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ABSTRACT   

In this paper we demonstrate the implementation of a modified uniformly redundant array (MURA) coded aperture in the 
x-ray imaging of high power laser produced plasma. We detail the process of design and manufacture of a self-
supporting tantalum coded aperture with ~ 50% open area to work in the 1-25 keV x-ray regime. The advantage of using 
a coded aperture imaging system in this high noise environment in comparison to a standard pinhole aperture is its larger 
solid angle and increased signal to noise. The increased solid angle allows the aperture and detector to be placed at a 
further distance from the interaction point. This is beneficial as it reduces the mechanics in the close proximity of the 
often crowded interaction region and moves the detector which can include sensitive electronics further away from the 
source of EMP, hard x-rays and secondary sources generated in the interaction. Here we present initial data taken on an 
experiment using the Vulcan Petawatt Laser at the Central Laser Facility of a prototype x-ray imager. 

Keywords: Coded Aperture Imaging, X-ray imaging, Pinhole Camera, High Power Laser, Laser Plasma Interactions, 
Vulcan Petawatt, Central Laser Facility 

1. INTRODUCTION  

The family of uniformly redundant array coded apertures have been around for many decades [1]. Successfully exploited 
in Astronomy for X-ray and gamma ray imaging of sources [2] they have gone on to be used in many fields including the 
nuclear industry, medical physics [3] and with synchrotron sources [4]. However they are not a commonly used 
diagnostic in high power lasers for soft x-ray (1-25 keV)  measurements from much beyond their initial development in 
the late 1970’s and early 1980’s [5][6], possibly in part due to the complexity of manufacture of the micro-scale 
structured masks and decoding process as well as the development of other techniques. The continued increase in 
computing power and the development of new manufacturing processes has meant that it has again become viable to 
develop a diagnostic for soft x-ray imaging using uniformly redundant array coded apertures. 
A high power laser-produced plasma interaction produces a harsh environment of high energy particles, photons and 
electromagnetic pulses (EMP)[7][8]. Proximity to this can lead to high noise data, failed shots and at worst damaged 
detectors. Depending on the experiment the interaction region can also be crowded with mechanics such as plasma 
mirrors and cryogenic target systems, as well as other diagnostics that can take up a large solid angle of the target 
interaction region. 
Common imaging in the soft x-ray region of emission of laser produced plasma at the Central Laser Facility is performed 
with pinhole cameras and K-alpha crystal imagers. Pinhole cameras are very simple and effective but can suffer from 
signal to noise problems due to the opacity of the pinhole substrate to hard x-rays reducing the contrast of the image. To 
gain enough signal through the small numerical aperture of the pinhole they often have to sit very close to the interaction 
region. K-alpha crystal imagers are useful in that they have a relatively large working distance and numerical aperture 
compared to a pinhole [9][10] and allow for the detector to sit away from the interaction region. They are however 
designed to image a narrow range of photon energies of specific atomic transitions in certain elements, such as copper 
and titanium, so cannot be utilized for all materials.  
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Coded apertures have the potential to be produced with pinhole scale holes but with a large solid angle to allow the 
detector to sit further away from the interaction. The motivation of this work is to produce a relatively low cost imager 
that has the ability to have a larger working distance and to allow the detector to be placed further away from the 
interaction point. 

2. THEORETICAL REVIEW 

2.1 Coded Aperture 

Coded aperture imaging can be seen as evolution of pinhole imaging, however unlike pinhole imaging where the image 
formed is a likeness of the object, a coded aperture image is a convolution of the object and the aperture. Post processing 
is required to get back to the likeness of the object from the formed image. In this case the detected signal D from the 
object S is convolved with the aperture mask A.  
 

ܦ  = ܵ ∗  (1) ܣ
 
To retrieve a likeness of the object S′  from detected signal D then it must be correlated with a decoding array G which is 
derived from A: 
 

 ܵᇱ = ܦ ∗ ܩ (2) 
 
Substituting equation 1 in to equation 2 gives: 
 

 ܵᇱ = (ܵ ∗ (ܣ ∗ ܩ (3) 
 
By design, G is the correlation inverse of A, 
 

ܣ  ∗ ܩ ≡  (4) ߜ
 
and therefore, gives a delta function system point spread response δ. Substituting this in to equation 3 results in the 
formation of the image S′  from the object signal S. 
 
The design in this paper is based on the Modified Uniformly Redundant Array (MURA). The MURA is a binary coded 
aperture design derived by Gottesman and Fenimore [11] that has many advantages over other previous aperture designs 
in that the scale is based on prime numbers and so a wide range of aperture sizes can easily be derived. The post 
processing decoding array is also uni-modular and is based on the mask itself.  
 
The square pattern of the mask is based on quadratic residues of a prime number p which defines the aperture size. The 
binary array of transparent and opaque sections are in a checkerboard arrangement.  
 
