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Abstract

At the heart of a frontal or multifrontal solver for the solution of sparse symmetric sets of linear equations,

there is the need to partially factorize dense matrices (the frontal matrices) and to be able to use their

factorizations in subsequent forward and backward substitutions. For a large problem, packing (holding

only the lower or upper triangular part) is important to save memory. It has long been recognized that

blocking is the key to efficiency and this has become particularly relevant on modern hardware. For

stability in the indefinite case, the use of interchanges and 2×2 pivots as well as 1×1 pivots is equally

well established. It is shown here that it is possible to use these three ideas together to achieve stable

factorizations of large real-world problems with good execution speed.

The ideas are not restricted to frontal and multifrontal solvers and are applicable whenever partial or

complete factorizations of dense symmetric indefinite matrices are needed.

Keywords: sparse symmetric linear systems, LDLT factorization, 2×2 pivots, interchanges, frontal,

multifrontal.
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1 Introduction

In this paper, we consider the factorization of a dense symmetric indefinite matrix A of order n whose

lower-triangular part is packed by columns and has the form

A =

(

A11 AT
21

A21 A22

)

, (1.1)

where A11 is a square matrix of order p and pivots are restricted to being within A11. Sometimes, it is

not possible to choose pivots for the whole of A11. For example, a column of A may be zero in A11 and

nonzero in A21. Our factorization therefore takes the form

P T AP = LDT T (1.2)

where P is a permutation matrix of the form

P =

(

P11

I

)

(1.3)

with P11 of order p, L is the unit lower-triangular matrix

L =

(

L11

L21 I

)

, (1.4)

with L11 of order q ≤ p, and D is the matrix

D =

(

D11

S22

)

, (1.5)

where D11 is a block diagonal matrix of order q with blocks of order 1 or 2 and S22 is a dense matrix

of order n−q. We refer to this as a partial factorization, but allow the case of a complete factorization

(p = n), in which case q has the value n.

Once the factorization is available, it may be used for the following partial solutions:

Lx = b,

(

D11

I

)

x = b, and LT x = b. (1.6)

and the corresponding equations for rectangular matrices X and B of the same shape.

For speed of execution when n is large, we rearrange the matrix into a block form that enables most of

the operations to be performed using Level-3 BLAS (Dongarra, Du Croz, Duff and Hammarling, 1990b).

Details are given in Section 5.

For stability, we follow the recommendation of Duff, Gould, Reid, Scott and Turner (1991) to use

symmetric permutations to ensure that 1×1 and 2×2 pivots satisfy a relative pivot threshold. This

ensures that the entries of L are bounded in size. We explain our reasons for this choice in Section 3.

Combining blocking with symmetric permutations that are chosen dynamically during the factorization

is a substantial challenge and is the main achievement that we report in this paper.

The code is collected into the module HSL MA64 of the mathematical software library HSL (HSL 2007).

We expect the principal application to be within the multifrontal method and our data formats have been

designed to take this into account, as we explain in Section 2. However, this work is also available for

other applications, including the case where a complete factorization is needed (p = n).

The rest of the paper is organized as follows. Section 3 explains our pivoting strategy. Section 4

describes the implementation in the simplest case and is followed by Section 5 which explains how blocking

and other details are handled. Parallel working is considered in Section 6 and the results of some numerical

experiments are reported in Section 7.
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2 The multifrontal method

The multifrontal method (see, for example, Duff and Reid, 1983) separates the factorization of a large

sparse symmetric matrix into steps, each involving a set of rows and corresponding columns. The entries

of these rows and columns are compressed into a dense symmetric matrix of the form (1.1), called the

frontal matrix, and the operations are performed within it. The partial factorization of the frontal matrix

is the task that HSL MA64 performs and is the focus of this paper. The multifrontal application has strongly

influenced the design of HSL MA64.

For economy of storage, it is desirable to take advantage of symmetry and hold only the upper or

lower triangular part of each frontal matrix. The HSL multifrontal solver HSL MA77 (Reid and Scott, 2008,

2009b) holds the lower triangular part by columns, so we have adopted this format for input of A to

HSL MA64 and output of S22 (see (1.5)).

Only the first p rows and columns of the frontal matrix A are available for pivots because the entries

in A22 will have additional values added later from other frontal matrices. The ‘generated elements’ S22

from two or more frontal matrices are added into a later frontal matrix, whose rows and columns include

all those of the generated elements that contribute to it. This merging operation would be awkward with

blocking in place, which is why HSL MA77 does not use it. We refer to this later frontal matrix as the

‘parent’.

If q < p pivots are selected, the generated element S22 has p− q more rows and columns than it would

have had if pivots could have been chosen for all of A11. The enlarged matrix is passed to the parent and

the extra rows and columns will be eliminated there or at an ancestor, where there is more choice for the

pivot and the entries may have been modified by other eliminations. The extra rows and columns and the

pivots within them are called ‘delayed’. The delayed rows and columns will be unchanged when processing

starts within the parent matrix and are unlikely to contain entries that are suitable as pivots until other

elimination operations have been performed. There is therefore an option in HSL MA64 to defer looking for

pivots in these rows and columns (see Section 5.5) until all the others have been tried.

