SOAP interface and
the IDS REST API was described and demonstrated. Python code is supplied
that retrieves all visit IDs and corresponding dataset and datafile metadata. It
then downloads selected datasets and datafiles.

Then, the equivalent code but using the Python-ICAT Python module was
shown. Some example Python code was provided that does a similar job to
that of Appendix A, but is in a less well-developed state. This is caused by file
downloads not working properly.

5 Appendix A: ICAT Server SOAP Interface
Python Code

from suds.client import Client
import requests

import time

import zipfile

import StringI0

#Copy a file from infile to outfile. Used for saving single datafiles:
def copyfile(infile, outfile, chunksize=8192):

while True:
chunk = infile.read(chunksize)
if not chunk:
break
outfile.write(chunk)

#Check if the time on sessionIld is running out and refresh if it is:
def checkSessionId(sessionId):



client = Client("https://icat02.diamond.ac.uk/ICATService/ICAT?wsdl")
icat = client.service
if (icat.getRemainingMinutes(sessionId) < 5):

icat.refresh(sessionId)

#Queries ICAT Server to build a dictionary of visits, datasets and
datafile metadata:
def queryICAT(fedID, userPassword):

results = {"sessionID": "", "visits": []} #Initialise the dictionary
to be returned

client = Client("https://icat02.diamond.ac.uk/ICATService/ICAT?wsdl")
#Get the WSDL file for SOAP. Currently uses the ICAT instance for
public Diamond data

icat = client.service

factory = client.factory

#Get a session ID:

credentials = factory.create("login.credentials")
entry = factory.create("login.credentials.entry")
entry.key = "username"

entry.value = fedID
credentials.entry.append(entry)

entry = factory.create("login.credentials.entry")
entry.key = "password"

entry.value = userPassword
credentials.entry.append(entry)

sessionld = icat.login("ldap", credentials)
results["sessionID"] = sessionId

visitIDs = icat.search(sessionId, "SELECT i.visitId FROM
Investigation i") #Query for all visit IDs

#Build the dictionary for each visit ID:

visitDict = {"visitID": "", "visitName": "", "visitDate":
"datasets": [1}

visitDictList = []

for vid in visitIDs:

nn
>

visitDict["visitID"] = vid
visitDict["visitName"] = icat.search(sessionId, "SELECT v.name

FROM Investigation v where v.visitId=" + "’" + vyid + "’")
visitDict["visitDate"] = icat.search(sessionId, "SELECT
v.startDate FROM Investigation v where v.visitId=" + "’" + vid
+0m
datasetDict = {"ID": "", "path": "", "size": "", "date": "",
"files": [1%}

datasetDictList = []



datasetIDs = icat.search(sessionId, "SELECT ds.id FROM Dataset ds
WHERE ds.investigation.visitId=" + "’" + vid + "’")
for did in datasetIDs:
datasetDict["ID"] = did
datasetDict["path"] = icat.search(sessionId, "SELECT ds.name

FROM Dataset ds WHERE ds.id=" + "’" + str(did) + "’")
datasetDict["date"] = icat.search(sessionId, "SELECT
ds.startDate FROM Dataset ds WHERE ds.id=" + "’" + str(did)
+ "o Il)
datafileDiCt = {"naﬂle” : nn , IISizell : nn . Ildatell : nn s IIID" : n ll}

datafileDictList = []
datafileIDs = icat.search(sessionId, "SELECT df.id FROM
Datafile df WHERE df.dataset.id=" + "’" + str(did) + "’")
for dfid in datafileIDs:
datafileDict["name"] = icat.search(sessionId, "SELECT df.name
FROM Datafile df WHERE df.id=" + "’" + str(dfid) + "’")
datafileDict["size"] = icat.search(sessionId, "SELECT
df .fileSize FROM Datafile df WHERE df.id=" + "’" +
str(dfid) + "’") #Size returned in bytes
datafileDict["date"] = icat.search(sessionId, "SELECT
df .createTime FROM Datafile df WHERE df.id=" + "’" +
str(dfid) + "’")
datafileDict["ID"] = dfid
datafileDictList.append(datafileDict.copy())

datasetDict["files"] = datafileDictList
datasetDictList.append(datasetDict.copy())

visitDict["datasets"] = datasetDictList
visitDictList.append(visitDict.copy())

results["visits"] = visitDictList
checkSessionId(sessionId)

return results

#Given the information in the dictionary, download datafiles and
datasets using IDS:

def fetchDataFromICAT(sessionId, datasetID, filesList, outputDirectory):
#filesList is a list of file IDs

idsBaseURL = "https://ids01.diamond.ac.uk/ids"
prepareDataURL = idsBaseURL + "/prepareData"
isPreparedURL = idsBaseURL + "/isPrepared"
getDataURL = idsBaseURL + "/getData"

try:
if (len(filesList) == 0):



#Use the IDS REST API to download the data:

#Tell IDS to prepare data for download:

data = {"sessionId":str(sessionId),"datasetIds":datasetID}
prepareDataResp = requests.post(prepareDataURL, data = data)
preparedId = str(prepareDataResp.text)

#Ping isPrepared every 30 seconds until data is ready:
isPrepared ="false"
isPreparedParams = {"preparedId":str(preparedId)}
while (isPrepared == "false"):

isPrepared = (requests.get(isPreparedURL,

params=isPreparedParams)) .text
time.sleep(30)
checkSessionId(sessionId)

