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ABSTRACT

In order to identify the best technique to solve a class of geometrically multiscale model

problems in thermoelasticity, we examine a combination of a primal–mixed finite element

approach and direct sparse solvers and matrix scaling routines. The criteria for optimality

are robustness, accuracy and execution time. It will be shown that the present finite element

approach, where displacement and stress variables are simultaneously solved from large scale

indefinite poorly scaled systems of equations using the sparse HSL solver MA57 with the aid of

the matrix scaling routines MC64 or MC30 during the factorization process, enables a reliable

solution even if hexahedral finite elements in a mesh differ in size up to six orders of magnitude.

A number of tests in multiscale elasticity and thermoelasticity are examined to test the accuracy

and execution time efficiency of the proposed solution approach on a standard PC computing

platform.
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1. Introduction

Although the finite element method [1, 2] has been heavily used by the engineering

community for more than five decades, there is still the need for a fully three–dimensional,

stable, accurate [3, 4] and time–efficient approach to multiscale multimaterial solid

mechanics. Nowadays, accurate and reliable prediction of the state of stress and defect

structure over subregions with different geometric scales and material interfaces in thermo-

mechanically loaded structures are a top priority in a number of industries. For example,

there are new demands for the accurate determination of interfacial stresses in coated

structural components for thermal protection or in layered composite structures in which

residual stresses might arise during manufacturing processes. Similar complexity is found

in sandwich structures with nearly incompressible foam in their core. This is also the case

in drilling devices for oil, which have an extremely high ratio of minimal and maximal axial

dimensions. Furthermore, in determining the stresses in embedded fibre optic sensors for

nondestructive testing, or in the analysis of filling techniques of cavity walls of the restored

tooth in order to reduce polymerization shrinkage stresses. All abovementioned examples

are in their nature multiscale [7, 8], and demand a full three-dimensional insight from

the simulation process. Indeed, a fully three–dimensional approximation of model problem

geometry without dimensional reduction [9] helps to analyse material behaviour through its

thickness and geometrical scales and enables possible bridging with micromechanical [10]

and particle [18] simulation approaches.

It is generally recognized that heavily used displacement–based finite element methods

(primal finite element approaches) are not robust in situations where material is (almost)

incompressible, in the inelastic behaviour of many materials, and also in the analysis

of plates and shells, that is in an analysis of model problems which have much smaller

thickness than the other two dimensions. For example, finite elements based on pure

displacement interpolations are accurate in membrane-dominated situations but “lock” if

bending is encountered [4]. In these situations the resulting finite element system matrix

becomes too ill-conditioned to obtain an accurate solution [6]. In addition, the use of

hexahedral finite elements to analyse thin solid bodies is not permitted due to the aspect

ratio restriction. This is a major obstacle to using this approach in multiscale analysis,

where the atomistic region is extended to the continuum region and therefore very narrow

finite elements should be used in order to maintain a reasonable number of finite elements

given the limitation in computer memory. On the other hand, idealization of the geometry

by dimensional reduction [9] and detailed suppression techniques in order to reduce the

complexity of the model is the major factor limiting the wider application of the finite

element method where the material should be respected throughout its geometric scales. In

addition, in primal approaches, the dual variable (heat flux, stress) is obtained a posteriori,

which entails a loss of accuracy [1, 11, 12]. Therefore, for some analyses, other finite element

approaches, such as mixed methods where more than one variable of interest is a solution

variable (e.g. displacement and stress), need to be employed.

Therefore, in the present paper, we consider a reliable mixed HCu/t finite-element

approach that has both primal and dual variables as solution variables (see Section 3)

from the C0 continuous subspace of the approximation functions (see [13, 14, 15]). This
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enables the direct introduction of residual stresses and/or initial deformations directly

without loss of accuracy due to numerical integration. The same approximation paradigm

in transient heat transfer is presented in [14, 15]). Nevertheless, the time for execution of

the present approach has not been examined before, although this is extremely important

if it is to be used in transient or material nonlinear analysis, or in a real time engineering

simulation.

From the mathematical point of view, the solution of these problems are sought as the

critical points of saddle-point problems. Therefore, both resulting system matrices, for

thermal and mechanical field problems, are indefinite. This is different from the primal

finite element approach where the solution is sought using an extremal principle, and

the resulting system matrix is positive definite. Therefore, one of the principal differences

between these two finite–element approaches lies in the definiteness of their system matrices

and the number of unknowns. It is obvious that a mixed approach results in more equations

than a primal approach for the same model problem. This was considered as a serious

drawback because it was thought that for the same accuracy the solution time would be

increased. Nevertheless, it was shown in [20] that the present approach is faster than the

classical raw primal displacement based finite element method, for the same accuracy per

stress. It should be noted that all the finite element system matrices we are considering

are sparse and symmetric. The present approach is straightforward. No stabilization

techniques are required. The thermal and mechanical field problems are currently semi–

coupled.

Nevertheless, multiscale model problems, where scale resolution of the model problems

exceeds three orders of magnitude, were not examined in the abovementioned papers [13,

14, 15]. Novel tests on these cases, together with a detailed investigation of execution

time efficiency and a recommendation for the most efficient solution technique will be the

essential contribution of the present investigation.

It will be shown that the present approach is efficient in time and storage if it is used

in combination with the sparse solvers MA47 [21] or MA57 [22] and matrix scaling routines

MC64 or MC30. They will be discussed in more detail in Section 5. It will be shown that

these solvers are at least two orders of magnitude faster than a previously used in–house

solver based on simple Gaussian elimination. Additionally, it is shown that scaling the

system matrix prior to the factorization improves the accuracy and execution time of finite

element equations and allows the solution of systems of equations with many more degrees

of freedom [23].