If there are many delayed pivots, the multifrontal factorization becomes substantially slower and needs

much more storage. Once the factorization is available, the speed of solution of a set of equations is

approximately proportional to the number of entries in its factorization, so this is affected by delayed

pivots. HSL MA64 therefore has options for a relaxed pivot threshold and for static pivoting (see, for

example, Li and Demmel, 1998), that is, forcing pivots that do not satisfy the stabililty test to be chosen,

perhaps after modification. The intention is to reduce fill-in, probably at the expense of an iterative

procedure (such as iterative refinement) for each solution to obtain the required accuracy.

3 Pivoting strategy

We choose the pivots one by one and suppose that q denotes the number of rows and columns of D found

so far (that is, the number of 1×1 pivots plus twice the number 2×2 pivots). We use the notation aij , with

i > q and j > q, to denote an entry of the matrix after it has been updated by all the permutations and

pivot operations so far. Our stability test for a 1×1 pivot in column m, q < m ≤ p, is the usual threshold

test

|amm| > u max
i6=m, i>q

|aim|, (3.1)

where the relative pivot tolerance u is a user-set value in the range 0 ≤ u ≤ 1.0. This is equivalent to the

test

|amm|−1 max
i6=m, i>q

|aim| < u−1. (3.2)

In the case where u is zero, this is interpreted as requiring that the pivot be nonzero. This was generalized

by Duff et al. (1991) to the test
∣

∣

∣

∣

∣

(

amm aml

aml all

)−1
∣

∣

∣

∣

∣

(

maxi6=m,l, i>q |aim|

maxi6=m,l, i>q |ail|

)

<

(

u−1

u−1

)

, (3.3)
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for a 2×2 pivot in rows and columns l and m, where the absolute value notation for a matrix refers to the

matrix of corresponding absolute values and u is the same user-set threshold value. In the case where u is

zero, this is interpreted as requiring that the pivot be nonsingular. We use this test with the default value

0.1 for u. Another value that is often used is 0.01.

If amm is accepted as a 1×1 pivot, it becomes the next diagonal block of D and row and column m

are permuted (if necessary) to the next pivotal position, q+1. The corresponding diagonal entry of L is

1 and inequality (3.2) tells us that the off-diagonal entries of this column of L are bounded in modulus

by u−1. If

(

amm aml

aml all

)

is accepted as a 2×2 pivot, it becomes the next diagonal block of D and rows

and columns l and m are permuted (if necessary) to the next two pivotal positions, q + 1 and q + 2. The

corresponding diagonal block of L is the identity matrix of order 2 and inequality (3.3) tells us that the

off-diagonal entries of these columns of L are bounded in modulus by u−1. Thus, all the diagonal entries

of L are 1 and all the off-diagonal entries of L are bounded in modulus by u−1. This limits the growth of

the size of the entries of the reduced matrix.

Our strategy for relaxed and static pivoting is based on the work of Duff and Pralet (2007). Relaxed

pivoting may be requested by providing a lower bound umin for u. If no 1×1 or 2×2 candidate pivot

satisfies the test (3.1) or (3.3) but the pivot that is nearest to satisfying the test would satisfy it with

u = v ≥ umin, the pivot is accepted and u is reduced to v. The new value of u is employed thereafter.

Our default value for umin is 0.1. If p = n, we do not allow its value to exceed 0.5 in order to ensure that

a complete set of pivots is chosen.

If static pivoting is requested (see final paragraph of Section 2) and no 1×1 or 2×2 candidate pivot

satisfies the test (3.1) or (3.3) even after relaxing the value of u, the 1×1 pivot that is nearest to satisfying

the test is accepted. If its absolute value is less than another user-set threshold static, it is given the

value that has the same sign but absolute value static.

If no pivot is modified by static pivoting and q = p, the largest value of u that would have resulted in

all pivots satisfying the stability tests is returned. If no pivot is modified by static pivoting and q < p, the

largest value of u that would have resulted in more pivots satisfying the stability tests is returned.

Stability was considered by Ashcraft, Grimes and Lewis (1999), who showed that bounding the size

of the entries of L, together with a backward stable scheme for solving 2×2 linear systems, suffices to

show backward stability for the entire process. They found that the widely used strategy of Bunch and

Kaufman (1977) does not have this property.

Our default pivoting strategy is the symmetric equivalent of rook pivoting. For the unsymmetric

problem, Gill, Murray and Saunders (2005) report that, provided u is chosen to be sufficiently close to 1,

the rank revealing properties of rook pivoting are essentially as good as for threshold complete pivoting

and they include rook pivoting as an option within the sparse direct solver LUSOL. Our experience of

rook pivoting (see Reid and Scott, 2009a and Scott, 2008) has been satisfactory, too, for the unsymmetric

problem; the factors usually had less entries, the residuals were usually smaller, while the factorization was

sometimes significantly faster. Our code is arranged to handle singular matrices and return a low-norm

solution if the problem is consistent.

