
MAUS: The MICE Analysis User 
Software

R Asfandiyarov, R Bayes, V Blackmore, M Bogomilov, 
D Colling, AJ Dobbs, F Drielsma, M Drews, M Ellis, 
M Fedorov, P Franchini, R Gardener, JR Greis, PM Hanlet,
C Heidt, C Hunt, G Kafka, Y Karadzhov, A Kurup, P Kyberd,
M Littlefield, A Liu, KL Long, D Maletic, J Martyniak, 
S Middleton, T Mohayai, JC Nugent, E Overton, V Pec, 
CE Pidcott, D Rajaram, M Rayner, CT Rogers, M Savic, 
I Taylor, YT Torun, CD Tunnell, MA Uchida, V Verguilov, 
K Walaron, M Winter, S Wilbur

November 2018

Submitted for publication in The Journal of Instrumentation

   Preprint 
RAL-P-2018-007



RAL Library 
STFC Rutherford Appleton Laboratory 
R61 
Harwell Oxford 
Didcot 
OX11 0QX 

Tel: +44(0)1235 445384 
Fax: +44(0)1235 446403 
email: libraryral@stfc.ac.uk 

Science and Technology Facilities Council preprints are available online 
at: http://epubs.stfc.ac.uk 

ISSN 1361- 4762 

Neither the Council nor the Laboratory accept any responsibility for 
loss or damage arising from the use of information contained in any of 
their reports or in any communication about their tests or 
investigations. 

mailto:libraryral@stfc.ac.uk�
http://epubs.stfc.ac.uk/�


Prepared for submission to JINST

MAUS: The MICE Analysis User Software

R. Asfandiyarov,a R. Bayes,b V. Blackmore,c M. Bogomilov,d D. Colling,c A.J. Dobbs,c F.
Drielsma,a M. Drews,h M. Ellis,c M. Fedorov,e P. Franchini, f R. Gardener,g J.R. Greis, f P.M.
Hanlet,h C. Heidt,i C. Hunt,c G. Kafka,h Y. Karadzhov,a A. Kurup,c P. Kyberd,g M. Littlefield,g A.
Liu,j K.L. Long,c,n D. Maletic,k J. Martyniak,c S. Middleton,c T. Mohayai,g J.C. Nugent,b E.
Overton,l V. Pec,l C.E. Pidcott, f D. Rajaram,h,1 M. Rayner,m C.T. Rogers,n M. Savic,k I. Taylor, f

Y.T. Torun,h C.D. Tunnell,m M.A. Uchida,c V. Verguilov,a K. Walaron,b M. Winter,h S. Wilburl
aDPNC, section de Physique, Université de Genève, Geneva, Switzerland
bSchool of Physics and Astronomy, Kelvin Building, The University of Glasgow, Glasgow, UK
cDepartment of Physics, Blackett Laboratory, Imperial College London, London, UK
dDepartment of Atomic Physics, St. Kliment Ohridski University of Sofia, Sofia, Bulgaria
eRadboud University of Nijmegen, Netherlands
fDepartment of Physics, University of Warwick, Coventry, UK
gBrunel University, Uxbridge, UK
hPhysics Department, Illinois Institute of Technology, Chicago, IL, USA
iUniversity of California, Riverside, CA, USA
iFermilab, Batavia, IL, USA
kInstitute of Physics, University of Belgrade, Serbia
lDepartment of Physics and Astronomy, University of Sheffield, Sheffield, UK
mDepartment of Physics, University of Oxford, Denys Wilkinson Building, Oxford, UK
nSTFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, UK

E-mail: durga@fnal.gov

Abstract: The Muon Ionization Cooling Experiment (MICE) collaboration has developed the MICE
Analysis User Software (MAUS) to simulate and analyze experimental data. It serves as the primary
codebase for the experiment, providing for offline batch simulation and reconstruction as well as online
data quality checks. The software provides both traditional particle-physics functionalities such as
track reconstruction and particle identification, and accelerator physics functions, such as calculating
transfer matrices and emittances. The code design is object orientated, but has a top-level structure
based on the Map-Reduce model. This allows for parallelization to support live data reconstruction
during data-taking operations. MAUS allows users to develop in either Python or C++ and provides
APIs for both. Various software engineering practices from industry are also used to ensure correct
and maintainable code, including style, unit and integration tests, continuous integration and load
testing, code reviews, and distributed version control. The software framework and the simulation and
reconstruction capabilities are described.
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1 Introduction