It is hoped that practitioners as well as researchers in this field who are looking for

guidance in the choice of a solution method for their own application will find this paper

helpful.

2. Field problems

In the present paper we study a thermal stress problem in solid mechanics [24] that

consists in determining the response of a body in terms of displacement u and stress t, due

to thermal and mechanical loading. In the case of traditional materials, where there is no

heat production due to the strain rate, the thermal and stress analyses are semi–coupled
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via thermal strains only. Thus, the governing equations of two separate field problems,

transient heat transfer and mechanical, are semi–coupled via thermal strains calculated

from the temperature field determined in the thermal analysis. In current work, thermal

strains are considered as initial conditions for (mechanical) stress analysis and constitute

only a datum for subsequent stress analysis [15, 25]. Otherwise, thermal and stress analyses

are fully coupled.

The current primal–mixed finite-element approaches in non–multiscale elastostatics

(HCu/t), and in transient heat (HCT/q), were introduced in [13] and [15], respectively.

It is proved that that these approaches are also reliable in the sense introduced on page

477 of [5], and are thus not sensitive to locking (see [4]). Let us briefly recall that the

finite-element equation of the present elastostatic approach is given by:

(
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where submatrices of the system matrices in (2.1) are given by:
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The above expressions should be evaluated for each free degree of freedom (dof)

connected to the pair of global nodes Λ and/or Γ of the finite element mesh, where ΩΛ
L

is the connectivity operator, which maps the set of global nodes Λ into the set of local

nodes L defined on each element, and vice versa. X is an operator connecting the fourth

order compliance tensor with the stress tensor, which is essentially the expression for the

complementary work done by the system. Furthermore, Y connects the gradient of the

displacement vector with the second order stress tensor. More, S and T , and U and

V denote trial and test finite element basis interpolation functions for approximations

of displacement and stress fields, respectively. That is, we use the same interpolation

functions for each global node of the finite element mesh for the approximation of the

stress and the displacement components. The more detailed description of matrix entries

in (2.1) can be found in [13].

The system matrix in (2.1) is indefinite sparse and symmetric. The sparsity comes from

intrinsic properties of finite element approximation functions which have local support

only. The storage requirements can be reduced by storing only the upper triangle of the

matrix because it is symmetric. The storage requirements are further reduced by storing

only the entries which are nonzero. The pattern of the matrix and the number of entries

are direct functions of the type of finite elements used for the mesh discretization of the
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model problem and the FE node ordering routine. Elements with more nodes per finite

element give rise to denser matrices.

The formulation given by (2.1) is a saddle-point problem, where the system matrix is of

the 2 × 2 block form:

(

A BT

B 0

)

(2.3)

where the block entry A is positive definite (see [13] and [15]).

We investigate for the first time in this paper the solution of the above system of linear

finite element equations in geometrically multiscale thermoelasticity using the direct sparse

solver MA57 [22] and matrix scaling routines MC30 [31] and MC64 [32]. It will be shown that,

without scaling the system matrix in equation (2.1) prior to the factorization, the solution

fails. That is, for multiscale model problems in which finite elements significantly differ in

size, over three or four orders of magnitude, the scaling of the system matrix enables the

solution.

3. Finite element configurations

The topology of the present hexahedral continuous finite-element family HCu/t, for the

approximation of displacement (u) and stress (t) field variables, is shown in Figure 3.1.

In order to increase stability, the finite element subspaces for the approximation of dual

variable are enriched by additional hierarchical shape functions. Therefore, finite elements

contain 8 or 20 local nodes for the approximation of the displacement (primal variable), and

9 to 27 local nodes for the approximation of stress (dual variable). For example, the finite

element configuration HC8/9 refers to the case where the primal variable is approximated

by 8 local FE nodes and the dual variables are approximated by 9 local FE nodes. The

same notation holds for other configurations examined in the present paper.

Figure 3.1. Finite element family HC

On the other hand, if there are 20 local nodes for the primal variable, then additional

approximation functions (for nodes 9− 20) are quadratic in order to avoid the tessellation

of curved boundaries. In this case the finite–element configurations that we consider are

denoted by HC20/21 or HC20/27. As in the previous case, the approximation for the

additional six FE nodes for the dual variables is performed by hierarchical shape functions

in order to increase stability.
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Let us emphasize that one finite element is reliable if it satisfies convergence requirements

[5]. The convergence requirements for shape functions of an isoparametric element can be

grouped into three categories, that is: completeness, compatibility and stability [1, 4]. If

it satisfies completeness and compatibility, it is said to be consistent. It is also said that

consistency and stability imply convergence. If the stability condition is satisfied, there

will be no non-physical zero-energy modes (kinematic modes).

Therefore, the overall stability of mixed formulations based on the Hellinger–Reissner’s

principle that we use is guaranteed if two necessary conditions for stability are fulfilled:

the first stability condition represented by ellipticity on the kernel condition, and the

second stability condition represented by the so-called inf–sup condition. The satisfaction

of the inf-sup condition ensures solvability and optimality of the finite-element solution,

and it is very important that it is satisfied if the finite-element approach is to be used for

the simulation of model problems under complex geometry, loading and material. It is

dependent on the number of finite elements in the mesh (mesh size).