4 Implementation in the simplest case

We begin by describing our implementation for the case where n is less than the block size so there is no

blocking, the matrix is not found to be singular or nearly singular and the options described in Subsections

5.4 and 5.5 are not requested. To allow the use of Level-2 BLAS (Dongarra, Du Croz, Hammarling and

Hanson, 1988) and Level-3 BLAS (Dongarra, Du Croz, Duff and Hammarling, 1990a), the matrix is held

in full storage with valid entries only in the lower-triangular part. In this simple case, the implementation

is primarily left-looking, that is, each column of the lower-triangular part of the matrix is not altered until

just before the column is first searched for a pivot. We have chosen a left-looking algorithm because caching

is more efficient for referencing variables than for altering their values. Suppose that q < p pivots have
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been chosen and their rows and columns have been permuted to the leading positions. Suppose further

that column m is about to be searched and that all the columns between q and m have been updated. For

column m, the update required is

Am:n,m ⇐ Am:n,m − Lm:n,1:qD1:q,1:q(Lm,1:q)
T . (4.1)

Here and later, we use section notation in subscripts to refer to submatrices. Note that the submatrices

sometimes have size zero. After forming the vector

U1:q,m = D1:q,1:q(Lm,1:q)
T , (4.2)

we can express the update as

Am:n,m ⇐ Am:n,m − Lm:n,1:qU1:q,m, (4.3)

which can be performed by the BLAS-2 subroutine gemv.

Note that to test for a 1×1 pivot in column m, we need the vector of entries to the left of the diagonal

in row m, that is, Am,q+1:m−1, which will be fully updated. If the 1×1 pivot is accepted, we increment q by

one, interchange rows and columns m and q, calculate column q of D and L, then perform the right-looking

update

Aq+1:n,q+1:m ⇐ Aq+1:n,q+1:m − Lq+1:n,qDq,q(Lq+1:m,q)
T . (4.4)

After forming the vector

Uq,q+1:m = Dq,q(Lq+1:m,q)
T , (4.5)

we can express the update as

Aq+1:n,q+1:m ⇐ Aq+1:n,q+1:m − Lq+1:n,qUq,q+1:m, (4.6)

which could be performed by the BLAS-2 subroutine ger, but we have chosen to use a sequence of calls

to the BLAS-1 (Lawson, Hanson, Kincaid and Krogh, 1979) subroutine axpy because this avoids wasted

operations in the upper-triangular part and there are no data-movement advantages in using ger.

If m > q +1, we can look for a 2×2 pivot in the pairs of rows and columns (j, m), j = q +1, . . . , m− 1.

If an acceptable 2×2 pivot is found, we increment q by two, interchange rows and columns to move the

selected two forward, calculate columns q − 1 and q of D and L, and form the 2-rowed matrix

Uq−1:q,q+1:m = Dq−1:q,q−1:q(Lq+1:m,q−1:q)
T . (4.7)

We can then perform the double update

Aq+1:n,q+1:m ⇐ Aq+1:n,q+1:m − Lq+1:n,q−1:qUq−1:q,q+1:m, (4.8)

with the BLAS-3 subroutine gemm. The performance might be as much as twice that for (4.6), but will

not be as good as it is for full-sized blocks.

If both a 1×1 and a 2×2 pivot are available, we choose the 2×2 pivot because it reduces by two the

number, m − q, of columns that are being kept updated.

If we cannot choose a 1×1 or 2×2 pivot, the column is simply retained for updating in later steps

and possible choice as the first half of a 2×2 pivot. Note that this results in every pair of fully-summed

columns that do not have an acceptable 1×1 pivot being considered for defining a 2×2 pivot.

Unless m = p, we now increment m by one and continue. If m = p and q = p, the calculation of L and

D is complete. If m = p and q 6= p, we restart the search from column q +1. We continue in this way until

q = p or q − p successive columns fail to provide a pivot. The algorithm is summarized in pseudo-Fortran

in Algorithm 1. After each pivot has been accepted and the consequent operations applied, we could have

retested all the columns that are up to date but do not have a pivot, but do not do so because it is likely

to lead to repeated unsuccessful testing.
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Algorithm 1 Basic algorithm summary. Here axpy, gemv and gemm are BLAS subroutines. At each

stage, q is the number of pivots chosen so far and m is the index of the column to be searched for a pivot.

Input: matrix A in the form (1.1) and the order p of A11

Initialise: q = 0; m = 0

do while (q < p)

do test = 1, p − q

m = m + 1

if (m > p) then

m = q + 1

up = q ! Number of updates applied to column p

end if

use gemv to apply rank-(q − up) updates to column m

if (columns j, m have an acceptable 2 × 2 pivot) then

q = q + 2

interchange columns (q − 1, q) with columns (j, m)

calculate columns q − 1, q of D and L

use gemm to apply rank-2 updates to columns q + 1 to m

exit

else if (column m has an acceptable 1 × 1 pivot) then

q = q + 1

interchange column q with column m

calculate column q of D and L

use axpy to apply rank-1 updates to columns q + 1 to m

exit

end if

end do

end do
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It is conceivable that many of the pivots are found only after a large number of unsuccessful tests of

other columns, so that the total number of column searches is O(p2). We have not been able to show

that this is impossible, but when calling HSL MA64 more than a million times during the multifrontal

factorization of 56 large sparse matrices with u = 0.01, we found that the total number of searches in a

call exceeded 4p only twice and never exceeded 7p. With u = 0.1, the total number of searches in a call

exceeded 5p only 4 times and never exceeded 8p.

