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Using mixed precision within DL POLY’s force and energy

evaluations: short-range two-body interactions

H. Sue Thorne12

ABSTRACT

Huge developments were made in molecular dynamics simulation methods in the last two decades, particularly

in the ability to use large scale parallel platforms. In this report, we consider the use of mixed precision within

DL POLY 4, a molecular dynamics simulation code developed by CCP5. In particular, we investigate using

mixed precision within the calculations relating to the short-range force and energy contributions between an

atom/ion and a near-by neighbour. We investigate the Ewald real-space kernel, the van der Waals potential

calculations and the metal potential calculations.
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1 Background and motivation

Huge developments were made in molecular dynamics simulation methods in the last two decades, particularly

in the ability to use large-scale parallel platforms. In this report, we consider the use of a mixed-precision

methodology within the force calculations. In particular, we consider the calculations relating to the short-range

force and energy contributions between an atom/ion and a near-by neighbour. In DL POLY 4 (versions 4.09

and earlier), real values are stored in double precision and operated on using double precision arithmetic (IEEE

Standard 754 is assumed). On modern high performance computing architectures, there is normally the provision

to use single precision arithmetic and it is usually significantly faster than the corresponding double precision

operation [4]. Additionally, the movement of real data will normally be significantly faster when passing single

precision data compared to double precision data. However, the desire to speed-up the code must be balanced

with the desire to get an accurate solution. Indeed, if all real values are stored in single precision and operated on

using single precision arithmetic, then DL POLY exhibits a significant loss in accuracy. Thus, it will be necessary

to use single precision in a restricted manner, i.e., use mixed precision. In this report, we focus on using a mixed

precision approach within the real-space sum from the Ewald sum method and also the van der Waals and metal

potentials for short-range forces.

In Section 2, we introduce the algorithmic structure of DL POLY 4 and the test problems used within this

report. The Ewald Method is outlined in Section 3 along with two different mixed precision versions for the

short-range interactions: these demonstrate that the structure of the code can be a determining factor as to

whether the mixed precision approach is suitable. Mixed precision can only be a viable method if the underlying

calculations are such that the use of single precision does not have a detrimental effect on the overall accuracy of

the algorithm. In Section 4, mathematical considerations are used to show that the mixed precision approach is

not suitable for use within the van der Waals potential and metal potential calculations. Conclusions are drawn

in Section 5.

2 Algorithmic structure of DL POLY

In Algorithm 1, we outline the algorithmic structure of DL POLY. In this report, we are focusing on the use

of mixed precision within the calculations for the short-range force contributions. It is important to note that,

within each time step, we loop through each atom and its neighbours. As we will see later on, in a mixed precision

approach, it is important that this update is done carefully to limit the overheads from precision conversions.

Algorithm 1 DL POLY outline

Initialise problem

Calculate forces F (t = 0)

for it = 1, . . . , nT imeSteps do

Calculate velocity v(t+ ∇t
2 )

Update positions r(t+∇t)

Calculate long-range contributions to system energy and forces F (t+∇t)

for i = 1, . . . , nAtoms do

for j in neighbours of i do

Update system energy

Update F (t+∇t) with short-range contributions to forces on j due to i

end for

end for

Calculate velocity v(t+∇t) and statistics

end for

Calculate final statistics
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In this report, we only consider the use of mixed precision in the calculation of the short-range contributions

to the forces. In particular, the short-range contributions from the Ewald method, Section 3, and the van der

Waals and metal potentials, Section 4. In [3], we consider the use of mixed precision within the calculation of

the long-range contributions from the Ewald method and found that this approach could be used and maintain

accuracy whilst giving up to a 14% reduction in execution time.

2.1 Numerical results

All of our tests were run on the Hartree Centre’s Napier Compute System [1], which consists of 360 nodes

containing 2 x12 core Intel Xeon processors (IvyBridge E5-2697v2 2.7GHz) and 64GB RAM. The interconnect

is Infiniband from Mellanox (FDR Connect-IB 56 GB/s). In all our runs, 24 processes per node were requested.

