

Framework for Software Preservation

Brian Matthews, Juan Bicarregui, Arif Shaon, Catherine Jones

STFC

Rutherford Appleton Laboratory

Chilton OX11 0QX

UK

April 2009

 Significant Properties of Software

2

Abstract

Software preservation has not had detailed consideration as a research topic or in

practical application. In this report, we first discuss some of the motivations and

problems of software preservation partly due to the high complexity of software

artefacts. We then go onto present a conceptual framework to capture and organise

the main notions of software preservation, which are required for a coherent and

comprehensive approach. This framework has three main aspects.

- A discussion of what it mean to preserve software in of via a performance model

which considers how a software artefact can be rebuilt from preserved components

and can then be seen to be representative of the original software product. This

model introduces the concept of adequacy, a special case of the general notion of

authenticity of preservation. Adequacy seeks to establish the preservation of specific

properties of the original artefact via a process of testing against predefined cases to

determine whether the software product performs to a acceptable tolerance.

- The development of model of software artefacts, describing the basic components of

all software. This model has four layers. Software products representing the whole

item developed by some actor for some purpose. This is broken down the notion of a

software version, representing changes in the functionality of a product, and variants,

representing a version of the software adapted for a specific working environment.

Finally, a specific instance (physical manifestation) of the software may be deployed

in a specific physical context. This model of software is loosely based on the FRBR

model for representing digital artefacts and their history within a library context.

- The definition and categorisation of the properties of software artefacts which are

required to ensure that the softare product has been adequately preserved. These are

broken down into a number of categories and related to the concepts defined in the

OAIS standard. In particular, Preservation Description Information properties are

required to manage and recall preserved software objects, Representation Information

properties to reconstruct a working copy of the software within a new environment,

and Significant Properties are properties to test the performance of the software

within the new environment.

 Significant Properties of Software

3

Revision History:

Version Date Authors Sections Affected / Comments

0.1 03/03/2009 BMM Outline

0.2 08/04/2009 BMM Full Draft

0.3 17/04/2009 AS Integrated OAIS discussion

0.4 07/05/2009 BMM Added conclusion for final draft.

0.5 12/05/2009 BMM/AS Final typos, abstract and contents

 Significant Properties of Software

4

Table of Contents

1 Introduction .. 6

1.1 What do we mean by preservation? .. 6

1.2 Definition of Software ... 6

1.3 Diversity of Software .. 7

2 Why Preserve Software? .. 9

3 The Principles of Software Preservation .. 12

4 Software Preservation Approaches .. 13

5 Performance Model and Adequacy .. 15

5.1 Performance of software and of data ... 17

6 Conceptual Framework .. 21

6.1 A Conceptual Model for Software .. 21

6.1.1 The Software System ... 22

6.1.2 Software Components .. 25

7 The OAIS Reference Model and Software Preservation 27

7.1 The OAIS Information Model and the Preservation of Software 28

7.1.1 Content Information ... 29

7.1.2 Preservation Description Information (PDI) .. 29

7.1.3 Descriptive Information ... 30

7.1.4 Representation Information (RI) .. 30

7.1.5 Packaging Information ... 31

7.1.6 Designated Community ... 31

7.2 The OAIS Information Model and Software Performance 33

8. Preservation Properties of Software .. 34

 Significant Properties of Software

5

8.1 Categories of Properties .. 34

8.1.1 Product Properties .. 36

8.1.2 Version Properties .. 37

8.1.3 Variant Properties .. 38

8.1.4 Instance Properties ... 40

8.2 Component Properties ... 40

9 Conclusions .. 41

Acknowledgements .. 42

References ... 42

 Significant Properties of Software

6

1 Introduction

Software is a class of electronic object which is frequently the result of research and is often a

vital pre-requisite to the preservation of other electronic objects. However, there has only been

limited consideration of the preservation of software as a digital object in its own right.

Software is inherently complex – forbiddingly so for people who were not involved in its

development but nevertheless want to maintain access to software. A typical software artefact

has a large number of components related in a dependency graph, and with specification, source

and binary components, and a highly sensitive dependency on the operating environment.

Handling this complexity is a major barrier to the preservation of software. Further, the

preservation of software is frequently seen as a secondary activity and one with limited

usefulness.

Software preservation is thus a relatively underexplored topic of research and there is little

practical experience in the field of software preservation as such. The work in this report, and

project, builds on the outputs of a JISC sponsored study into the significant properties of

software for preservation
1
, which looked at a number of software repositories and other groups

engaged in maintaining software over the long term (Matthews et. al. 2008). Given the relative

immaturity of the field, the project has devloped a framework to express the notion of software

preservation and set out some baseline concepts of what it means to preserve software. The

framework has been developed further and deeper, bringing in notions from the OAIS reference

model
2
, and also developed tool support.

1.1 What do we mean by preservation?

There is a large overlap between preservation for the future and good practice for software

maintenance in the here and now. Although the word “preservation” implies for future

generations, in software terms this can mean a much shorter time frame – much software has a

working life (without additional modifications/rewriting) of five years at best and so curation can

be considered to be quite a short term undertaking in the software domain. It is quite possible for

the underlying data to have been created much earlier in time than the software used to

manipulate it. It is the art of maintaining the underlying data by the way software systems are

curated and migrated which is important in this sphere. Whilst this project is concerned with

software generated as a result of research rather than other endeavours, it is important to consider

the wider landscape before teasing out research output issues.

1.2 Definition of Software

Software is defined as: “a collection of computer programs, procedures and documentation that

perform some task on a computer system.”
3
 Computer programs themselves are sequences of

1
 Joint Information Systems Committee (JISC) study into the Significant Properties of Software (2007).

2
 http://public.ccsds.org/publications/archive/650x0b1.pdf

3
 http://en.wikipedia.org/wiki/Software

http://public.ccsds.org/publications/archive/650x0b1.pdf
http://en.wikipedia.org/wiki/Software

 Significant Properties of Software

7

formal rules or instructions to a processor to enable it to execute a specific task or function.

However, note that the definition also includes documentation, a crucial element in defining the

significant properties of software, and thus in scope of this study. We refer to a single collection

of software artefacts which are brought together for an identifiable broad purpose as a software

product
4
.