It was shown in [13] and [16] that the finite element HC8/27 is reliable in non-multiscale

and multiscale analysis, respectively. There are many effective finite elements from the

known literature that satisfy consistency, ellipticity and the inf–sup test, for example the

MITC plate and shell bending finite elements [4]. Nevertheless, the FE element HC8/27

that we use here is the first where C0 discretization is used for the approximation of the

stress field without difficulty in the numerical solution of the linear system of equations [17].

4. System matrix properties

We consider a system matrix in (2.1) noting that, in the worst case, there is a maximum

of 595 nonzero entries in each row, regardless of the number of finite element equations

(degrees of freedom). Therefore, the system matrix is sparse, symmetric and indefinite [26].

The coefficients of that matrix are real and, furthermore, the upper left block X is

positive definite. The crucial difficulty in solving this saddle-point problem comes from

the indefiniteness of the system matrix. In addition, the system matrix is far from being

banded so some classical solution procedures are inappropriate. An additional reordering

must therefore be performed to limit the amount of fill–in and operations. It should be

emphasized that the term entry is presently used to denote a nonzero matrix coefficient

[27].

Leading concepts in the development of efficient solution algorithms that take advantage

of the presence of many zeros are to store and operate only with entries. During the

elimination process, the crucial requirement is to maintain sparsity in the factors in order

to minimize the storage and work required for factorization. It is also important to pay

great attention to the numerical stability of the factorization.

If a dense matrix is considered, requirements for the storage and solution times depend

on the order n of the matrix and are O(n2) and O(n3), respectively. In the case of sparse

matrix, a more reliable parameter for controlling the work and storage is the number

of entries τ . It is the goal of sparse algorithms is to perform the computation in time

and storage proportional to O(n) + O(τ) and although this is often not realized, sparse
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algorithms are at worst asymptotically quadratic in n and so have much lower complexity

than in the dense case.

Let us emphasize that the finite element software package Straus7 [28] that we were

using as a mesh generator, handles only the primal finite element method. It creates finite

elements which have nodes only for displacement. This means that it reorders only eight

or twenty nodes for the primal variable (hexahedral finite elements H8 and H20, with 8 or

20 primal nodes, respectively). Consequently, hierarchical nodes for dual variables which

are added later in the present in–house code FEMIX [13] are placed at the end of the

assembled matrix.

5. HSL, formerly the Harwell Subroutine Library

5.1. HSL solution routines. In this paper, we examine the execution time and storage

requirements for the MA57 [22] solver from HSL [29] that was developed for the direct

solution of large sparse indefinite linear systems of equations. MA57 is a sparse symmetric

linear solver using a multifrontal approach with a choice of ordering schemes. It solves

both positive definite and indefinite systems of equations. It has a range of options

including several sparsity orderings, multiple right-hand sides, partial solutions, error

analysis, scaling, a matrix modification facility, a stop and restart facility, and an option

to determine the rank of highly deficient matrices. Although the default settings should

work well in general, there are several parameters available to enable the user to tune the

code for his or her problem class or computer architecture.

Like most sparse direct solvers, the algorithms are organized in three distinct

computational phases: analyse, factorize and solve. The analyse phase is sometimes

referred to as the symbolic factorization or ordering step. It preprocesses the system of

equations and determines a pivotal sequence. It is often based purely on matrix structure.

Furthermore, during the factorization phase, this sequence is used to compute the matrix

factors. Finally, forward elimination followed by back substitution is performed during the

solve phase using the stored factors. The factorization is usually the most time–consuming

phase of the computation [30]. It should be emphasized that pivoting must be performed

in the case of indefinite systems in order to increase stability and as well as for sparsity

reasons.

It should be noted that HSL routines can also be used for the solution of linear systems

of equations arising in primal finite element analysis, where the system matrix is positive

definite. It can be a good alternative to iterative solution procedures. For further

information about HSL routines, including licensing, the reader is referred to [29].

All the codes presently used for solving sparse equations and for scaling matrices (MA

and MC codes) have been developed for inclusion in the mathematical software library HSL.

Although all use of HSL requires a licence, individual HSL packages (together with their

dependencies and accompanying documentation) are available without charge to individual

academic users for their personal (non-commercial) research and for teaching; licences for

other uses involve a fee. Details of the packages and how to obtain a licence plus conditions

of use are available at http://www.cse.scitech.ac.uk/nag/hsl/hsl.shtml.
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5.2. HSL matrix scaling routines. If an indefinite matrix is poorly scaled, it may

be difficult to assess the accuracy of the solution. Scaling improves the robustness of

the factorization [23]. Two scaling routines, MC30 [31] and MC64 [32], are considered in

conjunction with the code MA57. These routines have quite different goals. MC30 scales the

matrix to make all entries close to one, while MC64 permutes and scales the matrix so that

the permuted matrix has each diagonal entry equal to one and all off-diagonal entries less

than or equal to one in modulus. We present results obtained using the MA57 equation

solver, with and without scaling of the system matrix.

5.3. HSL matrix ordering routines. The choice of ordering scheme for reordering the

entries in the sparse system matrix can be quite crucial to the performance of the equation

solver. The MA57 package has several different ordering schemes viz: MC47 [33] (including

an option for efficiently handling dense rows [36]), MA27H [34], and MeTiS [35] which can be

invoked in the analysis phase. The first two routines are HSL ordering routines, while the

third is from a well known graph partitioning package and is based on a nested dissection

ordering. MC47 provides an ordering for a sparse symmetric pattern matrix that is based

on the approximate minimum-degree ordering algorithm (AMD). There is now an option

in MC47 that takes special action if there are dense or nearly dense rows in the matrix [36].