DL POLY 4.09 was used as our base code and all double precision runs use this version. DL POLY was

compiled using Intel MPI (version 5.1.1) and its mpif90 wrapper, which points to the GNU compiler gfortran.

The flag -pg was used to enable profiling and we always set the environment variable GMON OUT PREFIX to

gmon.out-‘/bin/uname -n‘ to save the separate profiles for each MPI process.

For each test problem, number of MPI processes (np), and choice of whether double precision or mixed

precision is used within the 3D FFT method, five separate runs were performed. The gprof profiler was used to

analyse the timing profiles across all of the processes.

As part of DL POLY, 28 small test problems are provided. Of these, 14 use the Ewald method. In Table 1,

we list the test problems used and their attributes: the problems are numbered as in the DL POLY Manual [5].

When comparing the use of the mixed precision and double precision versions of DL POLY, we found that the

mixed precision version that there was very little or no loss in accuracy in the output from DL POLY. However,

the problems sizes are too small to give meaningful mixed-precision and double precision comparisons.

Problem Total system size Temp(K) rcut rvdw Description

01 27000 ions 500 12.0 12.0 Unit electric charges on sodium and chloride

02 51737 atoms 300 10.0 10.0 200 DMPC molecules in 9379 water molecules

03 69120 atoms 1000 12.03 7.6 Potassium sodium disilicate glass

04 99120 atoms 300 8.0 8.0 8 Gramacidin A molecules in 32096 water molecules

07 12428 atoms 300 8.0 8.0 Lipid bilayer in water

08 and 09 8000 charged points 3000 6.0 6.0 MgO with adiabatic and with relaxed shell model

and 4000 shells

10 500 ions and 300 8.0 8.0 Potential of mean force on K+ in water

39000 atoms

18 34992 atoms 25 7.0 7.0 SPC IceVII Water with constraint bonds

19 34992 atoms 25 7.0 7.0 SPC IceVII Water with rigid bodies

20 28816 atoms 295 9.0 9.0 64 NaCl ion pairs with 4480 water molecules

represented by constraint bonds and 4416 water

molecules represented by rigid bodies

21 29052 particles 295 9.0 9.0 7263 TIP4P rigid body water molecules

22 44352 ions 400 9.0 8.0 Ionic liquid dimethylimidazolium

23 23712 ions 310 10.1 10.1 600 molecules of calcite in 6904 water molecules

Table 1: Standard DL POLY test problems using the Ewald Method and their attributes. The total system

size, system temperature, the short-range cut-off (rcut), and the cut-off value used by the van der Waals method

(rvdw) are provided.

To obtain more realistic results, we enlarge some of the test problems to enable us to examine the effect of

communication between processes and give a better idea of the mixed precision behaviour. To enlarge the test

problems, we use DL POLY’s nfold facility. For test problem 02, we had to additionally alter the CONTROL

file by appropriately scaling the maximum number of k-vector indices in the Ewald specification line. We append

“b” to the test problem number for problems that were expanded by doubling the x, y and z dimensions; “c” is
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appended to the problem number for problems where the x, y and z dimensions are increased by a factor of 5.

The original problem is replicated 8 (125) times and shifted appropriately to fill the enlarged space. With the

enlarged systems, it is necessary to increase the number of MPI processes employed to solve the problems.

3 The Ewald Method

In molecular dynamics, the conditionally convergent Coulomb sum is used to describe the system energy

contributions from ionic interactions in periodic charged systems. The Ewald Sum replaces the Coulomb sum by

three distinct sums with guaranteed convergence:

E = ES + EL + ESELF ,

where ES , the real space sum, is cast in normal physical space and represents the short-range interactions; EL,

the reciprocal space sum, is cast in the reciprocal space of the unit cell and represents the long-range terms;