1.1 The MICE experiment1

The Muon Ionization Cooling Experiment (MICE) sited at the STFC Rutherford Appleton Laboratory2

(RAL) has delivered the first demonstration of muon ionization cooling [1] – the reduction of the3

phase-space of muon beams. Muon-beam cooling is essential for future facilities based on muon4

acceleration, such as the Neutrino Factory or Muon Collider [2, 3]. The experiment was designed to5

be built and operated in a staged manner. In the first stage, the muon beamline was commissioned [4]6

and characterized [5]. The configuration shown in figure 1 was used to study the factors that determine7

the performance of an ionization-cooling channel and to observe for the first time the reduction in8

transverse emittance of a muon beam.9

The MICE Muon Beam line is described in detail in [4]. There are 5 different detector systems10

present on the beamline: time-of-flight (TOF) scintillators [6], threshold Cherenkov (Ckov) counters11

[7], scintillating fiber trackers [8], a sampling calorimeter (KL) [5], and the Electron Muon Ranger12

(EMR) – a totally active scintillating calorimeter [9]. The TOF detector system consists of three13

detector stations, TOF0, TOF1 and TOF2, each composed of two orthogonal layers of scintillator bars.14

The TOF system is used to determine particle identification (PID) via the time-of-flight between the15

stations. Each station also provides a low resolution image of the beam profile. The Ckov system16

consists of two aerogel threshold Cherenkov stations, CkovA and CkovB. The KL and EMR detectors,17

the former using scintillating fibers embedded in lead sheets, and the latter scintillating bars, form the18

downstream calorimeter system.19

The tracker system consists of two scintillating fiber detectors, one upstream of the MICE cooling20

cell, the other downstream, in order to measure the change in emittance across the cooling cell. Each21

detector consists of 5 stations, each station having 3 fiber planes, allowing precision measurement of22

momentum and position to be made on a particle-by-particle basis.23

Electron
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(KL)

ToF 2

Time-of-flight
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(ToF 0)

Cherenkov
counters
(CKOV)

ToF 1
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Figure 1. Schematic diagram of the final configuration of the MICE experiment. The red rectangles represent
the coils of the spectrometer solenoids and focus coil. The individual coils of the spectrometer solenoids are
labelled E1, C, E2, M1 and M2. The various detectors are also represented.
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1.2 Software requirements24

The MICE software must serve both the accelerator-physics and the particle-physics needs of the ex-25

periment. Traditional particle-physics functionality includes reconstructing particle tracks, identifying26

them, and simulating the response from various detectors, while the accelerator-physics aspect includes27

the calculation of transfer matrices and Twiss parameters and propagating the beam envelopes. All28

of these items require a detailed description of the beamline, the geometries of the detectors, and the29

magnetic fields, as well as functionality to simulate the various detectors and reconstruct the detector30

outputs.31

Given the complexity and the time-scale of the experiment, it was essential to ensure that the32

software can be maintained over the long-term. Good performance was also important in order to33

ensure that the software can reconstruct data with sufficient speed to support live online monitoring34

of the experiment.35

2 MAUS36

The MICE Analysis User Software (MAUS) is the collaboration’s simulation, reconstruction, and37

analysis software framework. MAUS provides a Monte Carlo (MC) simulation of the experiment,38

reconstruction of tracks and identification of particles from simulations and real data, and provides39

monitoring and diagnostics while running the experiment.40

Installation is performed via a set of shell scripts with SCons [10] as the build tool. The codebase is41

maintainedwith theGNUBazaar revision control system [11] and is hosted on Launchpad [12]. MAUS42

has a number of dependencies on standard packages such as Python, ROOT [13] and Geant4 [14]43

which are built as "third party" external libraries during the installation process. The officially44

supported platform is Scientific Linux 6 [15] though developers have successfully built on CentOS [16],45

Fedora [17], and Ubuntu [18] distributions.46

Each of the MICE detector systems, described in section 1.1, is represented within MAUS. Their47

data structures are described in section 2.2 and their simulation and reconstruction algorithms in48

sections 3 and 4. MAUS also provides “global” reconstruction routines, which combine data from49

individual detector systems to identify particle species by the likelihood method and perform a global50

track fit. These algorithms are also described in section 4.51

2.1 Code design52

MAUS is written in a mixture of Python and C++. C++ is used for complex or low-level algorithms53

where processing time is important, while Python is used for simple or high-level algorithms where54

development time is a more stringent requirement. Developers are allowed to write in either Python55

or C++ and Python bindings to C++ are handled through internal abstractions. In practice, all the56

reconstruction modules are written in C++ but support is provided for legacy modules written in57