Once L and D are known, the first p−q rows and columns of S22 (see (1.5)) are known, but the trailing

part still needs to be calculated. Note that no interchanges are performed in this part of the matrix, see

equations (1.2) and (1.3). The calculation may be performed by forming

U1:q,p+1:n = D1:q,1:q(Lp+1:n,1:q)
T (4.9)

and performing the update

Ap+1:n,p+1:n ⇐ Ap+1:n,p+1:n − Lp+1:n,1:qU1:q,p+1:n (4.10)

with the BLAS-3 subroutine gemm.

5 The block form

For the Cholesky factorization of a positive-definite dense symmetric matrix, Andersen, Gunnels,

Gustavson, Reid and Wasniewski (2005) recommend a ‘lower blocked hybrid’ format that is as economical

of storage as packing the lower-triangular part by columns but is able to take advantage of Level-3 BLAS.

They divide the lower-triangular part of the matrix into blocks, most of which are square and of the same

order nb.

Unfortunately, the interchanges that are needed in the indefinite case make the blocked hybrid format

very awkward. Furthermore, there is intense activity in columns q+1 to m (see Algorithm 1) which makes

it desirable to hold the columns contiguously in memory. We therefore use a format that we call the ‘block

column’ format. This holds the lower triangular part of the matrix by block columns, with each block

having nb columns (except possibly the final block) and being stored by columns. The numbers of rows

in the blocks are n, n−nb, etc. This format is illustrated on the left of Figure 5.1. We chose not to pack

the lower triangular parts of the blocks on the diagonal in order to simplify the code and allow us to use

more efficient BLAS without any further rearrangements. It may readily be verified that the total waste

is limited to n(nb − 1)/2.

1 # #

2 12 #

3 13 23

4 14 24 31 # #

5 15 25 32 39 #

6 16 26 33 40 47

7 17 27 34 41 48 52 # #

8 18 28 35 42 49 53 57 #

9 19 29 36 43 50 54 58 62

10 20 30 37 44 51 55 59 63 64

1

2 4

3 5 6

7 14 21 28

8 15 22 29 31

9 16 23 30 32 33

10 17 24 34 38 42 46

11 18 25 35 39 43 47 48

12 19 26 36 40 44 49 51

13 20 27 37 41 45 50 52

Figure 5.1: Block column format when n = 10 and nb = 3, and after rearrangement when q = 8.

Prior to performing any eliminations, we rearrange A to block column format.

We begin the factorization as in Section 4 and summarized in Algorithm 1, except that account must

be taken of the blocking once m exceeds nb. We continue until a 1×1 pivot is chosen in column nb or

a 2×2 pivot is chosen that includes column nb. Now we apply the first nb pivot operations to columns
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m + 1 to n, block column by block column (and in Algorithm 1 increment up by nb). By employing the

temporary matrix

U1:nb,m+1:n = D1:nb,1:nb(Lm+1:n,1:nb)
T , (5.1)

we can apply these operations to the remaining part of the block column that contains column m + 1

and to subsequent block columns. For a block column that spans columns j to k, we apply the BLAS-3

subroutine gemm thus

Aj:n,j:k ⇐ Aj:n,j:k − Lj:n,1:nbU1:nb,j:k. (5.2)

This is much more efficient than waiting for the updates to be done as in equation (4.3) using the BLAS-2

subroutine gemv. The array that holds U really needs only nb rows, but we find it convenient to give it

an extra row for the case of a 2×2 pivot spanning two block columns. Here, row nb + 1 of U is moved to

row 1 of the array and rows found thereafter are placed in the array from row 2.

We do not retain the block column format for the matrix

(

L11

L21

)

on return because that would

significantly increase the memory needed. Our experience is that quite large values of the block size nb

are desirable, for example, 96 (see Section 7). Once the partial factorization is complete, this matrix is

rearranged; it is still held by block columns, but each consists of the diagonal block packed by columns

followed by the off-diagonal part held by columns. This form is as economical of storage as that of Andersen

et al. (2005) and is illustrated on the right of Figure 5.1. It allows the partial solution operations for a

single right-hand side to be performed with the BLAS-2 subroutines gemv and tpsv and, for multiple

right-hand sides, to be performed with the BLAS-3 subroutine gemm and repeated calls of tpsv.

Before return, columns q + 1 to n need to be rearranged to packed lower triangular format.

5.1 Rearranging only the first p columns

If we know that there will be only one block step (that is, if p ≤ nb), the trailing n−p columns are updated

only once and caching considerations make it better to rearrange this part of the matrix only when it is

updated and rearrange it back immediately afterwards. In the case, we therefore use the block column

format only for the first p columns.