ESELF is the self interaction term. Suppose we have N ions in a vacuum at locations r1, r2, . . . , rN with point

charges q1, q2, . . . , qN , respectively. We define ǫ0 = 8.854 × 10−12C2N−1m−2 to be the electric constant (or

vacuum permittivity). Let the ions be subjected to periodic boundary conditions, which we describe using three

repeat vectors c1, c2, c3, which form the supercell. Thus, if there is an ion with charge qi at location ri, then

there are also ions with charge qi at ri + n1c1 + n2c2 + n3c3, where n1, n2, and n3 are arbitrary integers. We

simplify the notation by writing an arbitrary repeat vector as nL, where L represents the supercell. If we further

assume that the charge distribution is of Guassian form with standard deviation σ and the supercell has volume

V, then ES , EL and ESELF are defined as

ES =
1

4πǫ0

1

2

∑

n

N
∑

i=1

N
∑

j=1
j 6=i

qiqj
|ri − rj + nL| erfc

( |ri − rj + nL|√
2σ

)

, (1)

EL =
1

2V ǫ0

∑

k 6=0

N
∑

i=1

N
∑

j=1

qiqj
k2

eik·(ri−rj)e
−σ2k2/2

, (2)

ESELF =
1

4πǫ0

1√
2πσ

N
∑

i=1

q2i . (3)

In the above,
∑

k 6=0 is the summation over the reciprocal lattice of L, which is derived using the Fourier transform,

and k = |k| .
The real space sum, ES , quickly converges and, hence, contributions to the forces from this sum are only

calculated for the nearby neighbours of an atom and not all of the neighbours [2]. Thus, we obtain

ES =
1

4πǫ0

1

2

N
∑

i=1

∑

j near i

qiqju (|ri − rj |) , where u(r) =
1

r
erfc

(

r√
2σ

)

. (4)

Ions at ri and rj are considered to be nearby neighbours if |ri − rj | < rcut, where rcut is calculated within

DL POLY or provided by the user. In DL POLY’s implementation, during the initialisation phase, the value of

u(r) is calculated at uniformly distributed points r in
(

0, τ√
2σ

)

and stored. When computing ES , these stored

values are interpolated using a 3-point B-spline scheme to give a good approximation to the required value.

The forces on ion i due to the Coloumbic interactions are defined as

fi = −∇E

∇ri
= −∇ES

∇ri
− ∇EL

∇ri
.

For the short-range interactions, we have

−∇ES

∇ri
=

1

4πǫ0

1

2

N
∑

j=1

qiqj (ri − rj) û (|ri − rj |) , where û(r) =

(

u(r)− 1√
2σ

2√
π
e−

r2

2σ2

)

/r2. (5)
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In the same manner as for the energy calculations, û(r) is calculated at uniformly distributed points r in
(

0, τ√
2σ

)

and stored. A 3-point interpolation scheme is then used to produce a good approximation to the individual terms

needed in the calculation of ∇ES

∇ri
.

3.1 Mixed precision: version 1

Our first mixed precision variant for the Ewald real space kernel is summarised as follows:

• Initialisation:

– Compute u(r) and û(r) at uniformly distributed points in
(

0, τ√
2σ

)

using double precision and store

these values in single precision;

• During the inner iteration of the short-range computation:

– Using single precision, compute uij and ûij , approximations to u(|ri − rj |) and û(|ri − rj |),
respectively, via 3-point interpolation;

– Convert qi, qj and ri − rj to single precision;

– Perform the single precision calculations sij = qiqjuij and ŝij = qiqj ûij (ri − rj) ;

– Convert sij and ŝij to double precision before including in the energy and force calculations;

It was a fairly simple process to convert the Ewald real space kernely to use the above mixed precision approach.

In our numerical results, we report times that are averaged (mean) across all five test runs and all MPI

processes. We are particularly interested in

• ewald real, the total time spent performing the Ewald real space kernel by an MPI process;

• force energy, the total time spent performing the force and energy calculations by an MPI process;

• total, the total DL POLY execution time for an MPI process.