5.4. Error estimates. Let us briefly recall how to calculate an estimate of the sparse

backward error using the theory and measure developed by Arioli, Demmel, and Duff [37].

We use the notation x̄ for the computed solution and a modulus sign on a vector or matrix

to indicate the vector or matrix obtained by replacing each entry by its modulus. The

scaled residual

(5.4)
|b − Ax̄|i

(|b| + |A||x̄|)i

is calculated for all equations except those for which the numerator is nonzero and the

denominator is small. For the exceptional equations,

(5.5)
|b − Ax̄|i

(|A||x̄|)i + ||Ai||∞||x̄||∞

is used instead, where Ai is row i of A. Equations (5.4) and (5.5) represent the backward

error and if their values are small then we have solved a system that is a small perturbation

of the original system. If the residuals (5.4) and (5.5) are not sufficiently small, then the

solver is regarded as having failed to solve the problem correctly. In the results which

follow we use the quantity ‖b−Ax̄‖
‖b‖+‖A‖‖x̄‖

to measure the backward error.

6. Examples

In the present section, several model problems from elastostatics, under mechanical

and/or thermal loads, are used to identify the best HSL sparse solver routine. The metric

by which we judge “best” includes the execution time, that is the CPU times required

to perform the analyse, factorize, and solve phases; the storage requirements, both total

memory required and the number of nonzero entries (NE) in the matrix factor; and the
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backward error. In earlier experiments we studied the influence of the value of the threshold

parameter u but, as the solution time and accuracy was not very sensitive to this parameter,

we use the default value of 0.01 for our runs in this paper. We had also earlier experimented

with MA47 [15] but as we have found MA57 to be consistently better we now run tests

for these metrics on only the combinations: MA57, MA57+MC30, and MA57+MC64. The

performance with respect to scaling is highlighted.

It should be noted that the motive for the use of HSL solver routines was explained

in [15], where it was shown that the MA57+MC30 procedure [21] used for the solution of the

mixed finite element equation system in heat transfer is two orders of magnitude faster

than an in–house sparse Gaussian elimination solver.

All CPU times are in seconds. In all experiments, double precision (64-bit) reals were

used. Numerical experiments were conducted on a PC Pentium(R) D CPU 2.8 GHz with

3.25GB of RAM with Physical Address Extension running under the operating system

Microsoft Windows XP Professional Version 2002 Service Pack 2.

6.1. Bending of the clamped plate. The first problem that we consider is a classical

elasticity problem of a clamped plate subjected to external uniform pressure p = 100.

We model it as a three-dimensional structure so that we can trace the stress state along

the thickness, and can bridge it with the full simulation on the micro or atomistic level

in some regions in order to look for material damage or dislocation lines in a natural

way. It is known that a primal finite element approach in conjunction with dimensional

reduction suffers greatly from locking [5]. It is especially evident when the thickness

decreases compared to the other axial dimensions, or when the material tends to become

incompressible (plastification followed by fire). We show how it is easily solved using the

mixed approach combined with scaling and efficient direct solvers. The extra complexity

of this problem comes from the type of mechanical loading which contributes to the

domination of the bending stresses over the membrane stresses.

The edge is of length a = 2, the thickness of the plate is t = 0.01, Young’s modulus is

E = 1.7472 · 107, and Poisson’s ratio is υ = 0.3. The analytical solution for the maximal

deflection at the plate centre C, calculated by Kirchhoff’s plate theory, is w=1.26 [13].

Only a quarter of the plate is analysed due to the symmetry. The essential stress boundary

conditions tzz|z=0.01 = −100 are prescribed for the nodes lying on the upper surface of the

plate. Clamped edges were simulated by zeroing degrees of freedom connected to the

displacement (ux = uy = uz) and transverse shear stress components (txz = tyz). The

model is discretized by a sequence of meshes with two layers of solid brick finite elements

per thickness, that is NEL × NEL × 2, where NEL is 4, 8 or 16. Consequently, the axial

dimension of the finite elements in the direction normal to the middle of the plate plane

is t/2 = 0.005.

The solution times of MA57, using MC64 and MC30 prescaling, as well as the estimated

number of entries from the analysis, the actual number in the factors, the number of

delayed pivots, and the backward error, for different finite element types over a mesh of

8× 8× 2 finite elements are presented in Table 7.1 and the results over a 16× 16× 2 mesh

of finite elements in Table 7.2.
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We can conclude from the results shown in Tables 7.1 and 7.2 that, for all finite element

configurations that we consider, the combination MA57+MC64 is one order of magnitude

faster than MA57+MC30. In addition, we found that MA57 alone, that is without scaling,

fails for some configurations because of excessive memory requirements.

The comparison of execution times of MA57 with the execution times obtained by our

formerly used in-house solution code based on a simple band-matrix based sparse Gaussian

elimination procedure, is given in Figure 6.2. The finite element configuration HC8/9 is

considered because it has the smallest number of entries per row of any other presently

considered finite element configuration. The finite element meshes considered are 4×4×2,

8 × 8 × 2 and 16 × 16 × 2, with 684, 2604 and 10188 degrees of freedom, respectively.

We can see that MA57+MC64 is much faster than the formerly used in-house procedure. If

we consider an order of magnitude as an approximate position on a logarithmic scale, the

execution time of procedures MA57+MC30 and MA57+MC64 in relation to the in-house code,

are shown in Figure 6.3.

