
VIRTUAL VELA-CLARA: THE DEVELOPMENT OF A VIRTUAL
ACCELERATOR

T. J. Price, R. F. Clarke, H. M. C. Cortes, G. Cox, D. J. Dunning, J. K. Jones,
B. D. Muratori, D. J. Scott, B.J.A. Shepherd, P. Williams

STFC Daresbury Laboratory, Warrington, U.K.

Figure 1: Schematic indicating sections of VELA-CLARA currently in the Virtual Accelerator. Not all elements
have been added, but will in the upcoming future.

Abstract
A Virtual Accelerator (VA) has been developed to

mimic the accelerators Versatile Electron Linear Ac-
celerator (VELA) and Compact Linear Accelerator for
Research Applications (CLARA). Its purpose is to test
control room applications, run start-to-end simulations
with multiple simulation codes, accurately reproduce
measured beam properties, conduct ‘virtual experi-
ments’and gain insight into ‘hidden beam parameters’.
This paper gives an overview into the current progress
in constructing this VA, detailing the areas of: devel-
oping a ‘Virtual EPICS’control system, using multiple
simulation codes (both particle tracking and analytic),
the development of a ‘Master Lattice’and the construc-
tion of a Python interface in which to run the VA.

INTRODUCTION

VELA and CLARA are adjoined linear accelerators
based at Daresbury Laboratory, STFC, U.K. Once fully
built, CLARA will be a 90 m long Free Electron Laser
(FEL) producing ultra-short photon pulses [1] and
provide beam to experimental stations for novel accel-
erator research and development. In building CLARA
the development of a VA was deemed necessary to
aid: underpinning simulation work, the production of
software applications to automate procedures, the de-
velopment of machine learning techniques to generate
bespoke beam/laser setups, and preliminary testing of
novel experiments.

The following requirements of the VA were set to
provide support for VELA-CLARA and also aid in
the development of a future UK X-FEL. The structure
of the VA must be generic enough to accommodate
another accelerator. The requirements were:

• A Virtual EPICS controls system to interact with
the VA.

• The ability to use multiple simulation codes.
• Use of a Master Lattice which is simulation-

independent and extendable.
• For all simulations to generate simulation-

independent output files.
• The ability to carry out start-to-end simulations.
• Have dedicated outputs in the Virtual EPICS for

hidden beam parameters.
• Run different simulation codes in a similar way.
• Interface between different simulation codes.

Hidden beam parameters are values that can be ob-
tained by simulations but that cannot be easily ob-
served without destroying the beam in a physical
accelerator. This greater level of available informa-
tion on the VA has powerful implications when con-
structing virtual experiments and machine learning
applications.

Fig. 1 indicates what elements are currently available
in the VA. In building the current VA of VELA-CLARA
the following requirements have been achieved:

• Can interact with the VA using a Virtual EPICS
control system.



• Can use two simulation codes (ASTRA [2] and
SAMPL [3]).

• Have a framework that enables easy-use of multi-
ple simulation codes.
• Use of a Master Lattice.
• Use of simulation-independent output files.

Automation of certain procedures (for instance momen-
tum measurements and beam alignment) are already
being developed into software applications and they
are being tested with this VA.

STRUCTURE OF THE VA
The VA has been split into two main areas: the Vir-

tual EPICS control system and a framework that runs
simulations named the "Online Model" This overall
structure is illustrated in Fig. 2.

Figure 2: Block schematic indicating the components
of the VA. The highlighted blocks show components
already implemented.