Python.58

MAUS has an Application Programming Interface (API) that provides a framework on which59

developers can hang individual routines. The MAUS API provides MAUS developers with a well-60
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defined environment for developing reconstruction code, while allowing independent development of61

the back-end and code-sharing of common elements, such as error handling and data-wrangling.62

The MAUS data processing model is inspired by the Map-Reduce framework [19], which forms63

the core of the API design. Map-Reduce, illustrated in figure 2 is a useful model for parallelizing data64

processing on a large scale. A map process takes a single object as an input, which remains unaltered,65

and returns a new object as the output, whereas a transformer process alters the input object in place66

(in the case of MAUS this object is the spill class, see Section 2.2).67

A Module is the basic building block of the MAUS API framework. Four types of module exist68

within MAUS:69

1. Inputters generate input data either by reading data from files or sockets, or by generating an70

input beam;71

2. Mappersmodify the input data, for example by reconstructing signals fromdetectors, or tracking72

particles to generate MC hits;73

3. Reducers collate the mapped data and allow functionality that requires access to the entire data74

set; and75

4. Outputters save the data either by streaming over a socket or writing to disk.76

Input

Input

Input

Input

Input

Map

Map

Map

Map

Map

Reduce

Reduce

Output

Output

Figure 2. A Map-Reduce framework.

Each module type follows a common, extensible, object-orientated class heirarchy, shown for the case77

of the map and reduce modules in figure 3.78

There are some objects that sit outside the scope of this modular framework but are never-79

theless required by several of the modules. For instance, the detector geometries, magnetic fields,80

and calibrations are required by the reconsruction and simulation modules, and objects such as the81

electronics-cabling maps are required in order to unpack data from the data acquisition (DAQ) source,82

and error handling functionality is required by all of the modules. All these objects are accessed83

through a static singleton globals class.84
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IModule
+ virtual birth(string) : void 
+ virtual death() : void 

IMap
+ process(T*) : void 
+ virtual process_pyobj(PyObject*) : PyObject* 

 public virtual

ModuleBase
+ birth(string) 
+ death() : void 
- virtual birth(string) : void 
- virtual death() : void 

 public virtual

IReduce
+ process(T*) : void 
+ virtual process_pyobj(PyObject*) : PyObject* 

 public virtual

MapBase
+ _process(T*) : void 
- process(T*) : void 
- process_pyobj(PyObject*) : PyObject* 

 public virtual

ISpecialisedMap
 

 public virtual  public

ReduceBase
+ _process(T*) : void 
- process(T*) : void 
- process_pyobj(PyObject*) : PyObject* 

 public  public virtual

MyMap
- _birth(string) : void 
- _death() : void 
- _process(T*) : void 

 public

SpecialisedMapBase
 

 public

MyReduce
- _birth(string) : void 
- _death() : void 
- _process(T*) : void 

 public public virtual

Figure 3. The MAUS API class hierarchy for Map and Reduce modules. The input and output modules
follow related designs. T represents a templated argument. “+” indicates the introduction of a virtual void
method, defining an interface, while “-” indicates that a class implements that method, fulfilling that aspect of
the interface. The process_pyobj functions are the main entry points for Python applications, and process the
entry points for C++ applications. The framework can be extended as many times as necessary, as exemplified
by the “SpecialisedMap” classes.

MAUS has two execution concepts. A job refers to a single execution of the code, while a run85

refers to the processing of data for a DAQ run or MC run. A job may contain many runs. Since data are86

typically accessed from a single source and written to a single destination, Inputters and Outputters are87

initialized and destroyed at the beginning and end of a job. On the other hand, Mappers and Reducers88

are initialized at the beginning of a run in order to allow run-specific information such as electronics89

cabling maps, fields, calibrations and geometries to be loaded.90

The principal data type in MAUS, which is passed from module to module, is the spill. A single91

spill corresponds to data from the particle burst associated with a dip of the MICE target [4]. A92

spill lasts up to ∼ 3ms and contains several DAQ triggers. Data from a given trigger define a single93