#Download the data to local directory:

getDataParams = {"preparedId": preparedId}

getDataResp = requests.get(getDatalURL, params=getDataParams,
stream=True)

z = zipfile.ZipFile(StringI0.StringI0(getDataResp.content))
#Store as zip file

z.extractall (outputDirectory) #Extract zip file

else:
for £ in filesList:
#Use the IDS REST API to download the data:

#Tell IDS to prepare data for download:

data = {"sessionId":str(sessionId),"datafileIds": f}
prepareDataResp = requests.post(prepareDataURL, data = data)
preparedIld = str(prepareDataResp.text)

#Ping isPrepared every 30 seconds until data is ready:
isPrepared ="false"
isPreparedParams = {"preparedId":str(preparedId)}
while (isPrepared == "false"):

isPrepared = (requests.get(isPreparedURL,

params=isPreparedParams)) .text
time.sleep(30)
checkSessionId(sessionId)

#Download the data to local directory:

getDataParams = {"preparedId": preparedId}

getDataResp = requests.get(getDataURL, params=getDataParams,
stream=True)

with open(outputDirectory + "/myData", ’wb’) as f2:



copyfile(StringI0.StringI0(getDataResp.content),
£2)

return "success"

except:
return "failed"

6 Appendix B: Python-ICAT Python Code

from icat.client import Client
import time

import zipfile

import os

import StringIO

import urllib2

#This function copies infile to outfile:
def copyfile(infile, outfile, chunksize=8192):

while True:
chunk = infile.read(chunksize)
if not chunk:
break
outfile.write(chunk)

#Downloads a dataset given the ID:
def downloadDataset(datasetId):
preparedIld = myClient.prepareData({"Datasets": [datasetId]})
print("preparedId:")
print (preparedId)
isPrepared = False
while (isPrepared == False):
print (isPrepared)
isPrepared = myClient.isDataPrepared(preparedId)
time.sleep(30)

return myClient.getPreparedData(preparedId)

#Login:



myClient = Client("https://icat02.diamond.ac.uk/ICATService/ICAT?wsdl")
#ICAT SOAP WSDL URL

credentials = {"username":"", "password":""} #Insert username and
password

myClient.login("ldap", credentials)

myClient.add_ids("https://ids01.diamond.ac.uk/ids") #IDS URL

#Find all visit IDs:

visitIds = myClient.search("SELECT i.visitId FROM Investigation i")
print("Visit IDs found:")

print(visitIds)

#For each visit ID, list all datasets and metadata and download:
for vid in visitIds:

#Get dataset IDs:

datasetIdQuery = "SELECT ds.id FROM Dataset ds WHERE
ds.investigation.visitId=" + "’" + vid + "’"

datasetIds = myClient.search(datasetIdQuery)

print("Dataset IDs found:")

print(datasetIds)

#Get dataset metadata

print("Dataset metadata:")

datasetMetaQuery = "SELECT ds FROM Dataset ds WHERE
ds.investigation.visitId=" + "’" + vid + "’"

datasetMetadata = myClient.search(datasetMetaQuery )

print (datasetMetadata)

print("Downloading datasets for this visit ID...")
#Download all datasets for the visit ID:
for i in range(0, len(datasetIds) - 1):

getDataResp = downloadDataset(datasetIds[i])

#I have tried several methods to save the dataset, none of which
work. It produces gibberish rather than a zip file. The
request returns a file-like object, which is different from
what the requests library returns:

z = zipfile.ZipFile(StringI0.StringI0(getDataResp.content)) #Store
as zip file

z.extractall() #Extract zip file

with open("code2.zip", "wb") as code:

code.write(myData.read())



with open("myData.out", ’wb’) as f:

copyfile(myData, f)

]

print("Data downloaded to local directory")

References

[1] The ICAT Project[Online], Available at: https://icatproject.org/| [Ac-
cessed 14/03/2018].

[2] The ICAT Collaboration, ICAT SOAP Manual[Online], Available
at: https://repo.icatproject.org/site/icat/server/4.9.1/soap.
html| [Accessed 14/03/2018], September 2017.

[3] ICAT Restful API[Online], Available at: https://repo.icatproject.
org/site/icat/server/4.9.1/miredot/index.html [Accessed
14/03/2018], September 2017.

[4] IDS Restful API[Online], Available at: https://repo.icatproject.org/
site/ids/server/1.8.0/miredot/index.html [Accessed 14/03/2018],
August 2017.

[5] PYTHON ICAT|[Online], Available at: https://icatproject.org/
user-documentation/python-icat/| [Accessed 14/03/2018].

[6] ICAT SCHEMA[Online], Available at: |https://icatproject.org/

user-documentation/icat-schema/| [Accessed 14/03/2018].

10


https://icatproject.org/
https://repo.icatproject.org/site/icat/server/4.9.1/soap.html
https://repo.icatproject.org/site/icat/server/4.9.1/soap.html
https://repo.icatproject.org/site/icat/server/4.9.1/miredot/index.html
https://repo.icatproject.org/site/icat/server/4.9.1/miredot/index.html
https://repo.icatproject.org/site/ids/server/1.8.0/miredot/index.html
https://repo.icatproject.org/site/ids/server/1.8.0/miredot/index.html
https://icatproject.org/user-documentation/python-icat/
https://icatproject.org/user-documentation/python-icat/
https://icatproject.org/user-documentation/icat-schema/
https://icatproject.org/user-documentation/icat-schema/

	Introduction
	ICAT Server SOAP Interface
	Python-ICAT
	Conclusion
	Appendix A: ICAT Server SOAP Interface Python Code
	Appendix B: Python-ICAT Python Code

