
A new Sparse Symmetric
Indefinite Solver using A
Posteriori Threshold Pivoting

I Duff, J Hogg, F Lopez

November 2018

Technical Report
RAL-TR-2018-012

©2018 Science and Technology Facilities Council

This work is licensed under a Creative Commons Attribution 4.0
Unported License.

Enquiries concerning this report should be addressed to:

RAL Library
STFC Rutherford Appleton Laboratory
Harwell Oxford
Didcot
OX11 0QX

Tel: +44(0)1235 445384
Fax: +44(0)1235 446403
email: libraryral@stfc.ac.uk

Science and Technology Facilities Council reports are available online
at: http://epubs.stfc.ac.uk

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for
loss or damage arising from the use of information contained in any of
their reports or in any communication about their tests or
investigations.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:libraryral@stfc.ac.uk
http://epubs.stfc.ac.uk/
https://creativecommons.org/licenses/by/4.0/�

A new sparse symmetric indefinite solver using A

Posteriori Threshold Pivoting

Iain Duff†, Jonathan Hogg† and Florent Lopez†

ABSTRACT

The factorization of sparse symmetric indefinite systems is particularly challenging since

pivoting is required to maintain stability of the factorization. Pivoting techniques generally

offer limited parallelism and are associated with significant data movement hindering the

scalability of these methods. Variants of the Threshold Partial Pivoting (TPP) algorithm

for example have been often used because of its numerical robustness but standard

implementations exhibit poor parallel performance. On the other hand, some methods

trade stability for performance on parallel architectures such as the Supernode Bunch-

Kaufman (SBK) used in the PARDISO solver. In this case, however, the factors obtained

might not be used to accurately compute the solution of the system. For this reason we

have designed a task-based LDLT factorization algorithm based on a new pivoting strategy

called A Posteriori Threshold Pivoting (APTP) that is much more suitable for modern

multicore architectures and has the same numerical robustness as the TPP strategy.

We implemented our algorithm in a new version of the SPRAL Sparse Symmetric

Indefinite Direct Solver (SSIDS) which initially supported GPU-only factorization. We

have used OpenMP 4 task features to implement a multifrontal algorithm with dense

factorizations using the novel APTP, and we show that it performs favourably compared

to the state-of-the-art solvers HSL MA86, HSL MA97 and PARDISO both in terms of

performance on a multicore machine and in terms of numerical robustness.

Finally we show that this new solver is able to make use of GPU devices for accelerating

the factorization on heterogeneous architectures.

Keywords: sparse linear systems, LDLT factorization, multifrontal, multicore, GPU

AMS(MOS) subject classifications: 68W10, 65F50, 65F05

†Scientific Computing Department, STFC Rutherford Appleton Laboratory, Harwell Campus,

Oxfordshire, OX11 0QX, UK.

Correspondence to: florent.lopez@stfc.ac.uk

This work is supported by the NLAFET Project funded by the European Union’s Horizon 2020

Research and Innovation Programme under Grant Agreement 671633. This is also the NLAFET

Working Note 21.

November 12, 2018

Contents

1 Introduction 1

2 Background and related work 1

3 A posteriori threshold pivoting algorithm 3

4 Relation between full pivoting and threshold pivoting 7

4.1 Stability . 8

5 Multifrontal LDLT factorization in SSIDS 10

6 High-level parallel strategy 13

7 Experimental results 14

8 Accelerating the factorization using GPUs 20

9 Conclusions 23

i

1 Introduction

In this paper we describe the APTP algorithm and its implementation within the new

version of the SSIDS solver for solving the linear system

Ax = b, (1.1)

where A is a large, sparse, symmetric indefinite matrix. Such systems arise in many

applications in science and engineering for which computing the solution often represent a

bottleneck. This is achieved through factorizing the matrix A so that

PAP T = LDLT , (1.2)

where L is a lower triangular matrix, D is block diagonal with 1 × 1 and 2 × 2 blocks,

and P is a permutation matrix for maintaining sparsity in L and for ensuring the stability

of the factorization process. In this work, we introduce a new pivoting strategy that we

call A Posteriori Threshold Pivoting (APTP), and we show its efficiency for exploiting

the capabilities of modern multicore architectures while preserving the stability of the

factorization. The efficiency of this new algorithm has been made possible by exploiting

a fail-in-place approach enabling a reduction of data movement and the use of speculative

execution to increase parallelism in the factorization algorithm. The APTP strategy

presented in this work is inspired by that implemented in the first version of SSIDS, designed

to run on GPU devices [14]. In the new version of SSIDS, the APTP strategy allows us

to design a task-based LDLT factorization algorithm that shows better performance than

state-of-the-art solvers while preserving numerical robustness. We have implemented this

algorithm using the OpenMP 4 tasking system. One of the reasons for using OpenMP

over a more extensive runtime system such as StarPU [1] is to avoid having an additional

dependency in the SPRAL library. In addition, common implementations of the OpenMP

standard such as that available in the GNU and Intel compilers have been shown to be

efficient for implementing task-based algorithms on multicore architectures [5, 9].

In the context of heterogeneous CPU-GPU architectures, the new version of SSIDS

is capable of exploiting the GPU device by offloading part of the computations to the

GPU. Experimental results show that this approach allows us to dramatically accelerate

the factorization phase compared to the CPU-only version.

2 Background and related work

We follow a now standard procedure for the direct solution of sparse symmetric linear

systems by basing our factorization on an assembly tree where a partial factorization of

a dense matrix is performed at each node of the tree. See, for example, [7] for a detailed

description of this process. Parallelism can be exploited within the context of the tree

where the dense factorizations at different nodes can be performed at the same time if the

nodes are not in the same path of the tree. Although we do exploit this tree parallelism, it

1

is crucially important to exploit parallelism for the factorization operations on the dense

matrices at each node (called node parallelism). This is particularly difficult in the case of

indefinite matrices because the dense matrix is of the form

F =

(
F11 F T

21

F21 F22

)
, (2.1)

where the entries in F22 are not fully summed, meaning that data from ancestor nodes

of the tree are needed before they have their correct value. For that reason, a simple

implementation of standard algorithms for symmetric indefinite matrices, such as the

Bunch-Kaufman algorithm [3], is not possible since we cannot choose a 2× 2 pivot with a

diagonal entry in F22.

If the matrix in (2.1) is of order m and F11 is a square, symmetric indefinite matrix of

order p and F21 is rectangular of order (m− p)× p, then the factorization is only done on

the first p columns and F22 is updated using the computed factors but is not factorized

itself. For positive-definite matrices, a Cholesky factorization could be performed on the

first p columns and the matrix F22 could be updated. A state-of-the-art algorithm for the

implementation of the Cholesky factorization in the context of multicore architectures is

implemented in the PLASMA library [17]. This is a DAG-based algorithm applied to a 2D

block-partitioning of F . When the matrix is indefinite, 1× 1 and 2× 2 pivots are needed

to guarantee the numerical stability of the factorization [11] and, as noted earlier, pivots

can only be chosen from within F11. For robustness and accuracy, the Threshold Partial

Pivoting (TPP) strategy is generally employed. This technique, used in the MA57 solver [6],

enables stability in the factorization of indefinite matrices by bounding the entries in the

factor L i.e. |lij| < u−1 for a certain threshold u. Note that, because pivoting is restricted

to the diagonal part of the matrix, the algorithm may only find q < p suitable pivots for

a given value of u. When this occurs, the uneliminated p − q columns are delayed which

means that they are eliminated later at an ancestor node in the tree.