MICE event. In the language of the Input-Map-Reduce-Output framework, an Input module creates94

an instance of spill data, a Map module processes the spill (simulating, reconstructing, etc.), a Reduce95

module acts on a collection of spills when all the mappers finish, and finally an Output module records96
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the data to a given file format.97

Modules can exchange spill data either as C++ pointers or JSON [20] objects. In Python, the data98

format can be changed by using a converter module, and in C++ mappers are templated to a MAUS99

data type and an API handles any necessary conversion to that type (see Fig. 3).100

Data contained within the MAUS data structure (see Section 2.2) can be saved to permanent101

storage in one of two formats. The default data format is a ROOT [13] binary and the secondary102

format is JSON. ROOT is a standard high-energy physics analysis package, distributed with MAUS,103

through which many of the analyses on MICE are performed. Each spill is stored as a single entry in104

a ROOT TTree object. JSON is an ASCII data-tree format. Specific JSON parsers are available – for105

example, the Python json library, and the C++ JsonCpp [21] parser come prepackaged with MAUS.106

In addition to storing the output from the Map modules, MAUS is also capable of storing the data107

produced by Reducer modules using a special Image class. This class is used by Reducers to store108

images of monitoring histograms, efficiency plots, etc. Image data may only be saved in JSON format.109

2.2 Data structure110

2.2.1 Physics data111

At the top of the MAUS data structure is the spill class which contains all the data from the simulation,112

raw real data and the reconstructed data. The spill is passed betweenmodules and written to permanent113

storage. The data within a spill is organized into arrays of three possible event types: an MCEvent114

contains data representing the simulation of a single particle traversing the experiment and the simulated115

detector responses; a DAQEvent corresponds to the real data for a single trigger; and a ReconEvent116

corresponds to the data reconstructed for a single particle event (arising either from aMonte Carlo(MC)117

particle or a real data trigger). These different branches of the MAUS data structure are shown118

diagrammatically in figures 4–9.119

The sub-structure of the the MC event class is shown in figure 5. The class is subdivided into120

events containing detector hits (energy deposited, position, momentum) for each of theMICE detectors121

(see Section 1.1). The event also contains information about the primary particle that created the hits122

in the detectors.123

The sub-structure of the the reconstruction event class is shown in figure 6. The class is subdivided124

into events representing each of the MICE detectors, together with the data from the trigger, and data125

for the global event reconstruction. Each detector class and the global reconstruction class has several126

further layers of reconstruction data. This is shown in figures 7–9.127
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Spill

DAQData EMRSpillData MausEventType MCEventArray ReconEventArray Scalars

Figure 4. The MAUS output structure for a spill event. The label in each box is the name of the C++ class.

MCEventArray

MCEvent
[]

CkovHitArray KLHitArray EMRHitArray Primary SciFiHitArray SpecialVirtualHitArray TofHitArray TrackArray VirtualHitArray

CkovHit
[]

CkovChannelID

KLHit
[]

KLChannelID

EMRHit
[]

EMRChannelID

SciFiHit
[]

SciFiChannelID

SpecialVirtualHit
[]

SpecialVirtualChannelID StepArray

Step
[]

TofHit
[]

TOFChannelID

Track
[]

VirtualHit
[]

Figure 5. The MAUS data structure for MC events. The label in each box is the name of the C++ class and []
indicates that child objects are array items.
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ReconEventArray

ReconEvent
[]

CkovEvent EMREvent KLEvent SciFiEvent TOFEvent

Figure 6. The MAUS data structure for reconstructed events. The label in each box is the name of the C++
class.
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CkovEvent

CkovDigitArray

CkovDigit
[]

CkovA CkovB

EMREvent

EMRPlaneHitArray

EMRPlaneHit
[]

EMRBarArray

EMRBar
[]

EMRBarHitArray

EMRBarHit
[]

KLEvent

KLEventDigit KLEventCellHit

KLDigitArray

KLDigit
[]

KLCellHitArray

KLCellHit
[]

Figure 7. The MAUS data structure for CKOV (left), EMR (middle) and KL (right) reconstructed events. The
label in each box is the name of the C++ class [] indicates that child objects are array items.
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Figure 8. The MAUS data structure for the tracker. The label in each box is the name of the C++ class and []
indicates that child objects are array items.
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Figure 9. The MAUS data structure for the TOFs. The label in each box is the name of the C++ class and []
indicates that child objects are array items.
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2.2.2 Top level data organisation128