 

௜௝ܣ  ൞ 0 if ݅ = 0,1 if ݆ = 0, ݅ ≠ 0,1 if ܥ௜ܥ௝ = +1,0 otherwise

 (5) 

 

௜,௝ܥ  ൜ +1	if	݅, ݆ is	a	quadratic	residue	modulo	p−1	if	݅, ݆	is	not	a	quadratic	residue	modulo	p (6) 

 
To make the array in to a usable coded aperture, the array is transformed cyclically as proscribed in reference [11] to 
bring i,j = 0 to the center of the mask. To allow the image of the mask to be projected such that i,j = 0 can be projected to 
the corners of the detector without vignetting, the pattern of the mask is repeated around the p × p array such that the 
resultant mask is 2p−1  tall and wide. Figure 1 shows an example of a mask of p = 43 and can be seen that the open area 
of the mask is almost equal to that of the enclosed regions. 
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Figure 2. Schematic diagram of setup. 

 

For the decoding function to reproduce the image of the object source the decoding mask G must be scaled to match the 
size of the projected image of the aperture A on the detector plane. A scaling factor may also need to be applied to 
account for differences in detector and aperture pixel size. 

2.3 Decoding process 

The process of correlating the decoding mask to the detected image is done by transforming them both into the Fourier 
domain via Fast Fourier Transform (FFT) and then multiplying them together. The resultant image is then inverse 
Fourier transformed to produce the final image. A MATLAB code was produced de-convolve the obtained images. 

3. DETAIL OF DESIGN 

The design of the MURA aperture is made up of opaque and transparent regions. The approach used in this paper to 
create the aperture mask was to remove material from an opaque substrate with the use of laser machining. The MURA 
design in its nature is not self-supporting as the opaque sections only meet at the corners. To make a self-supporting 
aperture material was left at the corners to form bridges that allow the aperture to be held together while maintaining a 
high proportion of open area. The bridges are formed by rounding the corners of the open apertures (Figure 3). 
 
The coded aperture was designed to work in the soft x-ray region of 1–25 keV. A substrate of 100 µm tantalum was 
chosen based on its transmission properties in this spectral region (Figure 4). 
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Figure 5. High resolution microscope image of laser machined aperture. 

 
Figure 6. Low resolution microscope image of laser machined 4.25×4.25 mm aperture.  

4. EXPERIMENT RESULTS 

The experiment was performed on the Vulcan Petawatt facility with the majority of the shots running at ~450 J in ~600 
fs from the laser using a high contrast system formed of a double plasma mirror setup delivering ~150 J on target. The 
targets of the experiment were predominately 100 × 100 μm2 Polysulphone foils of at 10 and 25 μm thicknesses. For this 
prototype imager the detector was chosen to be Fujifilm SR Imageplate scanned at 50 μm resolution. The coded aperture 
was mounted to an existing pinhole camera body and the magnification was set to 10x with a working distance of 75 mm 
from the interaction. Filtering of 26 μm Aluminum was used as an optical light block as well as to attenuate the x-ray 
signal. A standard pinhole camera using Fujifilm SR Imageplate working at 20x with a 25 μm Tantalum pinhole, a 25 
μm Beryllium filter and a working distance of 25 mm was also used for comparison. An example of the data obtained 
from both can be seen in Figure 7. 
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The pinhole camera measured an x-ray source size of ~ 30 μm FWHM which is consistent with the resolution limit of 
that instrument. The coded aperture measured the x-ray source to be 70 μm FWHM which is larger than the expected 
calculated detector resolution limit of 60 μm FWHM. This can be attributed to the coded aperture manufacture not 
meeting the intended design as mentioned in the previous section. Cross correlating the decoding function G with the 
optical microscope image of the aperture mask, as well as a simulation of the of the observed mask, both scaled to the 
system give an effective resolution limit size of 70 μm. 
 

a) b) 

c) 
Figure 7 a) Raw X-ray image captured with coded aperture b) Processed image of X-ray coded aperture c) Pinhole camera 
captured X-ray image.  

5. CONCLUSION AND FUTURE DEVELOPMENTS 

The aim of this project was to develop the knowledge and skills to design and manufacture coded apertures for use in the 
field of high power laser interactions. Here we demonstrate a prototype imager using a laser machined self-supporting 
MURA coded aperture applied to the soft x-ray emission from a high power laser interaction. This initial prototype has 
holes that are too large for resolving detail from the short pulse interaction and a planned development is to design and 
manufacture a coded aperture mask with smaller holes to increase the resolution. The prototype design will be used to 
measure the emission from larger sources such as those from the long pulse beam interactions in the facility. The aim is 
to continue this development and move to active capture with either a direct detection x-ray CCD or phosphor coupled 
system. 
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