Because of its numerical robustness, the TPP strategy is widely used in sparse LDLT

solvers. However, at each step of the factorization, determining whether a pivot is

numerically acceptable requires the availability of all the coefficients in the column being

processed. As a result, the parallelization of this algorithm can only be based on a

block-column partitioning approach which offers much less parallelism than a 2D block

partitioning approach as used by the Cholesky algorithm in the case of positive-definite

matrices. In the HSL1 library, the two state-of-the-art parallel sparse direct solvers for

indefinite systems are HSL MA86 [12] and HSL MA97 [13]. They both implement a LDLT

factorization with TPP and exploit parallelism by using task-based algorithms based on

a 1D partitioning of the matrix F . The main difference in the dense kernels of these two

solvers is that HSL MA97 uses a recursive algorithm and is bit compatible.

Another technique for handling instability in the LDLT factorization of indefinite

systems consists in perturbing the system whenever a potential case of instability is

1www.hsl.rl.ac.uk

2

www.hsl.rl.ac.uk

detected, such as when a pivot is too small during the factorization. The PARDISO

solver [16], available in the MKL library2, implements a so-called Supernode Bunch-

Kaufman (SBK) algorithm which uses 1× 1 and 2× 2 pivoting as in the Bunch-Kaufman

algorithm [3] on the F11 submatrix together with a pivot perturbation strategy to prevent

pivots from being too small compared to a threshold value. The need for using a

perturbation technique is related to the fact that pivots can only be chosen from the

F11 block which can be arbitrarily close to singular in the indefinite case. In addition

coefficients in the F21 block can be arbitrarily large relative to entries in the F11 block.

This can be partially alleviated by pre-scaling and reordering using algorithms similar to

that of [8]. However, the algorithm is still unstable and the addition of perturbations can

make it difficult to preserve inertia which is essential for some optimization applications.

Note that even when using the perturbation technique, the SBK algorithm is unstable

and might lead to inaccurate results when computing the solution. For this reason, this

algorithm is not as robust as the TPP algorithm and must generally be associated with

an iterative refinement step. In some very ill-conditioned systems even this may not be

enough to obtain an accurate solution [13].

3 A posteriori threshold pivoting algorithm

In this section, we introduce our new LDLT factorization algorithm based on a pivoting

strategy called A Posteriori Threshold Pivoting (APTP). The factorization is based on a

2D partitioning of the matrix into square blocks that increases the parallelism compared

to the traditional TPP algorithm using block-column partitioning. Our new algorithm is

made possible by exploiting the following two techniques:

Fail-in-place approach that consists in keeping the failed columns in place and handling

them at the end of the factorization. In this case, these columns must be updated

during the factorization.

Speculative execution that consists in speculatively running a task assuming that no

numerical issues have occurred in other tasks that might affect the current one.

This requires doing a backup of entries and implementing a backtracking strategy if

numerical instability is detected.

Using these two principles it is possible to design a task-based LDLT algorithm that

offers more parallelism than the normal TPP strategy. The use of speculative execution

makes it possible to process block columns in parallel using 2D partitioning, and the fail-in-

place approach greatly reduces complexity and data movement and avoids communication

because we do not permute rows and columns outside their blocks.

Note that, using speculative execution comes at the cost of storing backups for the tasks

that are speculatively executed. This overhead is limited because it is generally negligible

2https://software.intel.com/mkl

3

https://software.intel.com/mkl

compared to the workload associated with each block. Also, the fail-in-place strategy has

two main drawbacks: firstly, we need a fallback strategy for handling the failed columns;

secondly, keeping the failed columns up-to-date introduces small granularity tasks in the

DAG. This, however, has low impact on the performance due to the small amount of failed

pivots encountered in practice during the factorization.

Algorithm 1 A posteriori threshold pivoting LDLT factorization.

1: Let nblk = dn/nbe be the number of block columns

2: Let mblk = dm/nbe be the number of block rows

3: for j = 1 to nblk do

4: Factor(Ajj, nelimj) . Factorize block on diagonal

5: for i = 1 to j − 1 do

6: ApplyT(Aji, nelimj; Ajj) . Apply pivot to super-diagonal blocks

7: end for

8: for i = j + 1 to mblk do

9: ApplyN(Aij, nelimj; Ajj) . Apply pivot to sub-diagonal blocks

10: end for

11: Adjust(nelimj; All blocks A:j and Aj:) . Reduce nelimj

12: for k = 1 to j − 1 do

13: for i = k to j − 1 do

14: UpdateTN(Aik; Aji, Ajk, nelimj) . Update previously failed columns

15: end for

16: for i = j to mblk do

17: UpdateNT(Aik; Aij, Ajk, nelimj) . Update previously uneliminated columns

18: end for

19: end for

20: for k = j to nblk do

21: for i = k to mblk do

22: UpdateNN(Aik; Aij, Akj, nelimj) . Update trailing submatrix

23: end for

24: end for

25: end for

The LDLT factorization with the APTP strategy is shown in Algorithm 1. Tasks are

presented as subroutine calls that update (i.e. have an inout dependency on) arguments

before the semicolon, and have an input dependency on all parameters after it. The

variable nelimj is special as we do not express task dependencies involving it, but instead

use atomic updates. The kernels are as follows:

Factor(Ajj, nelimj) computes the LDLT factorization of a block on the diagonal as

follows:

1. Store a backup of block Ajj;

4

2. Perform a pivoted factorization PjAjjP
T
j = LjjDjjL

T
jj, where Pj is a

permutation matrix;

3. Initialise nelimj to the block size of Ajj.

ApplyN(Aij, nelimj; Ajj) applies the LDLT factorization from the diagonal block Ajj

to a subdiagonal block Aij. This is done by:

1. Storing a backup of block Aij;

2. Performing the operation Lij = AijPj(LjjDjj)
−T ;

3. Finding the first column nelimij in Lij that contains a failed entry i.e. lpq > u−1

and performing the atomic reduction nelimj = min(nelimj, nelimij).

ApplyT(Aji, nelimj; Ajj) applies the LDLT factorization from the block Ajj to the failed

entries in the block Aji on its left. This is done by:

1. Storing a backup of block Aji;

2. Performing the operation Lji = (LjjDjj)
−1P T

j Aji on the columns corresponding

to the failed pivots;

3. Finding the first row nelimji in Lji that contains a failed entry i.e. lpq > u−1

and performing the atomic reduction nelimj = min(nelimj, nelimji).

Note that if there are no failed entries in block Aji then this operation becomes a

no-op.

Adjust(nelimj; All blocks A:j and Aj:) ensures nelimj has been atomically reduced in

all the blocks of A:j and Aj:. Decrements nelimj by one if we would otherwise accept

only the first column of a 2× 2 pivot.

UpdateNN(Aik; Aij, Akj, nelimj) performs the update operations on a block that is on

the right of the eliminated block column j.

1. If block Aik is in the same column as the pivotal column, i.e. k = j, then

restores the failed entries from the backup;

2. Performs the update operation Aik = Aik − LijDjjL
T
kj. If the task operates

on column j only the uneliminated entries (that have just been restored) are

updated, otherwise the whole block is updated.

UpdateNT(Aik; Aij, Ajk, nelimj) performs the update operations on a block that is on

the bottom left of the eliminated block column j.

1. If block Aik is in the same row as the eliminated column i.e. i = j, then restores

the failed entries from the backup;

2. Performs the update operation: Aik = Aik − LijDjjLjk on the uneliminated

entries.