The term software is sometimes used in a broader context to describe any electronic media

content which embodies expressions of ideas stored on film, tapes, records etc for recall and

replay by some (typically but not always) electronic device. For example, a piece of music

stored for reproduction on vinyl disc or compact disc is sometimes described as the software for

the record or CD player, in analogy to the instructions of a computer. However, for the purposes

of this report, such content is considered a data format for a different digital object type, and is

thus out of scope.

1.3 Diversity of Software

Software is a very large area with a huge variation in the nature and scale, with a spectrum

including microcode, real-time control, operating systems, business systems, desktop

applications, distributed systems, and expert systems, with an equally wide range of applications.

There are also varying constraints of the business context in which the software is developed

from systems coded by one individual for their own use (typical in research), open-source

systems, to commercial products. We can classify this diversity along a number of different axes,

which impact on preservation requirements.

 Diversity of application. Software is used in almost every domain of human activity. Thus

there are software products in for example business office systems, scientific analysis

applications, navigation systems, industrial control systems, electronic commerce,

photography, art and music media systems. Each area has different functional characteristics

on at least a conceptual user domain and needs to classify software according to some

application oriented classification or description of the domain.

 Diversity in hardware architecture. Software is designed to run on a large range of

different computer configurations and architectures, and indeed “levels” of abstraction in

relation to the raw electronics of the underlying computing hardware. At a micro level,

assembler and micro-code are used to control the hardware directly and low level operations

such as memory management or drivers for hardware devices. At a higher level of

abstraction, applications are intended to be deployed on a wide range of computing hardware

and architectures (e.g. workstations, hand-held or mobile devices, main-frame computers,

clusters). In order to recreate the functionality of system, the hardware configuration may

need to be taken into account.

 Diversity in software architecture. Even within a common hardware configuration, there

are different software architectures, requirements on the coordination of software

components which need to interact using well-defined protocols to achieve the overall

4
 Other alternative terms are also used, including software system (which could be confused with a complete

assemblages of different hardware software items),and software package (which in the context of preservation,

could be confused with the OAIS notion of information package). We chose the term product as a neutral term, and

does not imply that the software product is being provided on a commercial basis.

 Significant Properties of Software

8

functionality of the system. For example, in the StarLink system (see below) there is an

assumption that the system runs on a particular storage management component. Another

common example is a client-server architecture, where user clients mediate the user

interaction and send requests to services on a server, which performs processing and

responds with the results to the user. In order to recreate the functionality of the entire

system, the reconfiguration of a number of interacting components into a common

architecture will need to be recreated.

 Diversity in scale of software. Software ranges from individual routines and small

programs which may only be a few lines long, such a Perl routines written for specific data

extraction tasks; through products which provide particular set of library functions, such as

the Xerces XML processor; major application products, such as Microsoft Word, which

provides a large group of related functionality to the user with large range of extra features,

user interface support and backward compatibility; to large multi-function systems which

provide entire environments or platforms for complex applications, such as the Linux

operating system, which have millions of lines of code and entire sub-areas which would be

major products in their own right, but are required to work together into a coherent whole.

 Diversity in provenance. Software is developed by a wide range of different people

organised in different ways. These would range from individuals writing specialised

programs for personal use or to support particular functionality required by that individual;

through community developments, where code is passed from person to person who has an

interest in developing further functionality; formal collaborative working as is widely

undertaken in major open-source initiatives, such as Apache or Linux, where a mixture of

diverse contribution to the core code base is combined with a more centrally controlled

acceptance and integration procedure; to software developed and supported by a large or

small team within a single organisation, for the internal purposes of the organisation, or else

to be distributed usually as a commercial proposition. A single software product may pass

through a number of different individuals and organisations with a number of different

business goals, models, and licensing requirements. These different development models

need to be reflected within attribution and licensing conditions.

 Diversity in user interaction. Software can support a wide range of interaction with the

user. System software which controls the low level operation of the machine itself is

designed to have no user interaction at all; library functions typically are designed to interact

with other software components and have no or little user feedback, possibly delivering error

messages; broader products are typically designed to have a user interface component which

mediate commands from and responses to the user often via simple command-line or file

based interaction. Other systems have rich user interactions with complex graphical user

interfaces requiring keyboard and pointer and high-resolution displays, or audio input and

output. Others require specialised input or output hardware devices such as joysticks and

other control devices for games playing, or specialised screens and displays for virtual reality

display. Clearly, in order to accurately reproduce the correct functionality of the software in

the future, the appropriate level of user interaction will need to be recreated in some form.

Clearly there is huge diversity in the nature and application of software. However, we believe

that there is sufficient commonality between these different scales that a general framework for

software preservation can be defined which is applicable to a wide range of different software

products.

 Significant Properties of Software

9

2 Why Preserve Software?

A key question with respect to preservation of software is why it is a useful thing to do. After

all, software has a track record of being both being very fragile and very disposable.

Software is fragile as it is very sensitive to changes in environment: hardware, operating system,

versions of systems (e.g. programming languages and compilers) and configuration change.

When the environment changes, software notoriously stops working, crashes taking down vital

pieces of data, or works but not as originally intended, with missing or differing functionality.

The last case can be particularly damaging, as the software may seem to work but actually

produces subtly different results. For example, compiling with a different floating point module

may produce quite different results in the analysis. The complexity of the software makes it

difficult to make the required adjustments so that is functions correctly in the new environment.

Software is disposable as in the face of environment change and the complexity of large-scale

systems, developers often throw away previous software and start again from scratch ("not

invented here syndrome"). After all, if you know the problem to be solved, and you have

preserved the original data, it may be easier to write new software rather than wrestle with

legacy, and you may be able to produce a faster, more user-friendly system which operates in a

modern environment, and with the developer, who understand the code, to hand rather than long

gone from the organisation.

Together, these make the preservation of software appear both difficult and unnecessary.

However, there are also good reasons to preserve software, especially in a research and teaching

environment. Some of these reasons are as follows.