In addition to the spill data, MAUS also contains structures for storing supplementary information for129

each run and job. These are referred to as JobHeader and JobFooter, and RunHeader and RunFooter.130

The former represents data from the start and end of a job, such as the MAUS release version used to131

create it, and the latter data from the start and end of a run, such as the geometry ID used for the data132

processing. This may be saved to permanent storage along with the spill.133

In order to interface with ROOT, particularly in order to save data in the ROOT format, thin134

wrappers for each of the top level classes, and a templated base class, were introduced. This allows135

the ROOT TTree, in which the output data is stored (see Section 2.2.1), to be given a single memory136

address to read from. The wrapper for Spill is called Data, while for each of RunHeader, RunFooter,137

JobHeader and JobFooter, the respective wrapper class is just given the original class namewith “Data”138

appended, e.g., RunHeaderData. The base class for each of the wrappers is called MAUSEvent. The139

class hierarchy is illustrated in Figure 10.140

MAUSEvent
+ virtual GetEvent() : T*
+ virtual SetEvent(T*) : void 

Data
- virtual GetEvent() : Spill*
- virtual SetEvent(Spill*) : void 

public 
 <<bind>> 
 T -> Spill

JobHeaderData
- virtual GetEvent() : JobHeader*
- virtual SetEvent(JobHeader*) : void 

public 
 <<bind>> 

 T -> JobHeader

JobFooterData
- virtual GetEvent() : JobFooter*
- virtual SetEvent(JobFooter*) : void 

public 
 <<bind>> 

 T -> JobFooter

RunHeaderData
- virtual GetEvent() : RunHeader*
- virtual SetEvent(RunHeader*) : void 

public 
 <<bind>> 

 T -> RunHeader

RunFooterData
- virtual GetEvent() : RunFooter*
- virtual SetEvent(RunFooter*) : void 

public 
 <<bind>> 

 T -> RunFooter

Figure 10. Class hierarchy for the wrappers and base class of the top-level classes of the MAUS data structure.

2.3 Data flow141

The MAUS data flow, showing the reconstruction chain for data originating from MC or real data, is142

depicted in figure 11. Each item in the diagram is implemented as an individual module. The data143

flow is grouped into three principal areas: the simulation data flow used to generate digits (electronics144

signals) from particle tracking; the real data flow used to generate digits from real detector data;145

and the reconstruction data flow which illustrates how digits are built into higher level objects and146

converted to parameters of interest. The reconstruction data flow is the same for digits from real data147

and simulation. In the case of real data, separate input modules are provided to read either directly148

from the DAQ, or from archived data stored on disk. A reducer module for each detector provides149

functionality to create summary histograms.150

2.4 Testing151

MAUS has a set of tests at the unit level and the integration level, together with code-style tests for both152

Python and C++. Unit tests are implemented to test a single function, while integration tests operate153
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Figure 11. Data flow for the MAUS project. The data flow is color-coded by detector: Ckov - green, EMR -
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on a complete workflow. Unit tests check that each function operates as intended by the developer.154

Tests are run automatically for every version committed to the repository and results show that a high155

level of code coverage has been achieved. Integration tests allow the overall performance of the code156

to be checked against specifications. The MAUS team provides unit test coverage that executes 70–80157

% of the total code base. This level of coverage typically results in a code that performs the major158

workflows without any problems.159

The MAUS codebase is built and tested using a Jenkins [22] continuous integration environment160

deployed on a cluster of servers. Builds and tests of the development branch are automatically triggered161

when there is a change to the codebase. Developers are asked to perform a build and test on a personal162

branch of the codebase using the test server before requesting a merge with the development trunk.163

This enables the MAUS team to make frequent clean releases. Typically MAUS works on a 4–8 week164

major-release cycle.165

3 Monte Carlo166

AMonteCarlo simulation ofMICEencompasses beamgeneration, geometrical description of detectors167

and fields, tracking of particles through detectors and digitization of the detectors’ response to particle168

interactions.169

3.1 Beam generation170

Several options are provided to generate an incident beam. Routines are provided to sample particles171

from a multivariate Gaussian distribution or generate ensembles of identical particles (pencil beams).172

In addition, it is possible to produce time distributions that are either rectangular or triangular in173

time to give a simplistic representation of the MICE time distribution. Parameters, controlled by174

datacards, are available to control random seed generation, relative weighting of particle species and175

the transverse-to-longitudinal coupling in the beam. MAUS also allows the generation of a polarized176

beam.177

Beam particles can also be read in from an external file created by G4Beamline [23] or ICOOL178