5

UpdateTN(Aik; Aji, Ajk, nelimj) performs the update operations on a block that is on

the top left of the eliminated block column j. The operation Aik = Aik − LT
jiDjjLjk

is performed on the uneliminated entries.

AT
13 AT

23

A43

A53 A54

A33

A23

A13

(a) ApplyN and ApplyT operations,

respectively on sub-diagonal and super-

diagonal blocks.

LT
43

L43

L53 A54

D33

(b) UpdateNN operation on block A54.

A51 L53

L31 D33

(c) UpdateNT operation on block A51.

A21

L31 L32 D33

LT
32

(d) UpdateTN operation on block A21.

Figure 3.1: Illustration of the APTP strategy presented in Algorithm 1 where iterations

j = 1, 2 have completed. Eliminated entries are represented in gray, uneliminated entries

in white and failed entries are represented in red. Following the factorization of block

A33, we show ApplyN and ApplyT operations 3.1(a). Upon completion of these tasks, the

trailing submatrix is updated using an UpdateNN kernel 3.1(b), as well as the uneliminated

entries from previous iteration using an UpdateNT kernel 3.1(c) and the failed entries using

UpdateTN kernel 3.1(d).

The APTP algorithm is illustrated in Figure 3.1 on a 2D block-partitioned matrix with

5 block-rows and 4 block-columns. In this example, iterations j = 1, 2 have completed and

we show the processing of the third block-column. In Figure 3.1(a) we show the ApplyN and

ApplyT operations respectively on sub-diagonal blocks and super-diagonal blocks stored

as transpose in third block-row. Upon completion of the apply kernels, we perform the

update operations on the uneliminated entries represented in white, and the failed entries

represented in red, using the three different kernels described above depending on the

6

position of the updated block with respect to the block on the diagonal. The trailing sub-

matrix is updated using kernel UpdateNN with the example of block A54 3.1(b) updated

using factors L53 and factor L34 stored as transpose. The uneliminated entries at the

previous steps are updated with kernel UpdateNT, with the example of block A51 being

updated using the factors L31 and L53 3.1(c). Finally, the failed entries are updated with

kernel UpdateTN with the example of block A21 being updated using the factors L31 and

L23 stored as transpose 3.1(d).

After completion of this algorithm, failed entries are permuted to the back of the matrix.

At this stage the entries can be refactorized (they have usually been updated since they

failed) using either APTP or TPP, or passed directly to the parent.

nb

ib

Figure 3.2: Blocking strategy for the APTP factorization. The input matrix is partitioned

by blocks using an nb parameter and the various kernels operate on these blocks. In the

Factor task, the block on the diagonal block is partitioned using a block size ib.

Note that there are several options for performing the pivoted factorization of the block

Ajj in the Factor kernel including using complete pivoting or an implementation of TPP.

In our implementation, we use a two-level approach involving an an inner block size ib in

addition to the outer block size nb. APTP is performed in parallel using the outer block

size nb and recurses to perform APTP in serial with the smaller inner block size ib. In the

inner blocks, diagonal blocks are then factorized using complete pivoting. This hierarchical

strategy is illustrated in Figure 3.2.

4 Relation between full pivoting and threshold

pivoting

As described in the previous section, at the most fine-grained level we use complete pivoting

on a small dense block. The reason for doing so is that such a block fits in cache, so there

is little penalty in searching the entire matrix for a good pivot. Furthermore, it should

cause any failed pivots of the APTP algorithm to occur as late in each block as possible

(if the cause is a poor diagonal pivot rather than an unusually large off-diagonal entry).

The complete pivoting algorithm proceeds column-wise in a traditional fashion, but the

choice of the next pivot is determined by the location of the maximum entry as shown in

7

Algorithm 2 Complete pivoting algorithm

1: Find maximum uneliminated entry in position (t,m) with value atm.

2: if |atm| < δ then

3: All remaining pivots are considered to be zero.

4: else if m == t then

5: Use as 1× 1 pivot

6: else

7: ∆ = ammatt − amtamt

8: if |∆| ≥ 1
2
|amt|2 then

9: 2× 2 pivot

10: else

11: 1× 1 pivot on max (|amm|, |att|)
12: end if

13: end if

Algorithm 2, where the threshold δ is used to define singularity. A brief summary of the

algorithm is that we first test if all remaining entries in the block are effectively zero. If

so, we record all uneliminated columns as zero pivots. If not, we try and use the largest

entry as the pivot, either as a 1× 1 if it lies on the diagonal, or as the off-diagonal entry of

a 2× 2 pivot if it is not. The test |∆| ≥ 1
2
|amt|2 on line 8 is a very conservative condition

on the stability of the 2× 2 pivot. As we show below, if the condition does not hold, then

max(|amm|, |att|) must be large in its own right and is hence safe to use as a 1 × 1 pivot

instead.

4.1 Stability

Algorithm 2 is at least as stable as traditional threshold partial pivoting with a pivot

threshold of u = 0.25. Recall that this is implied by all entries of L being bounded by

u−1 = 4 with all 2×2 pivots inverted in a stable fashion. We note that a value of u greater

than 0.5 may result in it being impossible to complete the pivoting [11]. We now study

the stability of Algorithm 2 for each of the three nonsingular execution paths. For ease of

reference, we relabel a11 = amm, a21 = atm, a22 = att.

Immediate 1× 1 pivot case

Trivially

|li1| =
|ai1|
|a11|

≤ 1 < 4.

Successful 2× 2 pivot case

Without loss of generality we have (up to relabelling)

|a21| ≥ |a11| ≥ |a22|, (4.1)

8

∆ = a11a22 − a21a21.

The stability test used in recent HSL solvers (e.g. HSL MA97) for 2×2 pivots is the following

set of conditions:

(a) |∆| ≥ 1
2
δ|a21|,

(b) |∆| ≥ 1
2
|a11||a22|,

(c) |∆| ≥ 1
2
|a21||a21|.

The first condition ensures that the pivot is nonsingular, while the latter two ensure any

cancellation in the calculation of ∆ is insignificant. Given condition (4.1), observe that

(c)⇒(b). Furthermore, since |a21| ≥ δ, it follows that (c)⇒(a). We assume that condition

(c) holds and consider the size of entries of L:(
li1
li2

)
=

(
a11 a21

a21 a22

)−1(
ai1
ai2

)
=

1

∆

(
a22ai1 − a21ai2
−a21ai1 + a11ai2

)
.

Using |a21| ≥ |ai1|, |ai2| and the triangular inequality we get(
|li1|
|li2|

)
≤ 1

∆

(
|a22||a21|+ |a21||a21|
|a21||a21|+ |a11||a21|

)
.

By condition (c) we have 1
∆
≤ 2 1

|a21||a21| , combined with (4.1) to give

|li1|, |li2| ≤ 2
1

|a21||a21|
(|a21||a21|+ |a21||a21|) = 4 = (0.25)−1.

This corresponds to a traditional pivoting threshold of u = 0.25.

Failed 2× 2 pivot case

Note that it is possible for condition (c) to be violated, consider for example(
α− ε α

α α− ε

)
⇒ ∆ = ε(ε− 2α) = O(ε).

If condition (c) does not hold, we fall back on a 1×1 pivot corresponding to the maximum

(absolute) diagonal value. The failure of (c) means that

|∆| = |a11a22 − a21a21| <
1

2
|a21||a21|.