Figure 6.2. Clamped Plate – execution time per number of degrees of freedom

Figure 6.3. Clamped Plate – Normalized execution time per number of

degrees of freedom

From Figure 6.3 we can see that MA57+MC64 is about two orders of magnitude faster,

while MA57+MC30 is up to one order of magnitude faster than the previously used

simple Gaussian elimination procedure. This time ratio is even bigger for the richer FE
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configurations. Therefore, we can say that the use of HSL MA57 solution routines actually

enables investigation of richer finite element configurations on personal computers.

6.2. Long steel coated shaft loaded by the uniform traction. The second example

is from the class of geometrically multiscale model problems. It is a thermal barrier coated

component, that is a long hollow shaft coated by a microsized coating [38]. The coating

consists of a bond and ceramic layer of equal size. The simulation of the coated materials

is of particular interest to industry, due to the need to control the level of the interfacial

stresses on the surfaces of material discontinuities. Hexahedral finite elements will differ in

size up to four orders of magnitude, which is impossible to solve by a standard primal finite

element scheme due to stability problems [1]. The inner and outer radii of the shaft are

0.005 m and 0.1 m, respectively. The structural reference temperature is Tref = 1000 ◦C.

The thickness of the coating (bond and ceramic) is t = 10−5m. The height of the shaft

is assumed to be h = 0.1 m. Uniform traction p = −1000MPa is prescribed on the

outer boundary. This tends to separate the coating from the blade surface. The material

properties are given in Table 7.3.

The behaviour of the current finite element scheme with a two dimensional conventional

boundary-element approach (CBEM [38]) was compared in [15]. It was shown that, as the

coating thickness decreases, the solution remains stable and accurate. Therefore, we will

now investigate the execution time that was not investigated before. The target solution is

obtained by plain strain theory, that is, theory based on dimensional reduction. A similar

problem can be found in the analysis of thin discontinuity layers in solids, such as in the

case of fractures in concrete, rock or geomaterials, or of shock waves in compressible fluids

[40].

It was proved in [13] that the current finite element approach is reliable with respect to

the aspect ratio of its dimensions. Therefore, only one finite element layer is used along

the thickness. Both bond and ceramic regions are discretized by three finite element layers

along the radius. Due to the symmetry, only one-quarter of the model problem is analyzed.

We investigate the execution time for the finite element configurations HC8/9, HC8/27,

HC20/21 and HC20/27. Consequently, the maximum finite element aspect ratio is equal

to 60000, as shown in Figure 6.4 .

Execution times for three distinct phases in the solution process and storage requirements

for MA57, with and without scaling (MC30 and MC64), are reported in Table 7.4. It can be

seen from this table that scaling the system matrix using MC30 or MC64 routines prior

to the factorization considerably improves the execution time. In addition, if scaling is

used, the storage requirements and number of operations are far smaller. Scaling thus

enables the solution of systems with many more degrees of freedom [23]. We can also

see that MA57 without scaling is not able to solve equations using the stable finite element

HC8/27 in geometrically multiscale model problems because the factorization fails because

of excessive memory requirements. Therefore, the first conclusion is that scaling generally

decreases the storage requirements, and that the storage requirement is less for the MC64

type of scaling. We also note that the factorization times using MC30 are faster than

those using MC64 but, on further investigation, we found that the MC64 scaling produces

better factors and the time is only higher because of the time taken by MC64 itself. In fact
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Figure 6.4. Coated shaft – finite element mesh aspect ratio and layerwise view

these problems all have very fast factorize times and, because MC64 has lower complexity

than the numerical factorization, the extra time will not be dominant when solving larger

problems. We show a sequence of larger problems in Table 7.5, which have been obtained

from the HC8/9 finite elements in Table 7.4 by using an increasing number of elements

in the z-direction (there was only one element in the Table 7.4 runs and we use 2, 4, 8,

10, 13, and 16 in the six examples in Table 7.5). From the results presented above we

see that, on the larger problems, the scaling time for MC64 is less important. In addition,

while the storage requirements for the factorization after scaling by MC64 are almost the

same as in the analysis, the factorization after the MC30 scaling generates far denser factors,

increasingly so as the problem size increases. As an interesting aside to this set of problems,

the given matrix has many entries of very small size (around 10−20). However, these are

significant numbers inasmuch if they are treated as zero, it is not possible to solve the

resulting systems because the matrix is singular.

6.3. Long steel coated shaft loaded by the prescribed temperature. In the

previous example, the loading was mechanical. We now examine the case where the long

coated shaft is loaded by prescribed temperatures on the inner and outer surfaces, such

that Ti = 7730C and To = 12730C, respectively [38]. Therefore, the stresses due to thermal

mismatch will be developed in thin coatings. Thermal stress can be significant when a large

difference in physical and thermal properties of the bonded materials exists [41]. Note

that the system matrix will be unchanged and in this particular case the different loading

only modifies the right-hand side in our formulation. Thermal stresses on the surfaces of

material discontinuities were sought and the results were reported in [15]. As the matrices

are identical, the data on factorization is as is given in Table 7.4. The backward errors in

this case were marginally worse but all in the range .7 10−9 to .2 10−7.

The target solution of radial stress is obtained by modified plate theory. We will

investigate the convergence of the temperature and radial stress component on the interface

L2, between bond and ceramics, for the sequence of five model problems with decreasing

coating thickness h = 10−N , where N = 2, 3, 4, 5, 6. Consequently, for the last model
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problem, where the coating has thickness of h = 10−6, we will have the maximum finite

element aspect ratio equal to 600000. The temperature and heat flux, and thermal stress

results at interface L2 obtained by the finite element HC8/9, HC8/27 and a classical plane

boundary-element method (CBEM) [39] as the thickness of coating decreases, are shown

in Figures 6.5 and 6.6, respectively.