[24], as well as files in user-defined formats. In order to generate beams which are more realistic179

taking into account the geometry and fields of the actual MICE beamline, we use G4Beamline to180

model the MICE beamline from the target to a point upstream of the second quad triplet (upstream181

of Q4). The beamline settings, e.g., magnetic field strengths and number of particles to generate, are182

controlled through data-cards. The magnetic field strengths have been tuned to produce beams that183

are reasonably accurate descriptions of the real beam. Scripts to install G4beamline are shipped with184

MAUS.185

Once the beam is generated, the tracking and interactions of particles as they traverse the rest of186

the beamline and the MICE detectors are performed using Geant4.187

3.2 Geant4188

The MICE Muon Beam line [4] consists of a quadrupole triplet (Q123) that captures pions produced189

when the MICE target intersects the ISIS proton beam, a pion-momentum-selection dipole (D1), a190
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superconducting solenoid (DS) to focus and transport the particles to a second dipole (D2) that is used191

to select the muon-beam momentum, and a transport channel composed of a further two quadrupole192

triplets (Q456 and Q789). The Geant4 simulation within MAUS starts 1m downstream of the second193

beamline dipole magnet D2. Geant4 bindings are encoded in the Simulation module. Geant4 groups194

particles by run, event and track. A Geant4 run maps to a MICE spill; a Geant4 event maps to a195

single inbound particle from the beamline; and a Geant4 track corresponds to a single particle in the196

experiment.197

Geant4 provides a variety of reference physics processes to model the interactions of particles198

with matter. The default process in MAUS is “QGSP_BERT” which causes Geant4 to model hadron199

interactions using a Bertini cascade model up to 10 GeV/c [25]. MAUS provides methods to set up200

the Geant4 physical processes through user-controlled data-cards. Finally, MAUS provides routines201

to extract particle data from the Geant4 tracks at user-defined locations.202

3.3 Geometry203

MAUS uses an online Configuration Database to store all of its geometries. These geometries have204

been extracted from CAD drawings which are updated based on the most recent surveys and technical205

drawings available. The CAD drawings are translated to a geometry-specific subset of XML, the206

Geometry Description Markup Language (GDML) [26] prior to being recorded in the configuration207

database through the use of the FastRAD [27] commercial software package.208

TheGDML formatted description contains the beamline elements and the positions of the detector209

survey points. Beam-line elements are described using tessellated solids to define the shapes of the210

physical volumes. The detectors themselves are described using an independently generated set of211

GDML files using Geant4 standard volumes. An additional XML file is appended to the geometry212

description that assigns magnetic fields and associates the detectors to their locations in the GDML213

files. This file is initially written by the geometry maintainers and formatted to contain run-specific214

information during download.215

The GDML files can be read via a number of libraries in Geant4 and ROOT for the purpose of216

independent validation. The files are in turn translated into the MAUS-readable geometry files either217

by directly accessing the data using a python extension or through the use of EXtensible Stylesheet218

Language Transformations (XSLT) [28].219

3.4 Tracking, field maps and beam optics220

MAUS tracking is performed using Geant4. By default, MAUS uses 4th order Runge-Kutta (RK4)221

for tracking, although other routines are available. RK4 has been shown to have very good precision222

relative to the MICE detector resolutions, even for step sizes of several cm.223

Magnetic field maps are implemented in a series of overlapping regions. At each tracking step,224

MAUS iterates over the list of fields, transforms to the local coordinate system of the field map, and225

calculates the field. The field values are transformed back into the global coordinate system, summed,226

and passed to Geant4.227

Numerous field types have been implemented within the MAUS framework. Solenoid fields can228

be calculated numerically from cylindrically symmetric 2D field maps, by taking derivatives of an229
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on-axis solenoidal field or by using the sum of fields from a set of cylindrical current sheets. Multipole230

fields can be calculated from a 3D field map, or by taking derivatives from the usual multipole231

expansion formulas. Linear, quadratic and cubic interpolation routines have been implemented for232

field maps. Pillbox fields can be calculated by using the Bessel functions appropriate for a TM010233

cavity or by reading a cylindrically symmetric field map.234

Matrix transport routines for propagating particles and beams through these field maps have been235

implemented. Transport matrices are calculated by taking the numerical derivative of the tracking236

output and can be used to transport beam ellipses and single particles.237

The accelerator modeling routines inMAUS have been validated against ICOOL and G4Beamline238

and have been used to model a number of beamlines and rings, including a neutrino factory front-239

end [29].240

3.5 Detector response and digitization241

The modeling of the detector response and electronics enables MAUS to provide data used to test242

reconstruction algorithms and estimate the uncertainties introduced by detectors and their readout.243