For the above to hold, a11a22 and a21a21 must have the same sign. Further, from (4.1) we

have |a21a21| ≥ |a11a22|. Combining these allows us to write

|a21a21| − |a11a22| <
1

2
|a21||a21|.

9

As without loss of generality |a11| ≥ |a22|, rearranging we have

1

2
|a21||a21| < |a11||a22| < |a11||a11|,

and hence
1

|a11|
<

√
2

|a21|
.

Which allows us to bound entries of L:

|li1| =
|ai1|
|a11|

≤ |a21|
|a11|

≤
√

2 < 4.

5 Multifrontal LDLT factorization in SSIDS

In SSIDS, we have implemented a sparse LDLT factorization using the APTP algorithm

presented in Section 3 within a multifrontal scheme [10]. The code for the factorization is

written in C++ and uses the OpenMP tasking features from Version 4 of the standard.

In the multifrontal algorithm, the factors and the dependencies between the coefficients

are represented by an assembly tree. As discussed in Section 2, at each node we have a

dense m ×m matrix, called a frontal matrix F , that consists of a set of p fully-summed

columns, ready to be eliminated, and m−p non fully-summed columns called contribution

blocks that are passed to the parent. The multifrontal factorization is done by traversing

the assembly tree using a topological order, and at each frontal matrix we

1. Assemble the contribution blocks coming from the children;

2. Factorizes the fully-summed columns eliminating q ≤ p pivots;

3. Form the contribution block.

As discussed in Section 2, several levels of parallelism can be exploited in the multifrontal

factorization including tree-level parallelism due to the fact that frontal matrices in

independent branches of the assembly tree can be processed in parallel and node-level

parallelism due to the parallelization of the operations done on the frontal matrices.

In our implementation, the fully summed columns are stored directly into the matrix

factors, while the (m− p)× (m− p) contribution block is stored separately in temporary

memory. The routines operating on the frontal matrix are the following:

• assemble pre()

1. Allocates memory for both the fully-summed columns and the contribution

block ensuring that the memory for the fully-summed columns includes the

space needed to accommodate the delayed columns.

2. Copy the delayed columns from the children.

10

3. Assembles contributions from children into the fully-summed columns only.

• factor() Factorizes the fully summed columns and calculates the contribution block.

• assemble post() Assembles contributions from children into the contribution block.

Note that, in the assemble pre() routine, the memory associated with the fully-

summed columns should be zeroed before being assembled. Although the contribution

block should be zeroed as well before forming the contribution blocks in the factor

routine, it is done directly since the gemm() operations can be told to treat memory

as zero before the calculation. This removes the need for explicitly zeroing which is an

expensive operation.

Of particular note is the memory management. For security reasons, the OS must

ensure all memory is zero upon allocation, and thus maintains a cache of pre-cleared pages

that are zeroed at times the machine is not busy. For certain memory-hungry applications,

such as direct solvers, this cache can quickly become exhausted, and memory allocation

slows down. To minimize this overhead, we implement our own memory management

within SSIDS:

• Entries of the factors are managed using a stack allocator as they are never released

(until the user releases them). To avoid the need for explicit zeroing in the

assemble pre() operation, this uses calloc() as the underlying memory allocation

mechanism, which is able to exploit the fact that OS pages are zero when allocated.

• Work spaces used by more than one thread and storage for contribution blocks are

allocated using a buddy system allocator [15]. This allows memory to be recovered

without loss, at the expense of requiring more space than some other methods.

Figure 5.1 shows a pseudo-code for the parallel implementation of the multifrontal

factorization in SSIDS using OpenMP 4. In this code, nfronts denotes the number of

fronts (nodes) in the assembly tree, and an OpenMP task is created for each node. These

are processed in a topological ordering. When nodes are large enough, the operations

are parallelized via nested OpenMP tasks. We make use of the taskgroup directive to

ensure that all the tasks submitted in each routine are completed before the next operation

begins. The factor routine is parallelized using the LDLT algorithm with APTP pivoting

as presented in Section 3, whereas the assembly operations use a 1D parallelization across

block columns of each child node.

In Figure 5.1, the two depend clauses associated with the task directive ensure that a

front is processed only when all of its child nodes have been processed. In this pseudo-code

this is done using front(f), which is a symbolic representation of front f, and parent(f)

which is a symbolic representation of its parent. Note that, for the parent front we use an

in dependency even though the dependency goes the other way around which means that,

in this case an out dependency would have been semantically correct. However, this would

serialize the processing of these child fronts even though they can be processed in parallel.

11

#pragma omp taskgroup

{

for (f = 0; f < nfronts; f++) {

#pragma omp task depend(inout: front(f)) depend(in: parent(f))

{

// Allocates memory for both fully -summed columns and contribution

// block and assembles contributions into fully -summed columns

assemble_pre(f, children(f));

// Factorizes fully -summed columns in parallel using APTP

// strategy

factor(f);

// Assembles contributions into contribution block

assemble_post(f, children(f));

// Wait for the completion of the frontal matrix factorization

}

}

}

Figure 5.1: Pseudo-code for parallel multifrontal factorization implemented in SSIDS using

OpenMP 4.

Alternatively, the same dependency could have been enforced with an in dependency on

the child fronts but as OpenMP doesn’t allow an arbitrary number of dependencies, this

solution cannot be used.

12

6 High-level parallel strategy

The vast majority of multicore architectures are composed of several NUMA nodes which

means that for each processor, data access times vary depending on the memory location

of the data. In order to get the best performance out of these architectures it is

therefore important to take into account data locality to minimize memory access times

especially when increasing the number of cores involved in the computations. This can be

done by prioritizing intra-resource communications over the more expensive inter-resource

communications.

Algorithm 3 find subtree partition()

Compute the workload associated with the subtrees rooted at each node.

Initialise partitions with the independent trees in the assembly forest.

Assign trees to resources using a round robin algorithm and calculate balance.

while balance > bmin and # iterations < max itr do

Find largest subtree in partition.

Create a new partitions from the child subtrees of the root node for this subtree.

Sort subtrees in descending order of flops.

Assign subtrees to resources using a round robin algorithm and calculate balance.

end while

Return partition with least balance value encountered.

!$omp parallel proc_bind(spread) num_threads(num_regions)

! Represents a NUMA region

!$omp parallel proc_bind(close) num_threads(region_num_threads)

! Factor subtree

call factor_leaf_subtrees ()

!$omp end parallel

!$omp end parallel

!$omp parallel num_threads(total_threads)

call factor_root_subtrees ()

!$omp end parallel

Figure 6.1: Pseudo-code for high-level parallel factorization implemented in SSIDS using

OpenMP 4.

13

In the SSIDS solver, this is achieved through tree parallelism. The assembly tree is split

into leaf subtrees that are mapped onto the different NUMA nodes such that the workload

is well balanced between the resources and the remaining root subtrees are executed on

the combined resources.

Assignment of leaf subtrees to resources is done in a round robin fashion following

Algorithm 3. First, the leaf subtrees are ordered in descending order of floating-point

operation count. The largest subtree is assigned to the first resource, the next largest

subtree to the next resource, and so forth until all subtrees are assigned. If there are more

subtrees than resources, we loop back around again.

For a tree partitioning, we define the load balance as:

balance =
maxi xi
1

nres

∑
j xj

where nres is the number of resources, xi is the total number of floating point operations

assigned to resource i. In a perfectly balanced situation, balance = 1.0. In Algorithm 3,

the minimum value of balance we are willing to accept is denoted by bmin and we bound the

number of iterations using the max itr variable to prevent the root subtrees from growing

too large.