Figure 6.5. Coated shaft – Temperature and heat flux interface L2 for

decreasing thickness of coating

6.4. Nanoindentation. One–to–one bridging with molecular dynamic

simulation. Bridging over the scales generates perennial interest in the research

community since it offers the advantage of combining a deeper understanding of the

underlying physical phenomena facilitated by particle mechanics (e.g. for example

molecular dynamics – MD ), with the computational expediency of continuum mechanics

(e.g. finite element method – FE) [7].

In the present example, we study the time and storage efficiency of our current

primal–mixed finite-element approach HCu/t in computational modelling ranging from

the continuum up to submicronic scales. Direct kinematic coupling (one–to–one bridging)

is performed on the interface surface between two domains. Namely, the displacements of

the boundary atoms of the MD domain are introduced as essential boundary conditions to

the boundary nodes of the continuum finite-element domain (CM), and vice versa, until

equilibrium is reached. Let us note that a direct linking scheme should be the most reliable

and desirable boundary condition [18] as it is both numerically robust and efficient. Let us

emphasize that the molecular dynamic simulation that we presently consider is based on
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Figure 6.6. Coated shaft – Thermal stress at interface L2 for decreasing

thickness of coating

conventional molecular dynamics using an embedded atom interatomic potential, so the

momentum transfer is conserved.

It should be emphasized that in the present example we exploit the reliability (accuracy

and stability) of the primal–mixed finite element HC8/27 in a geometrically multiscale

simulation [16], where the aspect ratio of FE is up to 7 orders of magnitude, and the

geometrical scale resolutions of the model problem is up to 8 orders of magnitude, for both

compressible and nearly incompressible materials.

As an numerical example, we consider an atomically sharp rigid indenter that comes

into contact with an ideally flat substrate [19]. The substrate material is considered to

be titanium with Young’s modulus E = 116 GPa and Poisson’s ratio ν = 0.36, and an

ultimate tensile strength of 1380 MPa. The dimensions of the whole model problem are

2.02 · 10−4m × 1.01 · 10−4m. A domain of the molecular domain patch directly under the

nanoindenter is 1.16 · 10−9m × 1.507 · 10−8m. The rest of the domain is simulated by the

present approach and finite element HC8/9 [19]. One of three consecutively refined HC8/9

finite-element meshes of the continuum domain, and an embedded MD domain patch are

shown in Figure 6.7.

From the visualization of the displacement component uy shown in Figure 6.8, we can

see that there are no spurious oscillations of the results [7].

We can see from the time and storage efficiency results shown in Table 7.6 that the

combination MA57+MC64 is superior to the combination MA57+MC30 in the solution of the

resulting large system of linear equations, as we might expect from our earlier experience.
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Figure 6.7. Nanoindentation model problem

Figure 6.8. Nanoindentation model problem: uy displacement field after

first iteration

It should be noted that future work will be oriented towards the introduction of minimal

kinematic boundary conditions [42] between the two domains, especially in cases when the

MD domain is larger than at present.

6.5. Composite material with embedded fibre optic sensor. We now study a

laminar composite material under static indentation loading [43]. The composite material

is a laminar plate 142×157×7.3 mm in size which consists of 26 aramid fabric layers within

the PVB matrix, with an embedded fibre optic sensor between first and second lamina.

The optical fibre is simulated with all its three component layers: optic core, optic cladding

and optic coating (see Figure 6.9). The material properties of the component materials are

given in Tables 7.7 and 7.8. Only one fourth of the model problem is analysed due to the

symmetry. The finite element mesh has 4797 finite elements. We can see that considered

FE mesh of the optical fibre is not uniform and it is rather coarse, exploiting the reliability

of present finite element in geometrically multiscale analysis [16].

The experimental testing was performed ten times. The test specimens are loaded by

a force of F = 15 kN over the circular area with radius of r = 3.34 mm [43]. The mean

value of the measured deflections under the indenter was found to be uz = 1.1 mm. We

can see in Figure 6.10 that the maximal displacement obtained by the present approach is

in high agreement with the available experimental data.
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Figure 6.9. The part of the composite material finite element model

problem. Aramid plies: dark and bright grey. Thin bond layers between

the plies which simulates extras PVB between kevlar fabric: very dark grey.

Optical fibre: bright grey is optical core, very dark grey is optical cladding,

and gray is optical coating.

Figure 6.10. Composite material: The displacement field uz obtained by

the finite element HC8/9.

The stress field txx is visualized in Figure 6.11. We can see that there is no spurious

oscillation of stresses. Furthermore, the expected different levels of stress in the PVB are

also captured. In addition the stress field of the fibre can be clearly distinguished from the

surrounding area.

Figure 6.11. Composite material: The stress component txx obtained by

the finite element HC8/9, whole model and optical fibre only (all three

layers).

The execution time and storage for the combination HC8/9+MA57+MC64, for three

consecutively refined finite element meshes are given in Table 7.9. Let us not that the

backward error is for all three examples less than 1 · 10−9.
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7. Conclusion

We have demonstrated the accuracy and time execution efficiency of a fully three-

dimensional coordinate independent multifield finite-element approach for the simulation

of geometrically multiscale isotropic, orthotropic, nearly incompressible and multi-material

solid bodies, based on Hellinger-Reissner’s principle with no dimensional reduction and C0

continuous discretization of the displacement and stress fields. The essential contribution of

the present approach in solid mechanics is that it enables the introduction of the residual

stresses and initial (thermal or mechanical) strains directly, without differentiation and

without consistency error. In addition, it is invariant to mesh distortion or high aspect

ratio of the finite elements, and thus is an ideal candidate for bridging with simulations

at a particle level, which we have demonstrated by the example of nanoindentation of

an titanium alloy. The invariance to the aspect ratio of the finite elements is also used

to simulate thin aramid composite materials with embedded optic fibres avoiding any

dimensional reduction and with minimum simplification in material composition.