Virtual EPICS (VE)
EPICS [4] is a Supervisory Control and Data Ac-

quisition (SCADA) system used to present a uniform
and simple interface to VELA-CLARA subsystems. It
provides a standard way to send and read data via
process variables (PVs) over a control network. The
VE emulates the VELA-CLARA machine via cloned
PVs from the EPICS used on VELA-CLARA and are
hosted on a virtual Linux environment [5]. Within
the VE system the functionality to read and set vari-
ables was enabled with added realistic effects, like the
ramping of magnet currents, altering the positions of
moving screens, and the option of adding noise to
certain signals (see Fig. 3). The VE is maintained on
a local server with the help of GitLab [6], and can be
accessed for updates. The virtual Linux environment
is set up on a users local computer using the third
party software OracleBox [7]. The VE is broadcast on
a local IP address with a specific port number so only
the user can access that VE system. Prefixing all the
VE PVs with the characters "VM-" further ensures that

Figure 3: Demonstration of a VE solenoid current
changing with time. The read back current can be seen
to have an added ramp/decay time and noise. The
level of noise can be adjusted.

the user does not accidentally alter PVs on the real
machine.

Controllers To set variables in the VE high-level
software controllers are used. The controllers are APIs
that allow users to set and read EPICS PVs via Python
scripts [8]. They were initially developed for VELA-
CLARA but have been extended so that the user can
also choose to set and read PVs on their own VE. The
controllers have been written in C++ and wrapped up
into a .pyd file in order to be used in Python [9–11].
As well as reading and setting PVs they provide a
place to implement automated procedures and process
data. Once these calculations and procedures are
established in the controllers, they can be implemented
more permanently in lower-level control systems.

Using these controllers allows procedures to be writ-
ten and tested using the VE. Simulation runs with the
Online Model can provide realistic output to the VE
for the user during this testing.

Online Model (OM)
The OM [12] is a combination of simulation codes,

a Master Lattice and the Python code (named ’Python
Glue’) that allows the user to run different simulation
codes as simply and as seamlessly as possible. This
section goes into these current components contained
in the OM.

The Python Glue This code creates uniformity
between all the simulations codes. Its job is to use
the VE variables or settings files and conduct simu-
lations. Depending on the type of simulation code
this can involve building specific lattice files, creating



particle distributions, standardizing output files and
coordinate transformations between different simu-
lation runs. The aim was to make the interface as
model-independent as possible and flexible enough to
start multiple points down the beam line (see Listing
1).

1 import OnlineModel .SAMPL. v2 . sampl as sampl
2 import OnlineModel .ASTRA. v2 . a s t r a as a s t r a
3

4 # Define and i n i t i a l i s e c o n t r o l l e r s .
5 # Use c o n t r o l l e r s to setup the VE
6 # in the same way as VELA−CLARA.
7

8 # Run OM
9 # s t a r t element name (RF Gun on CLARA l i n e )

10 s t a r t = ’CLA−HRG1−GUN−CAV’
11 # stop element name
12 # ( Screen in s e c t i o n j o i n i n g VELA and CLARA)
13 stop = ’CLA−C2V−DIA−SCR−01 ’
14

15 ASTRA = a s t r a . Setup ( c o n t r o l l e r s = [ ] )
16 ASTRA. go ( s t a r t , stop , ’ i n p u t F i l e . i n i ’ )
17 # or
18 SAMPL = sampl . Setup ( c o n t r o l l e r s = [ ] )
19 SAMPL. go ( s t a r t , stop , ’ i n p u t F i l e ’ )

Listing 1: A Python script example of how to run
different simulation codes using VE settings.

Listing 1 indicates the the key lines of code needed
to run an ASTRA or SAMPL simulation. Behind the
functions go and Setup for each of the codes, the
Python glue code generates lattice files from the Mas-
ter Lattice and the necessary settings in the VE. The
simulation is then run and the output data interpreted
and sent back to PVs in the VE (e.g. a beam’s hori-
zontal position through a BPM). The input file will
determine the initial position, charge and momentum
of the macro-particles making up a bunch. Depending
on the simulation code used, the execution of creating
lattice files and running simulations will be slightly
different due to the differences in how certain codes
are designed.

ASTRA ASTRA is a simulation code that has been
used for some of the underpinning simulation work
for VELA and CLARA [13]. The VA (and therefore
ASTRA simulations) needed to have the flexibility to:
start at two gun positions; go through any possible
pathway through the machine; and for the beam to
travel off the designed trajectory. ASTRA simulations
were split up into straight sections, each in their own
local coordinate system to help create such flexibility
when running simulations.