In Table 2, we compare the values of ewald real, force energy and total for the double precision version of

DL POLY (version 4.09) and our mixed precision (version 1) code. For the majority of codes, the mixed precision

version has an overhead of between 11 and 14% for the Ewald real space kernel calculations. This then results in

a 1-2% increase in the total execution times. Thus, although the floating point calculation times will be smaller,

the conversions between single and double precision are resulting in an overall increase in execution time on

this architecture. At time step t, let neighs(i, t) be the nearby neighbours of atom/ion i that are used in the

short-range force calculations. Suppose that the system has natoms atoms/ions, then, ignoring conversions in

the initialisation process, for each time step, t, version 1 of our mixed precision Ewald real space kernel requires:

• 11× natoms double precision floating point operations;

• 53
∑natoms

i=1 neighs(i, t) single precision floating point operations;

• 4× natoms+ 5
∑natoms

i=1 neighs(i, t) conversions from double precision to single precision;

• 14× natoms+ 3
∑natoms

i=1 neighs(i, t) conversions from single precision to double precision.

The large number of precision conversions are the major reason for the overheads and, additionally, some values

are being converted more than once in this naive mixed precision implementation of the Ewald real space kernel.
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ewald real force energy total

Problem np mixed double ratio mixed double ratio mixed double ratio

02b 2 32.81 28.76 1.14 163.85 160.77 1.02 200.97 197.99 1.02

4 16.56 14.61 1.13 82.80 81.16 1.02 102.45 100.84 1.02

8 8.31 7.44 1.12 41.86 41.06 1.02 52.44 51.65 1.02

16 4.19 3.74 1.12 22.36 21.92 1.02 28.22 27.77 1.02

32 2.12 1.90 1.12 11.69 11.50 1.02 14.97 14.78 1.01

04b 8 8.37 7.37 1.14 37.49 36.67 1.02 61.46 60.67 1.01

16 4.26 3.74 1.14 19.49 19.04 1.02 33.21 32.87 1.01

24 2.83 2.51 1.13 13.82 13.55 1.02 24.76 24.62 1.01

32 2.15 1.90 1.13 10.07 9.89 1.02 17.22 17.05 1.01

07b 8 2.27 1.89 1.20 20.92 20.62 1.01 41.00 40.80 1.01

16 1.14 0.96 1.19 12.88 12.75 1.01 24.66 24.51 1.01

24 0.75 0.64 1.17 11.62 11.46 1.01 21.58 21.10 1.02

32 0.58 0.49 1.19 7.34 7.19 1.02 13.85 13.70 1.01

10b 8 3.14 2.77 1.13 14.55 14.18 1.03 24.72 24.23 1.02

16 1.59 1.40 1.13 7.59 7.38 1.03 13.09 12.88 1.02

24 1.05 0.95 1.11 5.25 5.14 1.02 9.09 8.96 1.01

32 0.80 0.72 1.12 3.79 3.72 1.02 6.77 6.67 1.02

18b 8 11.64 10.35 1.12 33.41 32.19 1.04 40.09 38.89 1.03

16 5.91 5.27 1.12 17.52 16.93 1.03 21.34 20.74 1.03

24 4.18 3.54 1.18 12.78 11.62 1.10 15.64 14.38 1.09

32 2.99 2.67 1.12 9.31 8.99 1.04 11.45 11.14 1.03

19b 8 3.32 2.99 1.11 10.45 10.07 1.04 11.95 11.57 1.03

16 1.69 1.52 1.11 5.41 5.22 1.04 6.34 6.15 1.03

24 1.13 1.00 1.13 3.72 3.60 1.03 4.44 4.31 1.03

32 0.85 0.76 1.12 2.77 2.68 1.03 3.27 3.19 1.02

02c 144 7.27 6.49 1.12 49.44 48.81 1.01 70.93 70.31 1.01

192 5.47 4.90 1.12 34.36 33.84 1.02 52.01 51.55 1.01

04c 144 7.32 6.44 1.14 36.84 36.03 1.02 74.94 74.16 1.01

192 5.49 4.84 1.13 27.16 26.56 1.02 55.38 54.81 1.01

18c 96 4.96 4.40 1.13 17.66 17.14 1.03 28.92 28.46 1.02

144 3.31 2.94 1.12 11.78 11.64 1.01 18.29 18.27 1.00

Table 2: The values of ewald real, force energy and total for the double precision version of DL POLY (version

4.09) and our mixed precision (version 1) code.