Within SSIDS, the detection of the machine topology information is achieved through

the hwloc library [2]. The OpenMP implementation of the subtree mapping resulting

from the the tree partitioning is shown in Figure 6.1. We use the proc bind() directive

to bind threads to the desired NUMA nodes, and rely on a first-touch policy to ensure

memory is allocated in the appropriate locations. Synchronisations are done by locating

the leaf subtree and root subtree calculations in different OpenMP parallel regions: one

must complete before the other can start.

7 Experimental results

For testing the new version of SSIDS we use a large set of test matrices from the SuiteSparse

matrix collection3 [4]. This test set is divided into two subsets: the easy-indefinite test set,

described in Table 7.1, for matrices that require few delayed pivots during the factorization

and the hard-indefinite test set, described in Table 7.2, for matrices that require significant

pivoting during the factorization. In the case of easy-indefinite matrices, no scaling is

performed prior to the factorization whereas hard-indefinite matrices are scaled and ordered

using a matching-based ordering and scaling.

We run the tests on a compute node of the Kebnekaise machine4 which is part of

the High Performance Computing Center North (HPC2N) centre. The system for our

experiments has two NUMA nodes equipped with an Intel Xeon E5-2690 v4 (Broadwell)

CPU having 14 cores clocked at 2.6 GHz. Each compute node has a total of 28 cores and

a theoretical peak of 1164.8 GFlop/s in double precision arithmetic.

3https://sparse.tamu.edu/
4https://www.hpc2n.umu.se/resources/hardware/kebnekaise

14

https://sparse.tamu.edu/
https://www.hpc2n.umu.se/resources/hardware/kebnekaise

Problem n nz(A) nz(L) flops

×103 ×106 ×106 ×109

1 Oberwolfach/t2dal 4.26 0.02 0.28 0.02

2 GHS indef/dixmaanl 60.00 0.18 1.58 0.05

3 Oberwolfach/rail 79841 79.84 0.32 4.43 0.33

4 GHS indef/dawson5 51.54 0.53 5.69 0.90

5 Boeing/bcsstk39 46.77 1.07 9.61 2.66

6 Boeing/pct20stif 52.33 1.38 12.60 5.63

7 GHS indef/copter2 55.48 0.41 12.70 6.10

8 GHS indef/helm2d03 392.26 1.57 33.00 6.16

9 Boeing/crystk03 24.70 0.89 10.90 6.26

10 Oberwolfach/filter3D 106.44 1.41 23.80 8.71

11 Koutsovasilis/F2 71.50 2.68 23.70 11.30

12 McRae/ecology1 1000.00 3.00 72.30 18.20

13 Cunningham/qa8fk 66.13 0.86 26.70 22.10

14 Oberwolfach/gas sensor 66.92 0.89 27.00 22.10

15 Oberwolfach/t3dh 79.17 2.22 50.60 70.10

16 Lin/Lin 256.00 1.01 126.00 285.00

17 PARSEC/H2O 67.02 2.22 234.00 1290.00

18 GHS indef/sparsine 50.00 0.80 207.00 1390.00

19 PARSEC/Ge99H100 112.98 4.28 669.00 7070.00

20 PARSEC/Ga10As10H30 113.08 3.11 690.00 7280.00

21 PARSEC/Ga19As19H42 133.12 4.51 823.00 9100.00

Table 7.1: Easy indefinite test set. Statistics as reported by the analyse phase of SSIDS

with default settings, assuming no delays.

The factorization times obtained with SSIDS and three state-of-the-art solvers

HSL MA86, HSL MA97 and PARDISO (from MKL library) are reported in Table 7.3 for

the easy indefinite test set and in Table 7.4 for the hard indefinite test set. Note that,

in the case of hard indefinite matrices, we did not use HSL MA86 as it does not offer the

capability to use a matching-based ordering without significant additional work. In each

table, we show the SSIDS timings using two different configurations: loc. referring to the

case where we use the tree partitioning strategy as presented in Section 6 to improve the

exploitation of data locality; and flat corresponding to the case where we consider the

machine topology as flat and thus ignore the data locality during the factorization. In

all these tests, SSIDS uses the default threshold parameter u = 0.01. In the runs with

PARDISO, we follow the default strategy that uses iterative refinement after computing

the solution. This is needed to improve its accuracy that can be badly affected by possible

instabilities occurring in the factorization as discussed in Section 2. In Table 7.4 we also

report the scaled residual defined as

‖Ax− b‖2

‖A‖1‖x‖2 + ‖b‖2

15

Problem n nz(A) nz(L) flops

×103 ×106 ×106 ×109

1 TSOPF/TSOPF FS b39 c7 28.22 0.37 2.61 0.26

2 TSOPF/TSOPF FS b162 c1 10.80 0.31 1.89 0.36

3 QY/case39 40.22 0.53 3.87 0.40

4 TSOPF/TSOPF FS b39 c19 76.22 1.00 7.28 0.75

5 TSOPF/TSOPF FS b39 c30 120.22 1.58 11.10 1.10

6 GHS indef/cont-201 80.59 0.24 7.12 1.11

7 GHS indef/stokes128 49.67 0.30 6.35 1.16

8 TSOPF/TSOPF FS b162 c3 30.80 0.90 6.37 1.41

9 TSOPF/TSOPF FS b162 c4 40.80 1.20 7.32 1.43

10 GHS indef/ncvxqp1 12.11 0.04 3.56 2.52

11 GHS indef/darcy003 389.87 1.17 23.20 3.01

12 GHS indef/cont-300 180.90 0.54 17.20 3.58

13 GHS indef/bratu3d 27.79 0.09 7.49 4.72

14 GHS indef/cvxqp3 17.50 0.07 6.33 5.27

15 TSOPF/TSOPF FS b300 29.21 2.20 13.40 6.92

16 TSOPF/TSOPF FS b300 c1 29.21 2.20 13.50 7.01

17 GHS indef/d pretok 182.73 0.89 24.80 7.42

18 GHS indef/turon m 189.92 0.91 24.70 7.60

19 TSOPF/TSOPF FS b300 c2 56.81 4.39 27.00 14.10

20 TSOPF/TSOPF FS b300 c3 84.41 6.58 40.50 21.40

21 GHS indef/ncvxqp5 62.50 0.24 22.90 24.30

22 GHS indef/ncvxqp3 75.00 0.27 39.30 63.70

23 GHS indef/ncvxqp7 87.50 0.31 51.00 101.00

24 Schenk IBMNA/c-big 345.24 2.34 110.00 295.00

Table 7.2: Hard indefinite test set. Statistics as reported by the analyse phase of SSIDS

with default settings, using matching-based ordering, assuming no delays.

for SSIDS and PARDISO. In our experiments we observed that HSL MA97 gave similar

residuals to SSIDS, and therefore we do not report it for the sake of conciseness in this

table.