5.2 Inner blocking

We have found that a large block size is desirable for a large matrix. Unfortunately, with a large block

size, many operations are performed with gemv. Indeed, if p ≤ nb, no rank-nb gemm calls are made

while calculating L and D. In this case, the code would have been faster with a smaller block size. The

same argument can be made when p is large for the calculation of the first nb columns of L and for each

subsequent block of nb columns. We have therefore adopted the concept of an inner block size nbi for

use solely within the computation of each block of nb columns of L. For simplicity of coding, we require

nb/nbi to be an integer so that all the inner blocks have size exactly nbi. We continue to store the block

column in a rectangular array with nb columns, which differs from the usual practice with nested blocking

(see, for example, Elmroth, Gustavson, Jonsson and K̊agström, 2004) since the data format is not affected.

We keep the columns in contiguous memory to facilitate checking pivots for stability and making row and

column interchanges. Whenever an integer multiple of nbi columns of L have been found, we use gemm

to update the columns of the block column from column m + 1 onwards.

5.3 Factorization in the singular case

So far, we have assumed that the matrix is nonsingular, but consistent systems of linear equations with

a singular matrix occur quite frequently in practice and we wish to accommodate them. Therefore, when

column m is searched, if its largest entry is found to be less than a user-set tolerance small, the row and

column are set to zero, the diagonal entry is accepted as a zero 1×1 pivot, and no corresponding pivotal

operations are applied to the rest of the matrix. This is equivalent to perturbing the corresponding entries
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of A by at most small to make our factorization be of a nearby singular matrix. To allow for this case, we

hold the inverse of D11, and set the entry corresponding to the zero pivot to zero. This avoids the need

for special action in BLAS-2 and BLAS-3 calls later in the factorization and during the solution. It leads

to a correct result with a reasonable norm when the given set of equations is consistent and avoids the

solution having a large norm if the equations are not consistent.

5.4 Requesting particular 2×2 pivots

HSL MA64 allows its user to specify that particular adjacent pairs in the pivot sequence should be used as

2×2 pivots provided they satisfy the stabililty test (3.3) when first encountered. If m indexes the first

half of such a pair, the largest entry in the column is determined, but no pivot is accepted immediately.

Processing continues to the next column and now the recommended pivot can be tested for acceptance as a

2×2 pivot. Either it is accepted or the recommendation is cancelled and normal pivot tests are performed.

5.5 Delaying the testing of early columns

HSL MA64 has an optional argument s that allows the user to specify that the first s columns be avoided

initially when searching for pivots. This is useful for delayed pivots in the multifrontal method, see Section

2. If s is present, swaps are made between columns j and p+1-j for j=1,min(s,p-s), unless this would

involve splitting a recommended 2×2 pivot which may happen if s < p− s. In the case that would cause

a split, the swaps are made only for j = 1 to s-1. Following this, the leading s columns (s-1 in the

exceptional case) will have been moved to the end of the set of columns 1:p.

5.6 Long integers

Because large memories and 64-bit architectures are becoming increasing commonplace, we have designed

HSL MA64 to handle very large matrices. We use default integers (assumed to be stored in 32 bits) for

row and column indices, but use long integers that hold at least 18 decimals to index the one-dimensional

array holding the packed matrix A.

6 Parallel working

In common with all other packages in HSL 2007, HSL MA64 is thread-safe. All its data is supplied through

its arguments, so it may be called at the same time, for example, on two threads working on independent

parts of the multifrontal tree.

This form of parallelism is not sufficient near the root of the tree where n and p are large. Here,

most of the work is done within gemm when updating the trailing submatrix, see equation (5.2). We

therefore provide an option to use an OpenMP parallel do for this computation. It is simplest to loop

over the block columns so that each block column update is treated as a separate task, but such tasks

are unbalanced and there may be too few of them for the available threads; instead, we break each block

column into blocks of nb rows and loop over those.

If p is small there may be insufficient work to justify working in parallel. HSL MA64 therefore has a

user-set parameter, p thresh and parallel work takes place only if p is greater than this. If parallel working

has been chosen and p ≤ nb, we use the block column format for the whole matrix; were we to rearrange

only the first p columns (see Section 5.1), there would be no opportunity for parallel working. We have

found that 32 is a suitable value for p thresh on our test platform (see Section 7 for details) and use this

as the default value in HSL MA64.

To allow the possibility of parallel processing of more than one execution of HSL MA64, there is an

optional argument to specify the number of threads for the parallel do loop. The argument is accessed

before each execution of the parallel do loop to allow the user to alter its value during execution.
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7 Numerical experiments

The numerical experiments reported in this paper were performed on our multicore test machine fox,

details of which are given in Table 7.1. For timing, we used wall-clock times in seconds on a lightly loaded

machine.

Table 7.1: Specifications of our test machine fox.