It should be noted that stresses and displacements are simultaneously calculated which

leads to the solution of large scale indefinite systems of finite element equations. The

equation system is extremely poorly scaled in geometrically multiscale analysis, and it is

usually not possible to solve this without special matrix scaling techniques. After detailed

investigation we have found that the HSL direct sparse solver MA57 and the system matrix

scaling routine MC64 enables the solution of the assembled equation system by using the

current formulation in multiscale analysis.

The first conclusion is that the scaling routine MC64 substantially decreases the storage

requirements and thus enables the solution of larger and more complex systems without

upgrading the computing platform. We also performed some runs with the HSL scaling

routines MC30 and MC77. We do not report the MC77 scaling routine runs here as they

were always inferior to the MC64 results although sometimes marginally so. If the model

problem is geometrically multiscale the scaling routine MC30 is competitive although it

will only be faster on small problems because, on larger problems, the reduction in the

factorization time will more than outweigh the extra cost of implementing the MC64 scaling.

The second conclusion is that the use of any of the scaling routines significantly increases

the accuracy of the solution obtained using the MA57 code. In addition, it is found that

the present solution approach is almost three orders of magnitude faster than a formerly

used in–house solution approach (see Tables 4 and 6).

Consequently, the satisfaction of the convergence requirements of the present finite

element scheme makes it a promising field for future research, including developments

for the analysis of materially nonlinear solid continua, or for coupling with other physical

fields, such as fluid or electro-magnetic.
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Table 7.1. Clamped Plate – elasticity: execution time, storage

requirements – number of entries (estimated and actual), number of delayed

pivots, backward error, FE mesh 8 × 8 × 2
Clamped plate, finite element mesh 8 × 8 × 2

FE N NE Time Number entries Nmb. of Backward

(×103) delayed error

Est. Actual pivots

Analyse Factorize Solve Total

MA57+MC30

HC8/9 2604 194008 .02 2.98 .03 3.03 458 1494 6863 ...5E-11

HC20/21 7380 904759 .16 79.62 .17 79.95 2848 13560 26634 .1E-10

HC8/27 8708 1461997 .14 36.30 .12 36.56 3710 9281 16714 .9E-11

HC20/27 10164 1515891 .23 94.73 .23 95.19 4046 16998 35002 .1E-10

MA57+MC64

HC8/9 2604 194008 .01 .38 .00 .39 458 458 0 .1E-10

HC20/21 7380 904759 .15 8.60 .07 8.82 2848 5078 10076 .3E-10

HC8/27 8708 1461997 .14 4.77 .04 4.95 3710 3710 0 .2E-10

HC20/27 10164 1515891 .24 10.06 .08 10.38 4046 6627 12135 .3E-10

Table 7.2. Clamped Plate – elasticity: execution time, storage

requirements, number of delayed pivots, backward error, FE mesh 16×16×2
Clamped plate, finite element mesh 16 × 16 × 2

FE N NE Time Number entries Nmb. of Backward

(×103) delayed error

Est. Actual pivots

Analyse Factorize Solve Total

MA57+MC30

HC8/9 10188 830584 .08 43.70 .17 43.95 2730 11941 28269 .5E-11

HC20/21 28948 3573009 .34 816.05 2.01 818.40 16941 54287 62265 .6E-11

HC8/27 33908 6102829 .61 996.48 1.63 998.72 26003 82894 77289 .1E-10

HC20/27 39892 6102829 1.64 1629.47 2.37 1633.48 26009 82900 83272 .1E-10

MA57+MC64

HC8/9 10188 830584 .08 2.62 .05 2.75 2730 2730 0 .2E-10

HC20/21 28948 3573009 .95 108.39 .64 109.98 16941 16941 5983 .2E-10

HC8/27 33908 6102829 .61 65.03 .36 66.00 26003 26003 0 .3E-10

HC20/27 39892 6102829 .59 67.10 .37 68.06 26009 26009 5983 .3E-10

Table 7.3. Long steel coated shaft – material properties
Region Material Elastic Poisson’s Thermal Density Thermal

Modulus ratio ν expansion ρ[kg] conductivity

E[MPa] coefficient k[W/m ◦C]

α[ ◦C−1]

(×104) (×10−5) (×103)

Ω1 Ceramic 1.0 0.25 1.0 4.0 1

Ω2 Bond 13.7 0.27 1.51 4.0 25

Ω3 Steel 21.0 0.30 2.0 7.98 25
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Table 7.4. Long steel coated shaft – execution time and storage requirements
Clamped plate, finite element mesh 8 × 8 × 2