3.2 Mixed precision: version 2

Version 2 of our mixed precision approach aims to significantly reduce the overheads from the precision conversion

by defining force arrays Fx,t, Fy,t and Fz,t at time time t and directions x, y, and z, respectively, as

Fl,t = F d
l,t + double(F s

l,t), l ∈ {x, y, z},

where F d
l,t holds double precision data, F s

l,t holds single precision data and double(·) represents the conversion

from single to double precision. The amendments to the standard DL POLY algorithm are as follows:

• Initialisation:

– Compute u(r) and û(r) at uniformly distributed points in
(

0, τ√
2σ

)

and store these values in single

precision;

• For each time step:

– Initialise F s
x,t(:) = 0, F s

y,t(:) = 0 and F s
x,t(:) = 0
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– During the inner iteration of the short-range computation:

∗ Using single precision, compute uij and ûij , approximations to u(|ri − rj |) and û(|ri − rj |),
respectively, via 3-point interpolation;

∗ Convert qi, qj and ri − rj to single precision and perform the single precision calculations qiqjuij

and qiqj ûij (ri − rj) ; convert energy contribution to double precision before including in the

overall energy; add force contributions to single precision force arrays

– Convert entries in single precision force arrays F s
x,t, F

s
y,t and F s

x,t to double precision and add to Fx,t,

Fy,t and Fx,t, respectively.

In DL POLY, linked lists are used to speed-up the identification of the short-range neighbours of an atom/ion.

Without the use of linked lists (or equivalent method), each atom in the system would need to be tested to see

if it is a short-range neighbour of the current atom i, resulting in O(natoms2) tests: linked lists reduces this to

O(natoms) tests. The linked lists are stored in an array of length mxlist, the maximum length of the link list.

Ignoring conversions in the initialisation process, for each time step, t, version 1 of our mixed precision Ewald

real space kernel requires:

• 4 array allocations and deallocations of length at least mxlist (this could be removed from the time step

loop with major restructuring of the DL POLY code);

• 3 array allocations, initialisations and deallocations of length equal to the force arrays, i.e., at least natoms

(this could be removed from the time step loop with further restructuring of the DL POLY code);

• 14× natoms double precision floating point operations;

• 3× natoms+ 53
∑natoms

i=1 neighs(i, t) single precision floating point operations;

• 4× natoms+ 5
∑natoms

i=1 neighs(i, t) conversions from double precision to single precision;

• 15× natoms conversions from single precision to double precision.

Thus, there is a significant saving in the number of conversions from single to double precision but there is an

increase in the number of single and double precision floating point operations, and additional array allocations,

initialisations and deallocations.

The values of ewald real, force energy, force energy − ewald real and total for version 2 of the mixed

precision code and the original double precision code are provided in Table 3. For each test problem and each

time measurement, the double precision version is faster than version 2. Comparing the two mixed precision

versions, the Ewald real space kernel time is significantly improved when version 2 is used instead of version 1.

However, the overall time calculating force and energy updates is worse for version 2. The main reason for this

is the additional array allocations, initialisations and deallocations. A complete restructure of DL POLY would

reduce these overheads but the work being performed in single precision within the Ewald real space kernel is

not large enough relative to the number of necessary conversions to produce an overall reduction in computation

time. In molecular dynamics simulations, the short-range force and energy updates are formed from a number of

components and the Ewald summation is just one of these possible components. As will be seen in the following

section, some of these components must be performed in double precision and, hence, it is not possible to further

reduce the number of conversions from single to double precision.