2-way quad Harpertown (fox)

Architecture Intel(R) Xeon(R) CPU E5420

Clock 2.50 GHz

Cores 2 × 4

Theoretical peak (1/8 cores) 10 / 80 Gflop/s

dgemm peak (1/8 cores1) 9.3 / 72.8 Gflop/s

Memory 8 GB

Compiler Intel 11.0 with option -fast

BLAS and LAPACK Intel MKL 10.1
1 Measured by using MPI to run independent
matrix-matrix multiplies on each core

7.1 Choice of block sizes

We begin by illustrating the relevance to performance of the choices that are available by considering the

partial factorization of randomly generated matrices of order 4000 and p ranging between 16 and 2048.

Table 7.2 shows that the performance does not vary greatly as the block size ranges over the interval (48,

120). We have chosen 96 for our default block size. Table 7.3 shows that parallelizing by blocks gives a

worthwhile gain over parallelizing by block columns. Table 7.4 shows the effect of the inner block size nbi.

We have chosen 16 for our default inner block size and show the speed-ups with this choice in Table 7.5.

Note that the speed on one thread approaches the dgemm peak of 9.3 Gflop/s for the larger values of p.

Table 7.2: The effect of varying the block size, nb, with nbi = nb/6 for a range of values of p. Speeds in

wall-clock Gflop/s are reported.

One thread Four threads Eight threads

nb 48 72 96 120 48 72 96 120 48 72 96 120

p

16 2.7 2.7 2.7 2.6 3.5 3.5 3.4 3.4 3.5 3.5 3.4 3.4

32 4.1 4.2 4.1 4.1 6.4 6.4 6.3 6.2 6.9 6.8 6.7 6.5

64 5.2 5.5 5.5 5.5 9.8 10.3 10.1 10.1 10.9 12.0 11.8 11.7

128 6.3 6.5 6.5 6.2 14.2 14.7 14.5 13.7 17.1 18.2 17.5 16.6

256 6.9 7.2 7.2 7.1 17.6 18.4 18.4 17.9 22.8 24.3 24.7 23.6

512 7.3 7.4 7.6 7.6 20.3 20.8 21.0 20.8 27.8 28.5 29.7 28.8

1024 7.4 7.7 7.8 7.8 21.4 22.4 22.3 22.1 30.1 32.0 32.8 32.4

2048 7.4 7.7 7.8 7.8 21.5 22.4 22.4 22.1 30.3 32.0 32.8 32.0

7.2 Experiments with a multifrontal solver

In Table 7.6, we show some data for the execution of the multifrontal solver HSL MA77 (Reid and Scott,

2008, 2009b) on problems from practical applications that have varying front sizes. We scale using the
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Table 7.3: Parallelizing by block columns or by blocks, with nb = 96 and nbi = nb/6. Speeds in wall-clock

Gflop/s are reported.

Four threads Eight threads

p columns blocks columns blocks

64 10.3 10.1 11.9 11.8

128 13.9 14.5 16.6 17.5

256 17.3 18.4 22.0 24.7

512 19.8 21.0 25.5 29.7

1024 20.7 22.3 28.3 32.8

2048 20.6 22.4 28.3 32.8

Table 7.4: The effect of varying the inner block size, nbi, with nb = 96 for a range of values of p. Speeds

in wall-clock Gflop/s are reported.

One thread Four threads Eight threads

nbi 96 24 16 12 96 24 16 12 96 24 16 12

p

64 5.4 5.5 5.5 5.5 9.8 10.4 10.2 10.1 11.4 11.9 11.9 11.8

128 6.4 6.5 6.5 6.5 14.0 14.1 14.5 14.5 16.8 16.7 17.6 17.5

256 7.1 7.2 7.2 7.2 17.5 17.7 18.4 18.4 23.1 22.4 24.9 24.7

512 7.5 7.6 7.6 7.6 19.7 20.1 21.1 21.0 27.1 25.7 29.8 29.7

1024 7.6 7.8 7.8 7.8 20.7 21.2 22.4 22.3 29.1 28.2 32.9 32.8

2048 7.6 7.8 7.8 7.8 20.5 21.0 22.3 22.4 28.9 27.6 32.7 32.8

Table 7.5: Speed (wall-clock Gflop/s) and speed-up with nb = 96 and nbi = 16.

One thread Four threads Eight threads

p Speed Speed-up Speed Speed-up Speed Speed-up

64 5.5 1.0 10.1 1.8 11.8 2.1

128 6.5 1.0 14.5 2.2 17.5 2.7

256 7.2 1.0 18.4 2.5 24.7 3.4

512 7.6 1.0 21.0 2.6 29.7 3.9

1024 7.8 1.0 22.3 2.9 32.8 4.2

2048 7.8 1.0 22.4 2.9 32.8 4.2
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HSL package HSL MC64 (Duff and Koster 2001)). With the exception of NICE20MC, all the problems

in this and subsequent tables are taken from the University of Florida Sparse Matrix Collection (Davis

2007) (NICE20MC is available from www.gridtlse.org). We use threshold u = 0.01, which is the default

setting within HSL MA77. It may be seen that a significant proportion of the total factorization time is

spent within HSL MA64 and the execution rate of HSL MA64 is good on problems with large front sizes.