 Preserve a complete record of work

Software is frequently an output of research. This is particularly the case in Computer Science

where the software itself is an important test of the hypothesis of the research - if you can't

implement it and demonstrate the advantage of the assertion, in computer science terms the

assertion is not proven. However, this software as an output of research extends beyond

Computer Science as many research projects across all disciplines now frequently have an aspect

of computing and programming to test the hypothesis of research.

If university archives and libraries are going to maintain a complete record of research, then the

software itself should be preserved. Frequently, in practice, theses do come with appendices of

code listings or with CD-ROM's inserted into the back cover with the supporting software.

However, while the theses are stored on library shelves, software content is not necessarily

preserved against media change (can we read those disks in a few years time?) or change in the

computing environment making the code difficult to run. Research projects again frequently

produce software, or specialist modifications to existing products to support their claims, or to

carry our special analysis of data, so the results of the project are hard to interpret and evaluate

without the software. However, at the end of the project, unless the software is taken up as a

community effort, or in a subsequent project, there is little incentive or resource to maintain

access to the software in a usable form.

 Significant Properties of Software

10

Library preservation strategies should accommodate the preservation of software as well as other

research outputs.

Preserving the data

Related to the previous point, is the reproduction and verification of research which has

generated and analysed data, and published the results. In order to verify the asserted claims of a

research project, then it should be reproducible. In many circumstances it may be enough to

rerun the analysis on current software if the original data has been preserved. But in other

circumstances, testing accuracy or detecting fraud for example, it may be necessary to rerun the

original software precisely to reproduce the exact result. Scientific reputations may be at stake,

and they should be judged on the results as they saw them at the time, using the software as it

was available to them, rather than newer software. Newer software may have errors corrected,

have higher performance or accuracy characteristics, or else have improved analysis algorithms

or visualisation tools. All these factors may lead later analysis of the data to different

conclusions to those originally deduced, but the scientists should nevertheless be judged on the

view they were able to take at the time.

A further issue here is the reuse of data. Data which is collected on sophisticated experimental

equipment or facilities is expensive; other data which is recording specific events, such as

environmental conditions at particular times and places, is non-reproducible. In these

circumstances, it is desirable to preserve the data and reuse it in order to maximise its scientific

potential, and to do this it is often necessary to preserve some supporting software to process the

data format, and to provide the appropriate data analysis. This reason is also relevant to the

preservation of other digital objects. Preservation of document or image formats requires the

preservation of format processing and rendering software in order to keep the content accessible

to future users.

Thus software also needs to be preserved to support the preservation of data and documents, to

keep them live and reusable. In this case, the prime purpose of the preservation is not to preserve

the software in itself, so it may be suitable not to ensure that that software is reproduced in its

exact form, but only sufficiently well preserved to process the target data accurately. Thus we

introduce the key notion of adequacy, to provide “good enough” preservation, with key

properties of the software preserved and others disregarded.

 Handling Legacy

Perhaps the prime motivation to preserve software for most organisations is to save effort in

recoding. Legacy code still needs to be used, due to its specialised function or configuration and

it is frequently seen as more efficient to reuse old code, or keep old code running in the face of

software environment change than to recode. This is certainly the reason for the maintenance of

most existing software repositories, and a significant part of the effort which is undertaken by

software developers both in-house within end-user organisations, and also within software

houses. Handling legacy software is usually seen as a problem, and many strategies are

undertaken in order to rationalise the process, to make it more systematic and more efficient. As

a consequence, similar considerations to software preservation are within the best practice on

 Significant Properties of Software

11

software maintenance and reuse, a long recognised part of good software engineering. If you can

find an existing product or library routine, why bother rewriting it? Of course in these

circumstances you need assurance that the software will run in your current environment and

provide the correct functionality

Museums and Archives

A small but significant constituency of software preservation is those museums and archives

which specialise on preserving aspects of the history of computing and its influence on the wider

course of events. These institutions wish to preserve important software artefacts as they were at

the time of their creation or use, so that future generations of historians of science (and the

general public) can study and appreciate the computers available that particular period, and trace

their development over time.

Such museums themselves often concentrate on preserving hardware. For example, Bletchley

Park
5
 and the National Museum of Computing

6
 preserve or rebuild historic machines, including

early code-breaking machines from WWII, as does the Science Museum
7
, the Museum of

Science and Industry in Manchester
8
, and the Computer History Museum

9
 in California. These

machines are often kept in working operation, so there is a need to preserve the software to

demonstrate the function of the machine.

Others archives are interested in preserving the software alone, typically via a web presence.

Examples include: the Chilton Computing site
10

, which includes the Atlas Basic Language

Manual describing the software architecture of the Atlas computer from 1965; the Multics

History Project
11

, which preserves the code for the Multics operating system developed in the

1960s; and Bitsavers
12

, which preserves documentation and software for minicomputers and

mainframes from the 50's to the 80's.

For example, the Multics History Project is a effort to locate and engage the original experts on

designing and using the system to capture their knowledge before they die. The project seeks to

preserve the binary, to “preserve the bits”, and document the formats. It also has an emphasis

on capturing the implicit knowledge of the development organization and process, and creating a

“map” of the software describing different views on it, via for example, capturing its source

code, the coding interfaces, and its functions. It further seeks to capture the development history

and as much of the documentation as is available. This is for historical purposes; it seems

unlikely that the Multics system will be revived for active use, and most of the functionality

could be emulated elsewhere and the data generated using it processed on different operating

systems. Nevertheless, Multics is an object lesson in software engineering (good and bad), and

is undoubtedly valuable case study for future generations of computing engineers.

5
 http://www.bletchleypark.org.uk/

6
 http://www.tnmoc.org/index.htm

7
 http://www.sciencemuseum.org.uk

8
 http://www.msim.org.uk/

9
 http://www.computerhistory.org/

10
 http://www.chilton-computing.org.uk/

11
 http://www.multicians.org/mhp.html

12
 http://www.bitsavers.org

http://www.bletchleypark.org.uk/
http://www.tnmoc.org/index.htm
http://www.sciencemuseum.org.uk/
http://www.msim.org.uk/
http://www.computerhistory.org/
http://www.chilton-computing.org.uk/
http://www.multicians.org/mhp.html
http://www.bitsavers.org/

 Significant Properties of Software

12

Other groups wish to preserve hardware and software as research interests or private

enthusiasms, for example the Computer Conservation Society
13

, a specialist interest group of the

BCS, the Software Preservation Group
14

 supported by the Computer History Museum, or a

number of groups such as the Software Preservation Society
15

 interested in preserving games

software for obsolete platforms, such as the Sinclair Spectrum, Acorn BBC Micro or Amiga.