4 The van der Waals method

In Section 3, we considered the use of the Ewald summation in the calculation of short-range energy and force

updates due to electrostatics. As well as these contributions, there are also two-body short-range contributions

from the van der Waals potentials and metal potentials. DL POLY contains numerous options for further short

ranged (van der Waals) potentials, see Appendix. As in Section 3, the individual components for the energy and
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ewald real force energy force energy − ewald real total

Problem np mixed2 double ratio mixed2 double ratio mixed2 double ratio mixed2 double ratio

02b 2 29.36 28.76 1.02 165.21 160.77 1.03 135.85 132.01 1.03 202.36 197.99 1.02

02b 4 14.88 14.61 1.02 83.66 81.16 1.03 68.79 66.55 1.03 103.34 100.84 1.02

02b 8 7.55 7.44 1.01 42.36 41.06 1.03 34.81 33.61 1.04 52.94 51.65 1.03

02b 16 3.80 3.74 1.02 22.59 21.92 1.03 18.79 18.18 1.03 28.44 27.77 1.02

02b 32 1.92 1.90 1.01 11.83 11.50 1.03 9.91 9.60 1.03 15.12 14.78 1.02

04b 8 7.57 7.37 1.03 38.01 36.67 1.04 30.44 29.30 1.04 61.96 60.67 1.02

04b 16 3.86 3.74 1.03 19.77 19.04 1.04 15.92 15.30 1.04 33.61 32.87 1.02

04b 24 2.59 2.51 1.03 14.05 13.55 1.04 11.45 11.04 1.04 25.09 24.62 1.02

04b 32 1.96 1.90 1.03 10.23 9.89 1.03 8.26 7.99 1.03 17.32 17.05 1.02

07b 8 2.10 1.89 1.11 21.41 20.62 1.04 19.31 18.73 1.03 41.40 40.80 1.01

07b 16 1.06 0.96 1.11 13.24 12.75 1.04 12.17 11.79 1.03 25.04 24.51 1.02

07b 24 0.72 0.64 1.11 11.98 11.46 1.04 11.26 10.82 1.04 22.00 21.10 1.04

07b 32 0.53 0.49 1.09 7.51 7.19 1.05 6.98 6.70 1.04 13.98 13.70 1.02

10b 8 2.83 2.77 1.02 14.73 14.18 1.04 11.90 11.41 1.04 24.91 24.23 1.03

10b 16 1.46 1.40 1.04 7.68 7.38 1.04 6.22 5.98 1.04 13.23 12.88 1.03

10b 24 0.98 0.95 1.03 5.31 5.14 1.03 4.34 4.20 1.03 9.13 8.96 1.02

10b 32 0.73 0.72 1.02 3.86 3.72 1.04 3.12 3.00 1.04 6.81 6.67 1.02

18b 8 10.65 10.35 1.03 33.72 32.19 1.05 23.06 21.84 1.06 40.40 38.89 1.04

18b 16 5.42 5.27 1.03 17.75 16.93 1.05 12.34 11.66 1.06 21.56 20.74 1.04

18b 24 3.81 3.54 1.08 12.96 11.62 1.12 9.16 8.08 1.13 15.85 14.38 1.10

18b 32 2.75 2.67 1.03 9.45 8.99 1.05 6.71 6.31 1.06 11.60 11.14 1.04

19b 8 3.02 2.99 1.01 10.57 10.07 1.05 7.55 7.08 1.07 12.08 11.57 1.04

19b 16 1.56 1.52 1.03 5.49 5.22 1.05 3.93 3.70 1.06 6.43 6.15 1.05

19b 24 1.05 1.00 1.05 3.78 3.60 1.05 2.73 2.60 1.05 4.50 4.31 1.04

19b 32 0.79 0.76 1.05 2.81 2.68 1.05 2.02 1.93 1.05 3.32 3.19 1.04

02c 144 6.59 6.49 1.02 49.98 48.81 1.02 43.39 42.32 1.03 71.57 70.31 1.02

02c 192 4.97 4.90 1.02 34.88 33.84 1.03 29.91 28.94 1.03 52.60 51.55 1.02

04c 144 6.64 6.44 1.03 37.33 36.03 1.04 30.69 29.59 1.04 75.59 74.16 1.02

04c 192 5.01 4.84 1.04 27.54 26.56 1.04 22.53 21.72 1.04 55.76 54.81 1.02

18c 96 4.50 4.40 1.02 17.82 17.14 1.04 13.32 12.74 1.05 29.06 28.46 1.02

18c 144 3.00 2.94 1.02 11.94 11.64 1.03 8.93 8.69 1.03 18.46 18.27 1.01

Table 3: The values of ewald real, force energy, force energy−ewald real and total for version 2 of the mixed

precision code and the original double precision code.