The interaction of particles in material is modeled using Geant4. A “sensitive detector” class for244

each detector processes Geant4 hits in active detector volumes and stores hit information such as the245

volume that was hit, the energy deposited and the time of the hit. Each detector’s digitization routine246

then simulates the electronics’ response to these hits, modeling processes such as the photo-electron247

yield from a scintillator bar, attenuation in light guides and the pulse shape in the electronics. The248

data structure of the outputs from the digitizers are designed to match the output from the unpacking249

of real data from the DAQ.250

4 Reconstruction251

The reconstruction chain takes as its input either digitized hits from the MC or DAQ digits from real252

data. Regardless, the detector reconstruction algorithms, by requirement and design, operate the same253

way on both MC and real data.254

4.1 Time of flight255

There are three time-of-flight detectors inMICEwhich serve to distinguish particle type. The detectors256

are made of plastic scintillator and in each station there are orthogonal x and y planes with 7 or 10257

slabs in each plane.258

Each Geant4 hit in the TOF is associated with a physical scintillator slab. The energy deposited259

by a hit is first converted to units of photo-electrons. The photo-electron yield from a hit accounts260

for the light attenuation corresponding to the distance of the hit from the photomultiplier tube (PMT)261

and is then smeared by the photo-electron resolution. The yields from all hits in a given slab are then262

summed and the resultant yield is converted to ADC counts.263

The time of the hit in the slab is propagated to the PMTs at either end of the slab. The propagated264

time is then smeared by the PMT’s time resolution and converted to TDC counts. Calibration265
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corrections based on real data are then added to the TDC values so that, at the reconstruction stage,266

they can be corrected just as is done with real data.267

The reconstruction proceeds in two main steps. First, the slab-hit-reconstruction takes individual268

PMT digits and associates them to reconstruct the hit in the slab. If there are multiple hits associated269

with a PMT, the hit which is earliest in time is taken to be the real hit. Then, if both PMTs on a270

slab have fired, the slab is considered to have a valid hit. The TDC values are converted to time271

and the hit time and charge associated with the slab hit are taken to be the average of the two PMT272

times and charges respectively. In addition, the product of the PMT charges is also calculated and273

stored. Secondly, individual slab hits are used to form space-points. A space-point in the TOF is a274

combination of x and y slab hits. All combinations of x and y slab hits in a given station are treated275

as space-point candidates. Calibration corrections, stored in the Configurations Database, are applied276

to these hit times and if the reconstructed space-point is consistent with the resolution of the detector,277

the combination is said to be a valid space-point. The TOF has been shown to provide good time278

resolutions at the 60 ps level [6].279

4.2 Scintillating fiber trackers280

The scintillating fiber trackers are the central piece of the reconstruction. As mentioned in Section 1.1,281

there are two trackers, one upsteam and the other downstream of an absorber, situated within solenoidal282

magnetic fields. The trackersmeasure the emittance before and after particles pass through the absorber.283

The tracker software algorithms and performance are described in detail in [30]. Digits are the284

most basic unit fed into the main reconstruction module, each digit representing a signal from one285

channel. Digits from adjacent channels are assumed to come from the same particle and are grouped286

to form clusters. Clusters from channels which intersect each other, in at least two planes from the287

same station, are used to form space-points, giving x and y positions where a particle intersected a288

station. Once space-points have been found, they are associated with individual tracks through pattern289

recognition (PR), giving straight or helical PR tracks. These tracks, and the space-points associated290

with them, are then sent to the final track fit. To avoid biases that may come from space-point291

reconstruction, the Kalman filter uses only reconstructed clusters as input.292

4.3 KL calorimeter293

Hit-level reconstruction of the KL is implemented in MAUS. Individual PMT hits are unpacked from294

the DAQ or simulated from MC and the reconstruction associates them to identify the slabs that were295

hit and calculates the charge and charge-product corresponding to each slab hit. The KL has been used296

successfully to estimate the pion contamination in the MICE muon beamline [31].297