FE N NE Time Number entries Nmb. of Backward

(×103) delayed error

Est. Actual pivots

Analyse Factorize Solve Total

In – house, simple Gaussian elimination

HC8/9 5776 14.31 .75 15.06

HC20/21 16500 1810.17 4.89 1815.06

MA57

HC8/9 5776 280056 .03 8.82 .06 8.91 62 3550 32753 ...8E-01

HC20/21 16500 1829790 .16 89.23 .23 89.62 4651 17076 44411 .2E-01

HC8/27 fails

HC20/27 fails

MA57+MC30

HC8/9 5776 280056 .02 .33 .00 .35 705 813 1736 .7E-11

HC20/21 16500 1829790 .17 3.91 .06 4.14 4651 4768 1012 ...9E-11

HC8/27 18634 1961070 .19 3.17 .05 3.41 4306 4306 6 ...3E-10

HC20/27 22122 2785700 .28 6.82 .08 7.18 6932 7043 846 ...8E-11

MA57+MC64

HC8/9 5776 280056 .03 .50 .01 .54 705 709 71 .8E-12

HC20/21 16500 1829790 .17 12.28 .05 12.50 4651 4782 1106 .1E-10

HC8/27 18634 1961070 .19 4.05 .06 4.30 4306 4306 0 ...2E-10

HC20/27 22122 2785700 .27 11.59 .08 11.94 6932 6987 368 .3E-10
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Table 7.5. Coated cylindrical shaft refined through longitudinal axis –

elasticity: execution time, storage requirements, number of delayed pivots,

backward error, using finite elements of type HC8/9
Coated cylindrical shaft refined through longitudinal axis, finite element mesh HC8/9

Num. of N NE Time Number entries Nmb. of Backward

Finite (×103) delayed error

Elements Est. Actual pivots

Analyse Factorize Solve Total

MA57+MC30

3440 55840 5026524 Insufficient storage

4472 71932 6549189 Insufficient storage

5504 88024 8071854 Insufficient storage

MA57+MC64

688 12928 966084 .28 7.08 .09 7.45 2585 2600 153 .4E-07

1376 23656 1981194 .93 34.36 .26 35.55 7428 7436 42 .2E-06

2752 45112 4011414 1.20 226.39 .94 228.53 27996 27996 0 .5E-06

5504 88024 8071854 2.42 1223.09 3.05 1228.56 87358 87358 0 .5E-06

MA57+MC30 on a Dell Dimension 2350 PC at RAL

688 12928 966084 .85 12.83 .06 13.74 2514 7681 26745 .55D-11

1376 23656 1981194 1.90 79.81 .21 81.92 7133 25600 55493 .18D-11

2752 45112 4011414 4.30 525.07 .73 530.01 20650 89120 125838 .40E-12

3440 55840 5026524 5.40 1164.16 1.06 1170.62 28578 134874 157413 .29D-12

4472 71932 6549189 Insufficient storage

5504 88024 8071854 Insufficient storage

MA57+MC64 on a Dell Dimension 2350 PC at RAL

688 12928 966084 .84 1.61 .02 2.47 2514 2519 46 .85E-12

1376 23656 1981194 1.93 5.66 .06 7.65 7133 7133 0 .97E-12

2752 45112 4011414 4.29 22.06 .16 26.51 20650 20653 7 .11E-11

3440 55840 5026524 5.43 32.80 .23 38.46 28578 28583 7 .12E-11

4472 71932 6549189 7.76 55.76 .32 63.84 40671 40678 17 .89E-12

5504 88024 8071854 9.30 78.48 .43 88.21 54684 54702 30 .12E-11

Table 7.6. Nanoindentation – elasticity: execution time, storage

requirements, number of delayed pivots, backward error, FE meshes HC8/9
Nanoindentation, finite element mesh HC8/9

Num. of N NE Time Number entries Nmb. of Backward

Finite (×103) delayed error

Elements Est. Actual pivots

Analyse Factorize Solve Total

Simple Gaussian Elimination

508 8588 34527.85

2032 33432 Insufficient storage

4572 74612 Insufficient storage

MA57+MC30

508 8588 439318 .04 3.25 .03 3.32 1546 3427 13070 .178D-12

2032 33432 1749188 .21 57.04 .21 57.46 7867 25218 60509 .180E-12

4572 74612 3934554 3.95 258.83 .51 263.29 18568 65122 134805 .413D-12

MA57+MC64

508 8588 439318 .05 1.42 .01 1.48 1546 1549 35 .142D-18

2032 33432 1749188 .22 8.86 .07 9.15 7867 7900 310 .274D-18

4572 74612 3934554 3.99 22.35 .16 26.50 18568 18647 957 .449E-18



22

Table 7.7. Material properties of the optical fibre and PVB
Young modulus [MPa] Poisson’s ratio

Optic core 82600.0 0.17

Optic cladding 67500.0 0.19

Optic coating 1500.0 0.4

PVB 20000.0 0.4

Table 7.8. Material properties of the transversally isotropic aramid material
Material properties of the aramid layers in composite material

Young modulus [MPa] E11 = 140000 E22 = 140000 E33 = 2700

Shear Modulus [MPa] G12 = 920 G23 = 200 G13 = 200

Poisson’s ratio ν12 = 0.35 ν23 = 0.1 ν13 = 0.1

Table 7.9. Composite – elasticity: execution time, storage requirements,

number of delayed pivots, backward error, FE meshes HC8/9
Composite material with embedded optical fibre, finite element mesh HC8/9

Num. of N NE Time Number entries Nmb. of Backward

Finite (×103) delayed error

Elements Est. Actual pivots

Analyse Factorize Solve Total

MA57+MC64

2172 37339 3247757 .32 34.90 .20 35.42 17408 17426 109 .1E-10

2933 49530 4407126 .56 82.73 .39 83.68 28418 28478 285 .7E-10

4797 79078 7255406 .78 270.30 0.84 271.92 63004 63180 646 .4E-10