force updates can be calculated using mixed precision in a number of ways. The first proposal, as in the short-

range Ewald summation, is to calculate each individual short-range component using single precision, convert

this value to double precision and add to the overall energy/force value. As in Section 3.1, the conversion of

each individual component from single to double precision forms a large overhead and the reduced floating point

execution times do not compensate enough for this overhead. For TEST02, there was a 10% increase in the

total van der Waals calculation time when 8 MPI processes were used, resulting in the overall simulation time

increasing by 4%; for 1 MPI process, there was an 18% increase in van der Waals calculation time and a 4%

increase in the total simulation time.

In Section 3.2, the short-range energy and force contributions were calculated in single precision and the force

updates accumulated in single precision arrays throughout the time step before converting to double precision

at the end of the time step and adding to the double precision force arrays. The range of values for |ri − rj |
lie in the range [0, rvdw] , where rvdw is measured in angstroms (10−10m). The various forms of van der Waals

potentials available all involve high orders or exponentials involving |ri − rj | . Thus, each short-range component

can vary by many orders of magnitude. In Figure 1, we provide the absolute value of the short-range van der

Waals potential energy contribution for different values of rij = |ri − rj | ∈ [1, rvdw] for potassium-potassium

7



interactions in TEST10. Test 10 uses the Lennard-Jones potential with ǫ = 1.356523, σ = 3.13 and rvdw = 8.

We also provide the absolute value of the force multiplier αf , where the force on atom j due to the potential

energy between atoms i and j is fj = αf (ri − rj) (the range of values for the actual force components will be

even wider). In single precision, between 7 and 8 digits are stored. Let a and b be stored using single precision

values, a and b, and assume that |a| > 108 |b| , then adding a and b together (using IEEE standard 754) results in

the value a. In DL POLY, the number of “small” components can be very large and, hence, the cumulative effect

of these can be significant but they may be missed if single precision arithmetic is used. When this approach

was tested within DL POLY, we immediately saw this phenomenon and, hence, accuracy of the simulation was

lost. Therefore, we do not recommend using a mixed-precision approach for the van der Waals calculations.

Similarly, the different options for metal potentials use equations contain exponentials of |ri − rj | or high degree

polynomials involving |ri − rj | . Hence, this approach is not recommended for the metal potentials.

1 2 3 4 5 6 7 8
r

ij

10 -2

10 0

10 2

10 4

10 6

10 8

K - K potential energy
K - K potential energy (negative)
K - K potential force multiplier
K - K potential force multiplier (negative)

r
vdw

Figure 1: Interactions between two potassium ions in TEST10: the absolute value of the short-range van der

Waals (Lennard-Jones) potential energy contributions for different values of rij = |ri − rj | and the absolute

value of the force multiplier αf , where the force on atom j due to the potential energy between atoms i and j is

fj = αf (ri − rj) . Solid lines indicate that the energy (force multiplier) is positive in value; dashed lines indicate

that the value has been negated.

5 Conclusions

We conclude that, whilst mixed-precision can theoretically be used within some of the short-range energy and

force calculations with very minor losses in accuracy, our tests show that it is not advisable when the code is being

run on Intel Xeon-based processors because the overheads from data conversions (single to double precision and

vice versa) outweigh the gains from using single precision within the calculations. In comparison, in [3] we saw

that mixed-precision can be successfully used within the Ewald summation’s reciprocal space sum for long-rage

interactions to give accurate results and time/energy savings.
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Appendix: DL POLY’s van der Waals Potential Energy/Forces

options

DL POLY provides 12 different short-range pair force options, as listed below. In the following, we define

rij = ri − rj and rij = |rij | . U(rij) represents the potential energy component from the pair of atoms i and j;

the force on atom j due to this potential is formally defined as fj = − 1
rij

[

∇
∇rij

U(rij)
]

rij .