The experiments on the easy indefinite test set show that SSIDS performs better than

the state-of-the-art HSL solvers HSL MA86 and HSL MA97 for the large majority of the

tested problems. Although PARDISO seems to be marginally better for the smallest

problems, SSIDS compares favourably when the problem size increases and the performance

gap grows with the problem size. The results also show that the exploitation of data

locality as described in Section 6 is generally effective above a certain problem size

but can reduce the performance on smaller problems. This behaviour can be expected

as the tree partitioning comes at the cost of additional synchronizations that can be

penalizing when the factorization time is bounded by the critical path or when the workload

between the partitions is not well balanced (more likely on small problems). Note that,

16

Problem SSIDS HSL MA86 HSL MA97 PARDISO

loc. flat

Oberwolfach/t2dal 0.03 0.02 0.04 0.01 0.01

GHS indef/dixmaanl 0.07 0.04 0.09 0.02 0.06

Oberwolfach/rail 79841 0.06 0.05 0.12 0.08 0.07

GHS indef/dawson5 0.37 0.08 0.22 0.08 0.04

Boeing/bcsstk39 0.11 0.10 0.31 0.21 0.05

GHS indef/helm2d03 0.17 0.18 0.49 0.20 0.25

GHS indef/copter2 0.16 0.16 0.28 0.16 0.12

Boeing/crystk03 0.16 0.16 0.32 0.16 0.09

Oberwolfach/filter3D 0.15 0.17 0.43 0.14 0.12

Boeing/pct20stif 0.16 0.14 1.02 18.88 0.12

Koutsovasilis/F2 0.18 0.17 0.68 0.69 0.16

Cunningham/qa8fk 0.26 0.23 0.44 0.40 0.19

Oberwolfach/gas sensor 0.26 0.24 0.41 0.42 0.19

McRae/ecology1 0.30 0.36 0.96 0.46 0.78

Oberwolfach/t3dh 0.47 0.39 1.05 0.78 0.42

Lin/Lin 1.24 1.17 1.52 3.43 1.35

PARSEC/H2O 4.55 5.38 6.23 28.50 7.39

GHS indef/sparsine 7.88 8.71 9.00 43.90 12.29

PARSEC/Ge99H100 21.24 23.43 24.48 141.31 38.60

PARSEC/Ga10As10H30 19.28 22.06 27.99 106.53 38.70

PARSEC/Ga19As19H42 23.89 28.85 29.30 175.36 61.63

Table 7.3: Factorization times (in seconds) for SSIDS, HSL MA86, HSL MA97 and PARDISO

for matrices taken from the easy indefinite test set run on the Kebnekaise compute node.

For SSIDS, column loc. indicates that we use data locality whereas flat corresponds to the

case where NUMA effects are ignored.

although we observed that most of these easy indefinite problems are associated with

small residuals, PARDISO could not reach a solution for matrices Oberwolfach/t2dal

and Cunningham/qa8fk as the iterative refinement step failed to converge. PARDISO is

only able to solve these two matrices if they are preprocessed with scaling and ordering but

this is unnecessary for SSIDS. This is advantageous because the scaled problem may come

at a higher computational cost for the factorization as well as larger number of entries in

the factors.

Experiments on the hard indefinite matrices show that SSIDS performs favourably

compared to HSL MA97 and, as in the case of easy indefinite matrices, the performance gap

increases with the problem size which shows that SSIDS is better at exploiting parallelism

on these numerically challenging problems than HSL MA97. On this test set, SSIDS and

PARDISO achieve similar performance although PARDISO seems marginally better on

smaller problem as we observed in the case of easy indefinite problems. Note that due to

the unstable nature of the factorization algorithm used in PARDISO, iterative refinement

17

Problem SSIDS HSL MA97 PARDISO

loc. flat res. res.

TSOPF/TSOPF FS b39 c7 0.05 0.05 2.01× 10−14 0.04 0.02 2.50× 10−15

QY/case39 0.08 0.07 1.49× 10−14 0.10 0.04 9.02× 10−14

TSOPF/TSOPF FS b39 c19 0.08 0.06 9.72× 10−15 0.07 0.06 3.65× 10−15

TSOPF/TSOPF FS b39 c30 0.12 0.10 2.77× 10−14 0.08 0.09 6.25× 10−15

GHS indef/stokes128 0.07 0.08 1.09× 10−15 0.06 0.04 3.88× 10−3

TSOPF/TSOPF FS b162 c3 0.08 0.07 1.21× 10−14 0.09 0.05 2.36× 10−15

GHS indef/darcy003 0.15 0.16 3.48× 10−15 0.15 0.16 1.31× 10−16

GHS indef/cont-201 0.08 0.09 3.32× 10−14 0.07 0.08 1.85× 10−14

TSOPF/TSOPF FS b162 c4 0.09 0.09 1.20× 10−14 0.08 0.05 2.02× 10−15

GHS indef/ncvxqp1 0.15 0.19 3.16× 10−14 0.44 0.09 2.81× 10−17

GHS indef/cont-300 0.13 0.14 3.88× 10−14 0.11 0.16 7.00× 10−14

GHS indef/d pretok 0.16 0.16 4.65× 10−16 0.18 0.14 3.25× 10−16

GHS indef/cvxqp3 0.18 0.22 1.70× 10−11 0.95 0.18 8.92× 10−7

TSOPF/TSOPF FS b300 0.31 0.29 3.64× 10−15 0.29 0.13 5.90× 10−13

TSOPF/TSOPF FS b300 c1 0.33 0.33 1.54× 10−15 0.26 0.13 3.43× 10−15

GHS indef/bratu3d 0.67 0.15 8.31× 10−14 0.23 0.10 8.87× 10−15

TSOPF/TSOPF FS b300 c2 0.51 0.41 3.57× 10−15 0.34 0.21 3.87× 10−14

TSOPF/TSOPF FS b300 c3 0.72 0.73 5.04× 10−15 0.70 0.29 1.83× 10−14

GHS indef/ncvxqp5 0.61 0.57 5.66× 10−13 1.80 0.34 9.97× 10−12

TSOPF/TSOPF FS b162 c1 0.06 0.05 7.55× 10−15 0.05 0.02 1.32× 10−15

GHS indef/turon m 0.16 0.17 5.73× 10−16 0.16 0.12 1.13× 10−16

GHS indef/ncvxqp3 1.04 1.01 2.42× 10−10 10.39 0.79 1.17× 10−9

GHS indef/ncvxqp7 1.64 1.57 5.50× 10−9 11.04 1.19 1.95× 10−7

Schenk IBMNA/c-big 2.99 2.34 1.75× 10−16 19.66 2.95 1.41× 10−16

Table 7.4: Factorization times (in seconds) for SSIDS, HSL MA86, HSL MA97 and PARDISO

for matrices taken from the Hard indefinite test set run on the Kebnekaise compute node.

The residual is also reported for both SSIDS and PARDISO.

18

Problem Time (s) delays failed col.

u= 10−1 10−3 10−1 10−2 10−3 10−1 10−2 10−3

Boeing/pct20stif 0.20 0.16 239 13 2 1974 192 5

GHS indef/sparsine 61.33 5.38 358 24 1 9547 1562 104

PARSEC/Ga10As10H30 22.69 18.69 3 0 0 1157 35 0

TSOPF/TSOPF FS b39 c7 0.18 0.06 4672 997 174 4341 1248 297

QY/case39 0.27 0.05 8744 2318 1094 7462 2960 1480

TSOPF/TSOPF FS b39 c19 0.28 0.06 14270 3464 416 11758 4175 720

TSOPF/TSOPF FS b39 c30 0.61 0.08 23166 5031 663 18613 6277 1324

GHS indef/stokes128 0.08 0.08 0 0 0 0 0 0

GHS indef/ncvxqp1 0.16 0.15 92 78 77 122 97 92

GHS indef/cvxqp3 0.23 0.28 469 26 14 670 37 19

TSOPF/TSOPF FS b300 0.41 0.22 3276 1235 143 11541 5290 1446

TSOPF/TSOPF FS b300 c1 0.90 0.22 3685 1599 141 12038 6142 1562

GHS indef/bratu3d 0.57 0.58 27 27 27 239 172 77

GHS indef/ncvxqp5 1.15 0.46 6977 60 5 11190 1164 124

TSOPF/TSOPF FS b162 c1 0.08 0.05 1476 401 10 2098 603 18

GHS indef/ncvxqp7 2.97 1.18 2777 164 21 5763 458 35

Table 7.5: Factorization times (in seconds), number of delayed columns and residual

obtained with SSIDS on a subset of our test matrices from both the easy indefinite and the

hard indefinite test sets. These results are obtained for different values of the threshold

parameter u. Note that the factorization times for the default value in SSIDS (u = 0.01)

are already reported in Tables 7.3 and 7.4.