During a simulation, if a bunch is tracked through a
dipole, the simulation would end just before the bunch
reached the dipole, get rotated, and inserted into a
separate simulation which would take the bunch round
the bend. If travelling along the ideal beam trajectory
the bunch will have a centroid position x=y=z=0 upon
exiting the dipole and be travelling along the z-axis.

SAMPL An analytic simulation code called Sim-
ple Accelerator Model in MatLab (SAMM) [14] was
converted into Python code for the OM as an alterna-
tive simulation code to ASTRA. The converted version
of SAMM was named the Simple Accelerator Model
Python Library (SAMPL). Taking ownership of such
a code has provided a place to test out novel beam
tracking techniques and determine trends in VELA-
CLARA faster than ASTRA. An example of one such
technique being developed is an analytic approach to
tracking particles through combined RF and Solenoid
fields [15]. This approach is currently being included
in SAMPL.

Space charge effects can be included in the tracking
through certain elements within a simulation, how-
ever the speed decreases significantly as the number
of particles increases. Due to the object-oriented con-
struction of SAMPL adding in other quicker methods
to calculate space charge effects is easy to implement
and future work to do so is underway.

The Master Lattice This is the collection of files
that defines all the machine elements within the VA.
For each element there is data stored on its position,
rotation, calibrations, field maps, and so on. The choice
was made to use YAML files to store this data [16].
This markup language provides a readable, extensible
structure in which data can be edited and added if
needed. The Python glue uses these files to determine
pathways through the machine based on the user’s
start and stop points in a given simulation.

FURTHER WORK
The upcoming improvement to the VA are:
• Moving the VE off virtual Linux environments

and onto a sever.
• Extend the Master Lattice to include more of

VELA-CLARA.
• Add Elegant, Genesis, Puffin, CSRTrack and any

other codes needed.
• Add in other ways to calculate space charge effects

in SAMPL.
• Get realistic RF signals and image signals.
• Standardise output files of all simulation codes.
• Add hidden beam variables to the VE.

REFERENCES
[1] J.A. Clarke et al., "CLARA Conceptual Design Report",

in Journal of Instrumentation, May 2014, Vol. 9, pp. T05001
(2014)

[2] ASTRA, http://www.desy.de/~mpyflo/

[3] SAMPL Source Code, https://github.com/
VELA-CLARA-software/OnlineModel/tree/master/
SAMPL/sourceCode

[4] EPICS, https://epics.anl.gov/index.php



[5] R.F. Clarke et al, "CLARA Virtual Accelerator", in Proc.
16th International Conference on Accelerator and Large
Experimental Physics Control Systems (ICALEPCS 2017)

[6] GitLab, https://about.gitlab.com

[7] OracleBox, https://www.virtualbox.org

[8] D.J. Scott, Hardware Controllers: A ‘Mid-Level’ System
for Controlling Hardware and Accessing Data on VELA /
CLARA, in Internal Notes of ASTeC Accelerator Physics
Group, Nov. 2015

[9] Controllers Source Code, https://github.com/
VELA-CLARA-software/VELA-CLARA-Controllers

[10] D.J. Scott, "Beam characterisation and machine develop-
ment at VELA", Proc. 7th International Particle Accelerator
Conference (IPAC 2016), Busan, Korea, THPOW019

[11] Boost, http://www.boost.org

[12] Online Model, https://github.com/
VELA-CLARA-software/Online-Model

[13] P. Williams et al., "Developments in the CLARA FEL Test
Facility Accelerator Design and Simulations", in Proc.
7th International Particle Accelerator Conference (IPAC
2016), May 8-13, 2016

[14] SAMM Manual, http://pcwww.liv.ac.uk/~awolski/
SAMM/SAMM.pdf

[15] B.J.A. Shepherd, http://projects.astec.ac.uk/
VELACLARAManual/index.php/Parasol

[16] YAML Website, http://www.yaml.org