In this context, there has been given some consideration of how to preserve software. See for

example (Zabolitsky, 2002). However, this is largely limited to preserving historic software as a

unit with the historic hardware, so the major concern is preserving the storage of the code on

some physical media, with appropriate backup and replication strategies; these preservation

actions are similar to those for other digital artefacts. The problem of preserving the usage of the

software in a future context is not considered in detail. (Computer History Museum 2006) gives

an overview of approaches to software preservation being undertaken in museums and archives.

Major concerns are how to collect important software products, especially with a variety of

licensing constraints, and how to interpret and display them to the public.

The enthusiasts who would like to preserve games software recognise the problem of

maintaining the usability of the software, which is the point of preserving old games. They also

recognise the problems associated with copyright and copy protection. They adopt preservation

strategies which use software emulation of obsolete platforms, and conversion of the binary to

universal virtual machine code, which can be emulated on more modern platforms.

3 The Principles of Software Preservation

Software preservation has four major aspects.

 Storage. A copy of a software “product” needs to be stored for long term preservation.

Software is a complex digital object, with potentially a large number of components

constituting a product (c.f. an information package as in OAIS); what is actually preserved is

dependent on the software preservation approach taken. Whatever the exact items stored,

there should be a strategy to ensure that the storage is secure and maintains its authenticity

(fixity again using OAIS terminology) over time, with appropriate strategies for storage

replication, media refresh, format migration etc as necessary.

 Retrieval. In order for a preserved software product to be retrieved at a date in the future, it

needs to be clearly labelled and identified (reference information in OAIS terminology), with

a suitable catalogue. This should provide search on its function (e.g. terms from controlled

vocabulary or functional description) and origin (provenance information).

 Reconstruction. The preserved product can be reinstalled or rebuilt within a sufficiently

close environment to the original that it will execute satisfactorily. For software, this is a

particularly complex operation, as there are a large number of contextual dependencies to the

13

 http://www.computerconservationsociety.org/index.htm
14

 http://www.softwarepreservation.org/
15

 http://www.softpres.org/

http://www.computerconservationsociety.org/index.htm
http://www.softwarepreservation.org/
http://www.softpres.org/

 Significant Properties of Software

13

software execution environment which are required to be satisfied before the software will

execute at all.

 Replay. In order to be useful at a later date, software needs be replayed, or executed and

perform in a manner which is sufficient close in its behaviour to the original. As with

reconstruction, there may be environmental factors which may influence whether the

software delivers a satisfactory level of performance.

In the first two aspects, software (once a decision has been taken on what software components

to preserve) is much like any other digital object type. Storage media which are secure and

maintain integrity, and methods to identify and retrieve suitable objects are required in all cases.

However, the problem of reconstruction and replay is especially acute for software. Digital

objects designed for human consumption have requirements for rendering which again have

issues of satisfactory performance; science data objects also typically require information on

formats and analysis tools to be “replayed” appropriately. However, software requires an

additional notion of a software environment with dependencies to other hardware, software and

build and configuration information.

Note that other digital objects require software to provide the appropriate level of satisfactory

replay, and thus for other digital objects there is a need to preserve software (and thus record its

significant properties) too; as we shall see, there is also a dependency on the preservation of

other object types (e.g. documentation) for the adequate preservation of software.

4 Software Preservation Approaches

Various approaches to digital preservation have been proposed and implemented, usually as

applied to data and documents. However, they do usually refer to the means of preserving the

underlying software used to process or render the data or document. Thus these preservation

approaches directly relate to the preservation of software.

The Cedars Guide to Digital Preservation Strategies (Cedars, 2002) defines three main strategies,

which we give here, and consider how they are applicable to software.

– Technical Preservation. (techno-centric). Maintaining the original software (typically a

binary), and sometimes hardware, of the original operating environment. Thus this is

similar to the use case for software preservation arising from museums and archives where

the original computing hardware is also preserved and as much of the original environment is

maintained as is possible. This is also an approach which is taken in many legacy situations;

otherwise obsolete hardware is maintained to keep vital software in operation.

– Emulation (data-centric). Re-creating the original operating environment by programming

future platforms and operating systems to emulate the original operating environment, so that

software can be preserved in binary and run "as is". This is a common approach, undertaken

in for example the PLANETS project, and also by groups such as the Software Preservation

Society.

– Migration (process-centric). Transferring digital information to new platforms before the

 Significant Properties of Software

14

earlier one becomes obsolete. As applied to software, this means recompiling and

reconfiguring the software source code to generate new binaries, apply to a new software

environment, with updated operating system languages, libraries etc.

Software migration is a continuum. The minimal change scenario is that the source code is

recompiled and rebuilt unchanged from the original source. However in practice, the

configuration scripts, or the code itself may require updating to accommodate differences in

build systems, system libraries, or programming language (compiler) version. An extreme

version of migration may involve rewriting the original code from the specification, possibly

in a different language. However, there is not necessarily an exact correlation between the

extent of the change and the accuracy of the preservation.

Software migration (or “porting” or “adaptive maintenance”) is in practice how software

which is supported over a long period of time is preserved. Long term projects such as

StarLink, or software houses such as NAG spend much of their effort maintaining (or

improving) the functionality of their system in the face of environment change.

These three approaches have their advantages and disadvantages, which have been debated in the

preservation literature.

Technical (hardware) preservation has the minimal level of intervention and minimal deviation

from the original properties of the software. However, in the long-term this approach becomes

difficult to sustain as the expertise and spare components for the hardware become harder to

obtain.

The emulation approach for preserving application software is widespread, and is particularly

suited to those situations where the properties of the original software are required to be

preserved as exactly as possible. For example, in document rendering where the exact

pagination and fonts are required to reproduce the original appearance of the document; or in

games software where the graphics, user controls and performance (e.g. it should not perform too

quickly for a human player on more up to date hardware) are required to be replicated.