is used by default in the solver when solving the sparse linear system (1.1) but the timings

reported in Table 7.4 do not include this cost that can be become relatively large for

such numerically challenging problems. On the other hand, the values for the residual

reported (for the default threshold parameter u = 0.01) show that on nearly all the

tested problems SSIDS achieves small backward errors. This is not always the case with

PARDISO. For example, with matrix GHS indef/stokes128 PARDISO achieves a residual

of 3.88× 10−3 despite using scaling and iterative refinement whereas SSIDS gives a residual

close to machine precision. Similarly, with matrix GHS indef/cvxqp3, PARDISO achieves

a residual of 8.92× 10−7 whereas SSIDS gives a residual several orders of magnitude smaller

equal to 1.70× 10−11. These experimental results show that our APTP algorithm allows

us to achieve similar performance to PARDISO but with the same robustness provided

by the traditional TPP algorithm implemented in HSL MA97 and HSL MA86 on the tough

indefinite problems. On the other hand, the APTP algorithm is fast when solving easy

indefinite problems on multicore architectures.

In Table 7.5 we report, for a selection of test matrices, the factorization time, the

number of number of delayed pivots, and the number of failed columns after the APTP

pass for a value of the threshold parameter varying from 10−1 to 10−3. We first observe

that the number of delayed pivots can be significant for hard indefinite matrices despite

the use of scaling techniques. In these cases reducing the value of the threshold parameter

decreases the number of delayed columns leading to a reduction in the factorization time.

19

For example in the factorization of matrix GHS indef/ncvxqp7, reducing u from 10−1 to

10−3, allows us to dramatically reduce the number of delayed columns and to halve the

factorization time. This behaviour can be observed on many other problems and is expected

since we know that delaying columns is associated with more floating-point operations and

more data movement. However, this is not the only factor impacting the performance of

the factorization. As explained in Section 3, the APTP algorithm is followed by a fallback

routine that tries to eliminate the columns that failed in the first pass. The uneliminated

columns could be directly passed to the parent nodes and be eliminated later at an ancestor

node in the assembly tree but this was deemed to be potentially too costly. For this reason,

the default fallback strategy consists in using a sequential TPP strategy on the remaining

columns. A larger value of u naturally leads to more columns being uneliminated at

the end of the APTP factorization and therefore having more columns eliminated by the

TPP kernel which is generally associated with higher factorization times. In the case of

the PARSEC/Ga10As10H30 matrix for example, the factorization time is strongly impacted

by the value u but not the number of delayed pivots. In this case, the decrease in the

factorization time when the parameter u goes from 10−1 to 10−3 is related to the fact

that the number of failed columns after using the APTP algorithm drops from 1157 to

0. The main reason for the fallback strategy being so penalizing lies in the fact that our

implementation of TPP in SSIDS is not only sequential but is also unblocked which means

that it cannot make use of Level-3 BLAS kernels.

8 Accelerating the factorization using GPUs

As mentioned in the introduction, SSIDS was originally designed to run on only a GPU.

This means that the factorization was done entirely on the GPU, without exploiting the

capability of the CPU cores available on the architecture. In addition, this approach had

the disadvantage of being constrained by the memory available on the GPU which can be

quite limited compared to the amount of available RAM.

In order to exploit GPU devices on heterogeneous CPU-GPU architectures in the new

version of SSIDS, we enable the factorization of subtrees on the GPU. For assigning subtrees

between NUMA regions and GPUs, we use the same partitioning strategy as presented in

Algorithm 3, but we introduce a parameter αi corresponding to the speed of the resource

i, using GFlop/s as a metric, and compute the balance as follows:

balance =
maxi(xi/αi)
1

nres

∑
j(xj/αj)

where we set αi = 1.0 for NUMA regions and set it as the performance ratio between GPU

and NUMA regions for GPU resources. For example if the GPU device is twice as fast as

a NUMA region we set αi = 2.0 for GPUs. Finding a suitable value for αi is not trivial

in practice and using theoretical peaks might not be optimal. This is due to the fact that

the speed of the various CPUs and GPUs depends on the workload associated with each

20

Problem t (s) t (s) CPU-GPU

α= 0.75 1.0 1.25 2.0 10.0

GHS indef/helm2d03 0.15 0.15 0.15 0.10 0.10 0.10

GHS indef/copter2 0.15 0.12 0.11 0.07 0.07 0.07

Boeing/crystk03 0.15 0.11 0.11 0.05 0.05 0.05

Oberwolfach/filter3D 0.14 0.13 0.13 0.08 0.08 0.08

Boeing/pct20stif 0.13 0.10 0.11 0.06 0.07 0.06

Koutsovasilis/F2 0.16 0.16 0.16 0.11 0.11 0.12

Cunningham/qa8fk 0.21 0.19 0.18 0.14 0.15 0.15

Oberwolfach/gas sensor 0.23 0.20 0.19 0.15 0.20 0.19

McRae/ecology1 0.30 0.33 0.34 0.22 0.22 0.22

Oberwolfach/t3dh 0.39 0.34 0.34 0.34 0.39 0.38

Lin/Lin 1.22 0.76 0.76 0.67 0.79 0.80

PARSEC/H2O 5.80 3.42 3.44 2.81 2.93 2.91

GHS indef/sparsine 8.64 5.66 5.66 6.99 7.03 3.86

PARSEC/Ge99H100 27.76 14.15 14.35 16.73 18.35 18.45

PARSEC/Ga10As10H30 25.89 17.35 17.51 17.95 18.08 18.26

PARSEC/Ga19As19H42 33.24 19.19 19.20 18.76 17.42 17.42

Table 8.1: Factorization times (s) obtained with SSIDS on a subset of test matrices when

using both CPUs and GPUs compared to the CPU-only version.

subtree partition. In SSIDS, the value α for GPU resources is chosen empirically via an

optional parameter whose default value is set to 1.0. In addition, we use a parameter gpumin

corresponding to the minimum number of flops required for a subtree to be processed on

a GPU. This threshold prevents the solver from running small subtrees on the GPUs

for which the performance would be relatively low on the GPU and would certainly not

compensate for the start-up latency and the time to transfer data from the main memory

to the GPU memory. Note that in the tree partitioning, the root subtree is run on the

CPUs because the GPU kernel cannot receive contributions from children subtrees in the

current implementation of SSIDS.

For testing our approach, we ran SSIDS on a heterogeneous machine with two NUMA

nodes equipped with a 10 cores Intel Xeon CPU E5-2650 v3 (Haswell) clocked at 2.3 GHz,

plus one GPU device P100 (Pascal). For this experiment we use the matrices from the

easy indefinite test set. In Table 8.1 we compare the factorization times using CPUs only

with using both the CPUs and the GPU for various values of α. In Table 8.2 we present

the floating-point operations associated with the factorization of each problem, and the

floating-point operations performed by the GPU for the values of α used in Table 8.1.