Table 7.6: Wall-clock times and speeds (Gflop/s) for the factorization phase of the multifrontal solver

HSL MA77 on one and eight threads with nb = 96 and nbi = 16.

One thread Eight threads

Problem n Max MA77 MA64 MA64 MA77 MA64 MA64

front Time Time Gflop/s Time Time Gflop/s

helm2d03 392257 1024 2.7 1.6 3.0 2.7 1.6 3.0

bratu3d 27792 1521 4.2 3.4 3.7 3.7 2.9 4.2

qa8fk 66127 2075 4.4 3.5 6.2 3.0 2.0 10.4

halfb 224617 3240 16.3 11.1 6.3 13.6 5.9 12.0

Si5H12 19896 5551 43.7 32.8 4.7 38.1 26.5 5.8

NICE20MC 715923 11688 945 690 7.6 460 160 32.7

SiO2 155331 21406 2760 2298 5.8 1498 1033 12.8

Ga19As19H42 133123 18675 2018 1673 5.4 1186 834 10.8

We have performed some static pivoting experiments with HSL MA77. Results are given in Table 7.7

for some problems of augmented type, that is the system matrix is of the form

A =

(

H BT

B 0

)

, (7.1)

where H and B are large and sparse. In our tests, we compare using static = 0 (no static pivoting,

which is the default) and static = 10−6 ∗norm, where norm is the norm of the scaled system matrix. In

Table 7.8 we report the scaled residuals

‖Ax− b‖∞
‖A‖∞‖x‖∞ + ‖b‖∞

where x is the computed solution and b the right-hand side. In our experiments, the right-hand side

is selected so that the required solution is the vector of ones and we monitor maxi |1 − xi|. Iterative

refinement is performed until the scaled residual is less than 10−14. We see that, for the chosen examples,

Table 7.7: Number of entries in L (in thousands) and times (in seconds) for the factorization and solve

phases of HSL MA77 on a single thread without and with static pivoting.

nz(L) Factor Solve

Problem n without with without with without with

cvxqp3 17500 4884 3131 1.6 0.7 0.1 0.07

dtoc 24993 6701 227 1.3 0.1 0.2 0.02

mario001 38434 746 665 0.1 0.1 0.04 0.03

ncvxqp7 87500 39192 24707 43 13 0.8 0.6

static pivoting can significantly reduce the number of delayed pivots, resulting in much sparser factors and

faster factorization and solution. The penalty is that several steps of iterative refinement are needed to

restore accuracy. During testing of other examples using static pivoting, we found that iterative refinement

was sometimes unable to restore the accuracy. Furthermore, the success of static pivoting in some cases
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Table 7.8: Scaled residuals for HSL MA77 without and with static pivoting, both before and after iterative

refinement. The numbers in parentheses are the number of steps of iterative refinement.

without with

Problem before after before after

cvxqp3 1.3 ∗ 10−10 2.0 ∗ 10−16 (1) 1.7 ∗ 10−06 1.9 ∗ 10−15 (3)

dtoc 1.1 ∗ 10−14 7.4 ∗ 10−17 (1) 6.7 ∗ 10−13 1.1 ∗ 10−16 (1)

mario001 6.1 ∗ 10−15 6.1 ∗ 10−15 (0) 1.3 ∗ 10−10 3.2 ∗ 10−16 (4)

ncvxqp7 2.1 ∗ 10−09 1.9 ∗ 10−16 (1) 1.5 ∗ 10−07 3.1 ∗ 10−16 (5)

was sensitive to the choice of static. This illustrates the importance of using static pivoting with care.

Sometimes, it may be necessary to employ a more powerful refinement process (for a discussion, see Arioli,

Duff, Gratton and Pralet, 2007).

We have also experimented with using relaxed pivoting (umin < u). For many problems of the form

(7.1) we found that this did not help, that is, the number of delayed pivots (and hence the fill in L) was

not reduced (see also Duff and Pralet, 2007). Closer investigation showed that this was because, on many

of the calls to HSL MA64, the (1,1) block A11 of A (see (1.1)) comprised a matrix of all zeros so that,

independently of u and umin, pivots could not be chosen. However, if the system matrix is of the form

A =

(

H BT

B −δI

)

, (7.2)

where δ is small, we found relaxed pivoting can be useful. In Table 7.9 results are presented for a subset

of the matrices of the form (7.2) that are reported on by Schenk and Gartner (2006). For relaxed pivoting

umin was set to 10−10; we report the final value ufinal of the relative pivot tolerance. For these problems,

a single step of iterative refinement was needed to obtain scaled residuals of less than 10−14. We see that

the savings from relaxed pivoting are modest for our test examples; the main potential benefit is that the

pivot sequence and data structures set up by the analyse phase of the solver do not need to be modified

during the factorization.