Emulation is also an important approach when the source code is not available, either having

been lost or not available through licensing or commercial restriction. However, a problem of

emulation is that it transfers the problem to the (hopefully lesser) one of preserving the emulator.

As the platform the emulator is designed for becomes obsolete, the emulator has to be rebuilt or

emulated on another emulator. Thus a potentially growing stack of emulation software is

required. Nevertheless, emulation is being applied in several projects, notably within the

European project PLANETS
16

.

The migration approach does not seek to preserve all the properties of the original, or at least not

exactly, but as observed in the European project CASPAR
17

, only those up to the interface

definition, which we could perhaps generalise to those properties which have been identified as

being of significant for the preservation task in hand. Migration then can take the original

source and adapt to the best performance and capabilities of the modern environment, while still

16

 http://www.planets-project.eu/
17

 http://www.casparpreserves.eu/

http://www.planets-project.eu/
http://www.casparpreserves.eu/

 Significant Properties of Software

15

preserving the significant functionality required. This is thus perhaps the most suited where the

exact (in some respects) characteristics of the original are not required – there may be for

example difference in user interaction or processing performance, or even software architecture –

but core functionality is maintained. For example, for most scientific software the accurate

processing of the original data is key but there is a tolerance to change of other characteristics.

These three different preservation strategies thus require different levels of detail of preservation

information for software artefacts. In this report, we are neutral to the preservation approach, but

consider how the preservation of the key properties can be identified and checked.

5 Performance Model and Adequacy

Closely related to the preservation approach is the notion of how a sufficient level of

performance adequately preserves the required characteristics of software. Performance as a

model for the preservation of digital objects was defined by the National Archives of Australia in

(Heslop et. al. 2002) to measure the effectiveness of a digital preservation strategy. Noting that

for digital content, technology (e.g. media, hardware, software) has to be applied to data to

render it intelligible to a user, they define a model as in Figure 1. Here Source data has a

Process applied to it, in the case of digital data some application of hardware and software, to

generate a Performance, where meaning is extracted by a user. Different processes applied to a

source may produce different performances. However, it is the properties of the performance

which need to be considered when the value of a preservation action. Thus the properties can

arise from a combination of the properties of the source with the technology applied in the

processing.

Figure 1: NAA Performance Model

The notion of performance has been developed in the context of traditional archival records and

has been adopted in studies into the significant properties of different media types (see [5], [2])

which compare the performance created by the original process of rendering with that created by

a later rendering processes on new hardware and software. The question which arises is how this

model applies to software itself.

In the case of software, the performance is the execution of binary files on some hardware

platform configured in some architecture to provide the end experience for the user. However,

Source Performance Process User

 Significant Properties of Software

16

the processing stage depends on the nature of the software artefacts preserved which have

differing reconstruction and replay requirements. This is illustrated in Figure 2.

Figure 2: Software Performance models from different sources

– In the case where binary is preserved, the process of generating the performance is one of

preserving the original operating software environment and possibly the hardware too, or else

emulating that software environment on a new platform. In this case, the emphasis is usually

on performing as closely as possible to the original system.

– When source code and configuration and build scripts are preserved, then a rebuild process

can be undertaken, using later compilers and linkers on new a new platform, with new

versions of libraries and operating systems. In this case, we would expect that the

performance would not necessarily preserve all the properties of the original (e.g. systems

performance, or exact look and feel of the user interface), but have some deviations from the

original.

– In an extreme case, only the specification of the software may be preserved. In this case, a

performance could be replicated by recoding the original specification. In this case, we

would expect significant deviation from the original and perhaps only core functionality to be

preserved. This case would seem to be exceptional. However, it is less unusual in coding

practice, as products are often migrated into a different language; for example the NAG

library originated in FORTRAN, but later produced a C version. In some circumstances,

this is a result of reverse engineering where source code (or even in extreme cases binary

code) is analysed to determine its function and recoded.

Rewrite into
new code

Rebuild from
source code

Preserve or emulate
environment

Perform only

core functionality

Perform with small

deviations from original

Perform “exactly”

as original

Specification Binary
Source
Code

+
configure

and build

 Significant Properties of Software

17

A software performance can thus result in some properties being preserved, and others deviating

from the original or even being disregarded altogether. Thus in order to determine the value of a

particular performance, we define the notion of Adequacy.

A software product (or indeed any digital object) can be said to perform adequately

relative to a particular set of features (“significant properties”), if in a particular

performance (that is after it has been subjected to a particular process) it preserves that

set of significant properties to an acceptable tolerance.

Admittedly, this notion of adequacy is usually viewed as an aspect of the established notion of

Authenticity of preservation (i.e. that the digital object can be identified and assured to be the

object as originally archived). However, we feel that it is useful to separete these two notions in

order to establish a more lucid requirement specification of long-term preservation of software.

For this, we use the premise that the term Authenticity in long-term preservation essentially

signifies the level of trust between a preserved software product and its future end users. From

the preserpective of an end user of a software product, this trust is primarily associated with the

ability to trace the provenance (e.g. history of origin, custodianship etc.) and verify the fixity

information (e.g. checksum) of the software. For example, a preserved software with

comprehensively documented provenance history and verifiable fixity information might

establish a sense of trust for the body responsible for its preservation in its users. But this

“trusted preservation” does not gurantee a reliable behaviour from the software once

reconstructed in future; it might incur a loss of some of its original features during its

reconstruction process. However, the software could still be used for the remaining features

retained after reconstruction, which could be sufficient to extract an acceptable level of

performance from the software. An example of such a software is the emulated version of the

1990’s DOS-based computer game Prince of Persia
18

. While some of the instructions do not

always work on the emulator and the original appearance of the game is also somewhat lost, it is

possible to run the emulator to play the complete game on a contemporary computer platform.

The term Adequacy introduced here is intended to represent this particular concept. In effect, by

measuring the adequacy of the performance, we can thus determine how well the software has

been preserved and replayed.