• 12-6 potential:

U(rij) =

(

A

r12ij

)

−
(

B

r6ij

)

fj = 6

(

2A

r14ij
−
)

• Lennard-Jones potential:

U(rij) = 4ǫ

[

(

σ

rij

)12

−
(

σ

rij

)6
]

fj = 24ǫ

[

2
σ12

r1ij4
− σ6

r8ij

]

rij

• n-m potential:

U(rij) =
E0

n−m

[

m

(

r0
rij

)n

− n

(

r0
rij

m
)]

fj =
nmE0

n−m

[(

r0
rij

)n

−
(

r0
rij

)m] rij
r2ij

• Buckingham potential:

U(rij) = A exp

(

−rij
ρ

)

− C

r6ij

fj =

[

A

ρrij
exp

(

−rij
ρ

)

− 6C

r8ij

]

rij
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• Born-Huggins-Meye potential:

U(rij) = A exp [B (σ − rij)]−
C

r6ij
− D

r8ij

fj =

[

AB

rij
exp [B (σ − rij)]−

6C

r8ij
− 8D

r10ij

]

rij

• Hydrogen-bond (12-10) potential:

U(rij) =

(

A

r12ij

)

−
(

B

r10ij

)

fj =

[(

12A

r14ij

)

−
(

10B

r12ij

)]

rij

• Shifted force n-m protential (aka Mie):

U(rij) =
αE0

(n−m)

[

mβn

{(

r0
rij

)n

−
(

1

γ

)n}

− nβm

{(

r0
rij

)m

−
(

1

γ

)m}]

+

nmαE0

(n−m)

(

rij − γr0
γr0

){(

β

γ

)n

−
(

β

γ

)m}

,

fj =
αnmE0

(n−m)

[(

βr0
rij

)n

−
(

βr0
rij

)m

+

(

rij
γr0

){(

β

γ

)n

−
(

β

γ

)m}] rij
r2ij

,

where

α =
(n−m)

[nβm (1 + (mγ−1 −m− 1) γ−m) +mβn (1 + (nγ−1 − n− 1) γ−n)]
,

β = γ

(

γm+1 − 1

γn+1 − 1

)
1

n−m

γ =
rcut
r0

.

• Morse potential:

U(rij) = E0

[

{1− exp (−k (rij − r0))}2 − 1
]

fj = −2kE0

rij
exp (−k (rij − r0)) {1− exp (−k (rij − r0))} rij

• Shifted Weeks-Chandler-Anderson potential:

U(rij) =







4ǫ

[

(

σ
rij−∆

)12

−
(

σ
rij−∆

)6
]

+ ǫ : rij < 2
1

6σ +∆

0 : rij ≥ 2
1

6σ +∆

fj =







4 ǫ
rij

[

(

12 σ
rij−∆

)12

− 6
(

σ
rij−∆

)6
]

rij
rij−∆ : rij < 2

1

6σ +∆

0 : rij ≥ 2
1

6σ +∆

• Standard DPD potential:

U(rij) =

{

A
2 rij

(

1− rij
rc

)2

: rij < rc

0 : rij ≥ rc

fj =

{

A
2rij

(

1− rij
rc

)(

3
rij
rc

− 1
)

: rij < rc

0 : rij ≥ rc
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• 14-7 pair potential:

U(rij) = ǫ





1.07
(

rij
r0

)

+ 0.07





7






1.12
(

rij
r0

)7

+ 0.12
− 2







fj = 7ǫ





1.07
(

rij
r0

)

+ 0.07





7















1.07
(

rij
r0

)

+ 0.07











1.12
(

rij
r0

)7

+ 0.12
− 2






+

1.12
(

(

rij
r0

)7

+ 0.12

)2

(

rij
r0

)6











(

rij
rijr0

)

• : Tabulation: The potential is only defined numerically.

The user defines the potential to be used and the required values of A, B, C, D, E0, k, n, m, r0, rc, ǫ, σ, ρ

or ∆ as used within the potential definition.
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