Table 7.9: Number of entries in L (in thousands) and factorization times (in seconds) for HSL MA77 on

a single thread without and with relaxed pivoting. ufinal denotes the final value of the relative pivot

tolerance.

nz(L) Factor

Problem n without with without with ufinal

c-60 43640 1736 1650 0.34 0.32 1.9 ∗ 10−09

c-65 48066 1549 1495 0.30 0.28 1.0 ∗ 10−10

c-68 64810 2082 1962 4.04 3.85 2.1 ∗ 10−09

c-73 169422 5276 5124 1.23 1.18 4.4 ∗ 10−10

7.3 Comparison with LAPACK and preference for 2×2 pivots

LAPACK (Anderson, Bai, Bischof, Blackford, Demmel, Dongarra, Du Croz, Greenbaum, Hammarling,

McKenney and Sorensen, 1999) contains two subroutines for Bunch-Kaufman factorization of indefinite

symmetric matrices. For the packed form, sptrf is available but is slow since it does not use blocking. For

the full form, wasting about half the storage, there is sytrf. For best performance, sytrf needs a work

array of size n×nb, where nb is its block size (64 in our implementation), so its total storage requirement

is for n2 +n×nb reals. This should be compared with n(n+1)/2 reals for sptrf and n2/2+3n(nb+1)/2

reals for HSL MA64 when its work array is included.
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Table 7.10: Comparison between HSL MA64 and the LAPACK routine dsytrf.

Wall-clock Gflop/s No. 2×2 pivots

dsytrf HSL MA64 dsytrf HSL MA64

1 thread 1 thread 8 threads

favour: 2×2 1×1 2×2 1×1 2×2 1×1

n

500 4.4 4.9 4.6 5.5 4.6 164 189 31

1000 5.6 6.1 5.9 10.5 9.1 312 369 87

2000 6.4 6.9 6.8 19.5 17.8 666 769 182

4000 7.0 7.6 7.5 29.9 28.4 1403 1473 366

8000 7.3 7.8 7.8 38.0 36.1 2902 2910 758

16000 7.2 7.9 7.8 43.2 39.9 6050 5830 1611

In Table 7.10, we show the performance of dsytrf and HSL MA64 for 6 values of n within the range of

front sizes that we have encountered. For HSL MA64, we also show results for a version that uses a 1×1

pivot when both a 1×1 and a 2×2 pivot are available. It may be seen that this chooses far less 2×2 pivots

and is slower because more single-column updates are performed. It is interesting that the version that

favours 2×2 pivots chooses about as many 2×2 pivots as dsytrf. On a single thread, HSL MA64 is slightly

faster than dsytrf and of course it has the merit of using about half as much memory. We tried varying

the block size nb in the range [48, 120] and observed little difference in the performance. We found that

dsptrf was some ten times slower than dsytrf on these problems.

Finally, Table 7.11 presents a comparison between favouring 2×2 over 1×1 pivots within HSL MA77.

In this table, we report the number of 2×2 pivots used during the factorization, the number of gigaflops

performed using vector and block operations, and the wall-clock times for the factorization phases of

HSL MA64 and HSL MA77. Note that the vector count includes flops performed by gemm with internal

matrix dimension 2. We see that, as expected, favouring 2×2 pivots leads to significantly more 2×2 pivots

being used and this results in a modest reduction in the HSL MA64 time. The block count is similar for

both pivoting strategies while there is a reduction in the (much smaller) vector count if 2×2 pivots are

preferred.

Table 7.11: Comparison between favouring 2×2 over 1×1 pivots within HSL MA77 on eight threads.

Favour 2×2 Favour 1×1

2×2 gigaflops Time 2×2 gigaflops Time

pivots vector block HSL MA64 HSL MA77 pivots vector block HSL MA64 HSL MA77

ncvxqp3 38176 17.7 54.5 23.5 35.9 5526 17.9 54.3 26.6 39.1

kkt 791462 16.2 582 75.2 187 180291 20.5 575 78.4 191

af shell10 732433 4.6 410 28.5 102 0 5.8 410 29.3 108

NICE20MC 349734 14.8 5284 160 470 0 19.4 5282 167 476

8 Concluding remarks

We have shown that it is possible to achieve good execution speed and good accuracy for the partial or

complete factorization and solution of sparse symmetric indefinite sets of linear equations by carefully

combining blocking with threshold partial pivoting and the use of both 1×1 and 2×2 pivots. We have also

considered parallelization with OpenMP. For large dense systems, the execution speed of HSL MA64 on one

thread is quite close to optimal and the speed-up on eight threads exceeds four.
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For better parallelization of the sparse symmetric indefinite problem, we are planning to follow our

experience in the definite case (see Hogg, Reid and Scott, 2009) of dividing the computation into a set of

individually scheduled tasks, each of which involves updating a single block of the matrix. It is our belief

that these ideas, too, can be combined with threshold pivoting and the use of 1×1 and 2×2 pivots.

All the HSL codes referred to in this paper are part of HSL 2007. Use of HSL requires a licence.

Licences are available without charge to individual academic users for their personal (non-commercial)

research and for teaching; for other users, a fee is normally charged. Details of how to obtain a licence

together with information on all HSL packages are available at www.cse.clrc.ac.uk/nag/hsl/.
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