5.1 Performance of software and of data

A further aspect of the performance model for software is that the measure of adequacy of the

software is closely related to the performance of its input data. The purpose of software is

(usually) to process data, so the performance of a software product becomes the processing of its

input data. This relationship is illustrated in Figure 3. Note that we have reversed the arrow

between performance and user to reflect the information flow. Further, there is an interaction

between the user and the software performance, reflecting the user’s interaction with the

software product during execution, changing the data processing and thus the data performance.

18

 http://www.bestoldgames.net/eng/old-games/prince-of-persia.php

http://www.bestoldgames.net/eng/old-games/prince-of-persia.php

 Significant Properties of Software

18

Figure 3: Performance model of software and its input data

So for example, in the case of a word processing product which is preserved in a binary format,

which is processed via operating system emulation, the performance of the product is the

processing and rendering of word processing file format data into a performance which a

(human) user can experience via reading it off a display. The user can then interact with the

processing (via for example entering, reformatting or deleting text) to change the data

performance. Thus the measure of adequacy of the software is the measure of the adequacy of

the performance when it is used to process input data, and thus how well it preserves the

significant properties of its input data, and also perserving a known change in the data

performance which results from user interaction with the processing.

This can be applied recursively to software which processes other software, for example software

used for emulation or compilers to build software binaries, which also need to be preserved, as in

Figure 4. In this case, the performance of software is the processing of the application binaries

or source code, which in turn are measured by its adequacy in processing its intended input data.

Software

Source

Software
Performance

/Data
Processing

Software
Processing

User
Data

Source

Data
Performance

 Significant Properties of Software

19

Figure 4: Performance model of software compilers

Thus the adequacy of different preservation approaches is dependent upon the performance of

the end result on the end use on data. As the software has to be able to produce an adequate

performance for any valid input date, the adequacy can be established by performing trial

executions against representative test data covering the range of required behaviour (including

error conditions). This is further illustrated in the table below that outlines some probable

adequacy determining factors for a number of different types of software product:

Software Category “Adequacy” Factor(s) Examples

Scientific Data

Processing Software

The adequacy of the behaviour of this type

of software after it has been reconstructed,

may be measured by:

 Running the software to process

some pre-specified test input data

 Comparing the output of the test run

with the corresponding pre-specified

test result;

 Checking if the output exceeds the

acceptable level of error tolerance

for the software.

Starlink, NAG

Software Library.

For example, the

NAG library

publishes test cases

and a specification

of the required

accuracy, in terms of

number of significan

figures for its

mathematical

software routines.

Such accuracy is

Software
Source

Software
Performance/

Data
Processing

Compiler
Performance/

Software
Processing

User
Data

Source

Data
Performance

Software

Compiler

Compiler
Processing

 Significant Properties of Software

20

highly dependent on

the mathematical

libraries and

coprocessor used.

Games The adequacy of the behaviour of a

reconstructed game may be measured by:

 Comparing its UI with the screen

capture of its original UI.

 Comparing its performance against

some pre-defined use cases. For

example, the completion time of a

paritcular level can be compared

against the average completion time

for that level in the original game.

The 1990’s DOS-

based version of

Prince of Persia

Programming

Language Compilers

A compiler may be said to have been

preserved adequately, if, after

reconstruction:

 it covers all features of the

programming language that it

supports, e.g. concurrency(i.e.

threads), polymorphism, etc. For

some programming languages (e.g.

Fortran, C, C++ etc.), there exist ISO

standards
19

 which describe the

correct behaviour of a software

written in these languages. These

standards also provide test programs

that may be used to assess the

adequacy of a compiler for rendering

all features of the programming

language that it supports.

 the application resulting from

compiling its source code (written in

a language supported by the

compiler) using the compiler yields

the expected behaviour.

Java Compiler, C

compiler

Word Processor The adequacy of a word processor may be OpenOffice Word
20

,

19

 http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_tc_browse.htm?commid=45202
20

 http://www.openoffice.org/

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_tc_browse.htm?commid=45202
http://www.openoffice.org/

 Significant Properties of Software

21

measured based on its ability to:

 render existing supported word

documents with an acceptable level

of error tolerance. For example, a

word processor may be regarded as

adequate as long as it clearly

displays the contents (e.g. test,

diagram, etc.) of a word document,

even if some of the features of the

document content, such as font

colour and size, may have been

rendered incorrectly or even lost

completely.

 enable editing (e.g.

add/change/remove text, change

font) and saving existing word

documents

 enable creation and saving of new

word documents

Corel WordPerfect
21

Thus, the adequacy of preservation of a particular significant property can be established by

testing against pre-specified suites of test cases with the expected behaviour, and pre-specified

user interactions to change the data performance in known ways.

6 Conceptual Framework

In order to express the significant properties of software, we need to develop a conceptual

framework to capture the approach taken to software preservation and the structuring of the

software artefact and the significant properties of software for preservation.

6.1 A Conceptual Model for Software

As in the InSPECT work on developing a framework for significant properties for digital objects

in general [5], we recognise that a conceptual data model is required to capture the digital object

(i.e. software) under consideration. This data model will guide us on the level of granularity at

which significant properties can be identified, and provide an understanding of the relationship

between digital objects, thus giving traction on handling the complexity of the objects, a

particularly important aspect in handling software. InSPECT considered a number of

conceptual models which have been proposed for digital objects, including FRBR [13], PREMIS

21

 http://www.corel.com/servlet/Satellite/us/en/Product/1207939618939#tabview=tab0

http://www.corel.com/servlet/Satellite/us/en/Product/1207939618939#tabview=tab0

 Significant Properties of Software

22

[14] and the National Archives data model, and based on these develop a model for associating

significant properties at different levels of granularity.

We propose to develop a similar conceptual data model for software. However, there are a

number of factors which need to be taken into account for developing a model for software.

 Software is a composite object. Typically software is composed of several items.

Normally these would include binary files, source code files, installation scripts, usage

documentation, and user manuals and tutorials. A more complete record may include

requirements and design documentation, in a variety of software engineering notations

(for example, UML), test cases and harnesses, prototypes, even in some cases, formal

proofs. These items each have their own significant properties, some of which are the

properties of their own digital object type, e.g. of documents or of data for test data. The

relationships between these items need to be maintained.