4.4 Electron-muon ranger298

Hit-level reconstruction of the EMR is implemented in MAUS. The integrated ADC count and time299

over threshold are calculated for each bar that was hit. The EMR reconstructs a wide range of300

variables that can be used for particle identification and momentum reconstruction. The software and301

performance of the EMR are described in detail in [32].302
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4.5 Cherenkov303

The CKOV reconstruction takes the raw flash-ADC data, subtracts pedestals, calculates the charge and304

applies calibrations to determine the photo-electron yield.305

4.6 Global reconstruction306

The aim of the Global Reconstruction is to take the reconstructed outputs from individual detectors and307

tie them together to form a global track. A likelihood for each particle hypothesis is also calculated.308

4.6.1 Global track matching309

Global track matching is performed by collating particle hits (TOFs 0, 1 and 2, KL, Ckovs) and310

tracks (Trackers and EMR) from each detector using their individual reconstruction and combining311

them using a RK4 method to propagate particles between these detectors.The tracking is performed312

outwards from the cooling channel – i.e., the upstream tracker through TOF0, and downstream tracker313

through EMR. Track points are matched to form tracks using an RK4 method. Initially this is done314

independently for the upstream and downstream sections (i.e., either side of the absorber). As the315

trackers provide the most accurate position reconstruction, they are used as starting points for track316

matching, propagating hits outwards into the other detectors and then comparing the propagated317

position to the measured hit in the detector. The acceptance criterion for a hit belonging to a track318

is an agreement within the detector’s resolution with an additional allowance for multiple scattering.319

Track matching is currently performed for all TOFs, KL and EMR.320

The RK4 propagation requires the mass and charge of the particle to be known. Hence, it is321

necessary to perform track matching using a hypothesis for each particle type (muons, pions, and322

electrons). Tracks for all possible PID hypotheses are then passed to the Global PID algorithms.323

4.6.2 Global PID324

Global particle identification in MICE typically requires the combination of several detectors. The325

time-of-flight between TOF detectors can be used to calculate velocity, which is compared with the326

momentum measured in the trackers to identify the particle type. For all events but those with very327

low transverse momentum(pt ), charge can be determined from the direction of helical motion in the328

trackers. Additional information can be obtained from the CKOV, KL and EMR detectors. The global329

particle identification framework is designed to tie this disparate information into a set of hypotheses330

of particle types, with an estimate of the likelihood of each hypothesis.331

The Global PID in MAUS uses a log-likelihood method to identify the particle species of a global332

track. It is based upon a framework of PID variables. Simulated tracks are used to produce probability333

density functions (PDFs) of the PID variables. These are then compared with the PID variables for334

tracks in real data to obtain a set of likelihoods for the PIDs of the track.335

The input to the Global PID is several potential tracks from global track matching. During the336

track matching stage, each of these tracks was matched for a specific particle hypothesis. The Global337

PID then takes each track and determines the most likely PID following a series of steps:338

1. Each track is copied into an intermediate track;339
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2. For each potential PID hypothesis p, the log-likelihood is calculated using the PID variables;340

3. The track is assigned an object containing the log-likelihood for each hypothesis; and341

4. From the log-likelhoods, the confidence level, C.L., for a track having a PID p is calculated and342

the PID is set to the hypothesis with the the best C.L.343

4.7 Online reconstruction344

During data taking, it is essential to visualize a detector’s performance and have diagnostic tools345

to identify and debug unexpected behavior. This is accomplished through summary histograms of346

high and low-level quantities from detectors. The implementation is through a custom multi-threaded347

application based on a producer–consumer pattern with thread-safe FIFO buffers. Raw data produced348

by the DAQ are streamed through a network and consumed by individual detector mappers described in349

Section 3. The reconstructed outputs produced by the mappers, are in turn consumed by the reducers.350

The mappers and reducers are distributed among the threads to balance the load. Finally, outputs from351

the reducers are written as histogram images. Though the framework for the online reconstruction is352

based on parallelized processing of spills, the reconstruction modules are the same as those used for353

offline processing. A lightweight tool based on Django [33] provides live web-based visualization of354

the histogram images as and when they are created.355

5 Summary356

The MICE collaboration has developed the MAUS software suite to simulate the muon beamline,357

simulate the MICE detectors, and reconstruct both simulated and real data. The software also provides358

global track matching and particle identification capablities. Simplified programming interfaces and359

testing environments enable productive development. MAUS has been successfully used to simulate360

and reconstruct data both online during data-taking and offline on batch production systems.361
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