Note that we do not give the factorization times for the five smallest matrices in the easy

indefinite test set because the workload associated with them was below our threshold

gpumin and therefore the GPU was not exploited for these problems.

For the first five matrices in Table 8.1, we observe that, for α ≤ 1.0, the factorization

is entirely done on the CPUs whereas for α > 1.0 it is done entirely on the GPU. This

21

Problem Flops GPU Flops

(×109) (×109)

α= 0.75 1.0 1.25 2.0 10.0

GHS indef/helm2d03 6.1 0.0 0.0 6.2 6.2 6.2

GHS indef/copter2 6.1 0.0 0.0 6.1 6.1 6.1

Boeing/crystk03 6.3 0.0 0.0 6.3 6.3 6.3

Oberwolfach/filter3D 8.7 0.0 0.0 8.7 8.7 8.7

Boeing/pct20stif 5.6 0.0 0.0 5.6 5.6 5.6

Koutsovasilis/F2 11.3 0.0 0.0 5.8 5.8 5.8

Cunningham/qa8fk 22.1 6.4 6.4 10.4 10.4 10.4

Oberwolfach/gas sensor 22.1 5.4 5.4 11.5 5.4 5.4

McRae/ecology1 18.2 0.0 0.0 9.0 9.0 9.0

Oberwolfach/t3dh 70.1 25.1 25.1 25.7 23.3 23.3

Lin/Lin 285.0 132.0 132.0 140.0 131.0 131.0

PARSEC/H2O 1290.0 559.0 559.0 634.0 611.0 611.0

GHS indef/sparsine 1390.0 377.0 377.0 268.0 268.0 882.0

PARSEC/Ge99H100 7070.0 3000.0 300.0 3210.0 2680.0 2680.0

PARSEC/Ga10As10H30 7280.0 2370.0 2370.0 2280.0 2260.0 2260.0

PARSEC/Ga19As19H42 9100.0 4110.0 4110.0 4230.0 4710.0 4710.0

Table 8.2: Total floating point operations associated to the test problems with the amount

of floating point operations performed on the GPU for the various value of α used in

Table 8.1.

22

is due to the fact that in these cases, if the GPU is faster than a NUMA region, the

whole tree is mapped to the GPU. For these problems the factorization times are halved

when using the GPU compared to the CPU only execution. For the larger problems, both

CPUs and GPU are involved in the factorization and in all cases we manage to reduce

the factorization by up to a factor of 2.2 compared with a CPU-only execution. Note

that for these problems, the best value for α varies and although for some problems, such

as PARSEC/Ge99H100, the factorization runs faster with a lower value of α, while other

problems, such as PARSEC/Ga19As19H42, perform better for large values. This shows that

the best α value that controls the workload balance between the GPU and the CPUs

depends on the problem.

9 Conclusions

Although the widely used traditional threshold partial pivoting strategy has good numerical

performance, we show that it may not be ideal for exploiting parallelism on modern

multicore architectures. In order to overcome this limitation some methods, such as

the Supernode Bunch-Kaufman algorithm implemented in PARDISO, trade stability for

performance. However, the unstable nature of these methods can lead to inaccurate results

when solving sparse linear systems. For these reasons we have developed a new pivoting

strategy namely a posteriori threshold pivoting for the LDLT factorization of indefinite

matrices that offers more parallelism without sacrificing numerical robustness. We showed

that this method, implemented in a new version of the SSIDS solver, outperforms the

state-of-the-art solvers on modern multicore machines and, in addition, is able to exploit

heterogeneity in the context of GPU-accelerated architectures.

23

References

[1] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, StarPU:

a unified platform for task scheduling on heterogeneous multicore architectures,

Concurrency and Computation: Practice and Experience, 23 (2011), pp. 187–198.

[2] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin,

G. Mercier, S. Thibault, and R. Namyst, hwloc: a Generic Framework

for Managing Hardware Affinities in HPC Applications, in PDP 2010 - The 18th

Euromicro International Conference on Parallel, Distributed and Network-Based

Computing, IEEE, ed., Pisa, Italy, Feb. 2010.

[3] J. R. Bunch and L. Kaufman, Some stable methods for calculating inertia and

solving symmetric linear systems, Mathematics of Computation, 31 (1977), pp. 162–

179.

[4] T. A. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM

Trans. Math. Softw., 38 (2011), pp. 1:1–1:25.

[5] I. Duff, J. Hogg, and F. Lopez, Experiments with sparse Cholesky using a

sequential task-flow implementation, Numerical Algebra, Control & Optimization, 8

(2018), pp. 237–260.

[6] I. S. Duff, MA57—a code for the solution of sparse symmetric definite and indefinite

systems, ACM Trans. Math. Softw., 30 (2004), pp. 118–144.

[7] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices.

Second Edition., Oxford University Press, Oxford, England, 2017.

[8] I. S. Duff and J. Koster, On algorithms for permuting large entries to the diagonal

of a sparse matrix, SIAM J. Matrix Analysis and Applications, 22 (2001), pp. 973–996.

[9] I. S. Duff and F. Lopez, Experiments with sparse Cholesky using a Parametrized

Task Graph implementation, in Parallel Processing and Applied Mathematics,

R. Wyrzykowski, J. Dongarra, E. Deelman, and K. Karczewski, eds., vol. LNCS 10777,

Cham, 2018, Springer International Publishing, pp. 197–206.

[10] I. S. Duff and J. K. Reid, The multifrontal solution of indefinite sparse symmetric

linear, ACM Trans. Math. Softw., 9 (1983), pp. 302–325.

[11] I. S. Duff, J. K. Reid, N. Munksgaard, and H. B. Neilsen, Direct solution

of sets of linear equations whose matrix is sparse, symmetric and indefinite, J. Inst.

Maths. Applics., 23 (1979), pp. 235–250.

[12] J. Hogg and J. Scott, An indefinite sparse direct solver for large problems on

multicore machines, Tech. Rep. RAL-TR-2010-011, Rutherford Appleton Laboratory,

Oxfordshire, England, 2010.

24

[13] , HSL MA97 : a bit-compatible multifrontal code for sparse symmetric systems,

Tech. Rep. RAL-TR-2011-024, Rutherford Appleton Laboratory, Oxfordshire,

England, 2011.

[14] J. D. Hogg, E. Ovtchinnikov, and J. A. Scott, A sparse symmetric indefinite

direct solver for GPU architectures, ACM Trans. Math. Softw., 42 (2016), pp. 1:1–1:25.

[15] K. C. Knowlton, A fast storage allocator, Commun. ACM, 8 (1965), pp. 623–624.

[16] O. Schenk and K. Gärtner, On fast factorization pivoting methods for sparse

symmetric indefinite systems, Electronic Transactions on Numerical Analysis, 23

(2006), pp. 158–179.

[17] A. YarKhan, J. Kurzak, P. Luszczek, and J. Dongarra, Porting the

PLASMA numerical library to the OpenMP standard, International Journal of Parallel

Programming, 45 (2017), pp. 612–633.

25

	RAL-TR-2018-012 - cover
	RAL-TR-cover&inner-2017
	RAL-TR-cover&inner-2015
	DLTR cover&inner
	DLTR cover&inner
	DLTR cover&inner
	DLTR cover&inner
	DLTR cover&inner.pdf
	DLTR-2007-004.pdf

	RAL-TR-inner-cover