 Versioning. Software typically goes through many versions, as errors are corrected,

functionality changed, and the environment (hardware, operating system, software

libraries) evolves. Earlier versions may need to be recalled to reproduce particular

behaviour. Again the complex relationships need to be maintained.

 Adaptation to operating environment. Each version itself may be provided for a

number of different platforms, operating systems and wider environments. In extreme

cases, there may be different variants provided for specific machines (this was

particularly the case in the past, and still applies when codes are tailored for high-

performance systems where the performance is sensitive to the specific architecture of the

target machine). Thus each version, while having essentially the same code base, may

have variations, which may also vary in functional characteristics as different

environments provide different features.

We provide a general model of software digital objects, which has a parallel with the FRBR

model. We will go on to relate each concept in the model with a set of significant properties.

6.1.1 The Software System

We define a four layer model for software, given schematically and with its correspondence to

the major entities of the FRBR model in Figure 5.

This model has four major conceptual entities, which together describe a complete Software

System. These are Product, Version, Variant and Instance. This is in analogy with the FRBR

model. The four levels roughly correspond to Work / Expression / Manifestation / Item, although

we would warn against taking this analogy too far.

We consider each of these in turn, noting the types of significant properties we would typically

associate with each level. Note at this level we also do not distinguish between source code,

binaries and other supporting digital objects; these are considered below as the components of

the software system, which is discussed in a later section.

 Significant Properties of Software

23

Work Product

Item

Instance

Manifestation

Variant

Expression

Version

Software
System

Figure 5: Conceptual model for Software and relationship to FRBR

Product. The product
22

 is the whole top-level conceptual entity of the system, and is how the

system may be commonly or informally referred to. Products can vary in size and could range

from a single library function (e.g. a function in the NAG library), to a very large system which

has multiple sub-products, with independent provenances (e.g. Linux). Thus examples would be

“Windows”, “Word”, “Starlink”, “Xerces”. Products themselves can be composite objects (a

software library or framework) and may have a number of other sub-products within them.

Products are characterised by the following main features.

 A product has a single functional purpose, the overall gross goal of the software for example

o “Word Processor” for Word;

o “Framework to support astronomical software” for StarLink;

22
 Not to be confused with the notion of information package as used in OAIS.

 Significant Properties of Software

24

o “Gram–Schmidt orthogonalisation of n vectors of order m” for function identifier

F05AAF in the NAG library. This function can be regarded as a product in its own

right, but it also a sub-product of the whole NAG library (which is also a product).

 A product has an "owner” responsible for developing, distributing and supporting the

software and also having rights to control the usage of the software, although not always of

the sub-products within the product. Software often changes ownership, but then it should

change as a product - the function and the way the function is delivered is likely to change as

well as the authorising body. Typically, there might be a software licence associated with a

software product as a whole. However, licences may also vary according to the version of

the software, so we also allow the possibility of assigning licences to particular version.

Software owners are not always straightforward to establish, particularly in the case of open-

source software, although primary individuals responsible for the developing and

maintaining a particularly coherent code-base can usually be identified. Thus:

o Word is owned by Microsoft (www.microsoft.com)

o Apache is owned by the Apache Software Foundation (www.apache.org)

 A coherent history and provenance associated with its responsible authority.

 Overall conceptual architecture of the system. This is likely to be stable for the whole

product, though for long-lasting software, a major refactor of the software may result in

different conceptual software architecture, as in the case of StarLink. In those cases, it may

be considered as a new (but related) product entirely, although maintaining many of the same

components and sub-products.

Version. A version of a software product is expression of the product which provides a single

coherent presentation of the product with a well defined functionality and behaviour and usually

in environmental features. Differences in versions are characterised by changes to its

functionality and also potentially performance. Typically for publically available software,

versions are associated with the notion of a software release, which is a version which is made

publically available, but in a development system, there are likely to be other versions in the

system. Versions are also captured in version control systems such as CVS and Subversion by

the branches of the development. Release branches represent snapshots over time of the

development, and can reflect the relationships between the various releases.

Note also that in composite products, the sub-products will themselves have a number of

versions which will be related to versions of the complete product. These releases will not

necessarily be synchronised, so the relationship will need to be captured.

The properties which characterise the difference between versions would include:

 Changes in detailed functionality, e.g. presence of commenting in Word, coverage of XML

standard versions in Xerces.

 Corrections to previous version’s buggy behaviour.

 Changes in behaviour in error conditions.

 Changes to user interaction.

Variant. Versions may have a number of different variations to accommodate a number of

different operating environments, thus we define a Variant of the product to be a manifestation

http://www.microsoft.com/
http://www.apache.org/

 Significant Properties of Software

25

of the system which changes in the software operating environment, for example target hardware

platform, target operating system, library, programming language version. In this case, the

functionality of the version is maintained as much as is practical; however, due to different

behaviour supported by different platforms, there may be variations in behaviour, in error

conditions and user interaction (e.g. the look and feel of a graphical user interface).

The properties which characterise the difference between variants would include:

 Changes in operating environment, including hardware platform, operating system and

programming language version, auxiliary libraries, and peripheral devices.

 Changes in functional behaviour as a result of change in software environment.

 Different operating performance characteristics (e.g. speed of execution, memory usage).

In practice, Version and Variant may be very difficult to distinguish: changes in environment are

likely to change the functionality; new versions of software are brought out to cope with new

environments. It may be arguable in some circumstances that Versions are subordinate to

Variants, and in others we may wish to omit one of these stages (software which is only ever

targeted at one platform). But it is worth distinguishing the two levels here, as it makes a

distinction between adaptations of the system largely to accommodate change in functional

properties (versions), with those which are largely to accommodate change in properties of the

operating environment.

Instance. An actual physical instance of a software product which is to be found on a particular

machine is known as an Instance. It may be also referred to as an installation, although there is

no necessity for the product to be installed; a master copy of stored at a repository under a

source-code management system may well not be executable within its own environment.

The properties which characterise the difference between variants would include:

• Ownership – that is the user of the software (licensee), rather than the owner of rights in the

system (the licensor).

• An individual licence tailored the use of the particular instance and user.

• Usage of particular hardware and peripheral devices as appropriate.

• It may also be necessary to record a MAC or URLs etc identifying particular locations or

machines to which the licence for a particular software instance is bound.

6.1.2 Software Components

All of the entities in the above conceptual model of software which form a software system are

composite. Some of them may be subsystems, with sub-products. All systems however, will be

constructed out of many individual components
23

. A component is a storable unit of software

23
 Note that this use of the term Component contrasts with the use of the term in the InSPECT project, given in [4].

Component entities in [4] are described as “the method in which manifestations are stored physically”, and thus

correspond more closely to Instances in our model. We make the distinction to handle the inherently composite

nature of software.

 Significant Properties of Software

26

which when aggregated and processed appropriately, forms the software system as a whole.

Components can thus represent the following software artefacts:

 either, a part of its code base; or

 an executable machine readable binary; or

 a configuration or installation file capturing dependencies; or

 documentation and other ancillary material which while not forming a direct part of the

machine execution process, nevertheless forms an important part of the whole system so

that it is (re-)usable.

Components typically (but not necessarily always) roughly corresponds with a file (a unit of

storage on an operating system’s memory management system). However, multiple components

can be stored within in one file (e.g. a number of subroutines within one file) or across a number

of files (e.g. help system or tutorial stored within a number of HTML files).

Components may also be formed of a number of different digital objects, (e.g. text files,

diagrams, sample data) which themselves would have significant properties associated with their

data format. A comprehensive preservation strategy for the full software system would have to

consider those significant properties as well, but we do not consider these significant properties

further in this report, but refer to the literature on the significant properties of those digital

objects as appropriate.

Figure 6: The Software Component Conceptual Model

Version

Variant

Component

Source Binary Config Test Doc

Instance File

Product

 Significant Properties of Software

27

Software components are thus associated with a product, version or variant in the conceptual

model of software as in Figure 6.

In this model, we give a number of different kinds of software component. Note that this list is

not exhaustive, and additional kinds of component may be identified. We give here the most

common.

 Source. A unit of formal code written in human readable and machine processable

programming language. Source code would normally need to be compiled into machine

readable code, or else interpreted via an interpreter in order to execute. Source code

components come under a variety of different names in different programming languages,

such as “module”, “method”, “subroutine”, “class” or “function”. Theoretically, we

could break down source components into individual statements or instructions; however,

we do not consider that level of detail as essential to capture significant properties.

 Binary. An software artefact in machine processable code, not usually human readable,

which is either directly executable on some target operating environment, or else

executable by some virtual machine (e.g. a Java Virtual Machine). Binaries are usually

standalone, or may require to be linked to dynamically linkable library binaries to

execute.

 Configuration. A component which describes the configuration of the components to

generate a working version of the code and captures dependencies between components.

Three notable types would include: Build scripts, which capture the dependencies

between source code to build an executable; Installation scripts, which control the

installation of a product, including setting environmental dependencies and variables;

Configuration scripts which set a number of environment specific variables.

 Documentation. Human readable text-based artefacts which do not form part of the

execution process of the system, but provide supplementary information on the software.

There are a number of different documents which may be typically associated with

software, of which we distinguish: Requirements definitions; Specifications; User Guides

(manual, tutorials); Installation Guides; Version Notes; Error Lists; Licences.

 Test Suite. Representative examples of operation of the product and expected behaviour

arising from operation of the product. Produced to test the conformance of the product to

expected behaviour in a particular installation environment.

Components have dependencies between them, which is often captured in the configuration files.

For preservation, we may not need to explicitly model the dependencies, but need to be aware

that they are captured and maintained. Significant properties can also be associated with

components as well as on the product/version/variant and as noted the significant properties of a

component may be of a different digital object type.

7 The OAIS Reference Model and Software Preservation

The Reference Model for an Open Archival Information System (OAIS) is an ISO standard that

is primarily concerned with the long-term preservation of digitally encoded information. In

essence, the underlying notions of the OAIS reference model should be applicable to the long-

 Significant Properties of Software

28

term preservation of software artefacts as fundamentally (i.e. at bit level) they are in fact digitally

encoded information. This is further analysed in this section.

7.1 The OAIS Information Model and the Preservation of Software

The OAIS reference model describes a number of conceptual models in order to aid formulation

of a suitable preservation strategy for a digital object. In terms of the relevance to the framework

for software preservation (Section 6), the most important of these models is the Information

Model that broadly describes the metadata requirements associated with retaining a digital object

over the long-term.

Figure 7: The OAIS Information Model

As illustrated in Figure 7, the information model embedded in the OAIS framework consists of a

number of components. Here we consider the underlying notions of these components in the

context of long-term preservation of software.

 Significant Properties of Software

29

7.1.1 Content Information

This is essentially the digital object that needs to be preserved over the long-term. In the case of

software preservation, it should be a copy of the most recent version of the software, which at the

most fundamental level is a sequence of bits, i.e. a digital object. In terms of the conceptual

model for software components presented earlier in the report (section 6.1) this may be

compared to an Instance of a software product.

7.1.2 Preservation Description Information (PDI)

This is a set of information that is needed to efficiently manage and preserve the software

product with which it is associated, over an indefinite period of time. In order to ensure effective

preservation of a software product, the OAIS reference model identifies four different types of

PDI to be recorded and preserved along with the software product to which they correspond:

 Reference Information: This information enumerates identifiers assigned to a software

product such that it can be referred to unambiguously, both internally and externally to

the preservation archive. If necessary, this may also be used to describe mechanisms used

to assign unique identifiers to a software product. Examples of unique and persistent

identification schemas for software include ARK
24

, DOI
25

, etc.

 Provenance Information: This is intended to record information needed to sufficiently

trace and verify the history of a preserved software product. The provenance information

about a software product may include its vendor information, chain of custody,

preservation actions and effects and so on. This notion is also captured in the software

preservation framework that identifies the history of changes of ownership of a software

product and any other changes that it has undergone during its lifecycle as its significant

properties (Section 6.1.2, 8.1).

 Context Information: This documents the relationship(s) of a software product under

preservation with other digital objects in the same and/or other preservation archive(s).

This could be a data object that the software is used to render and/or another software

product that the software interacts with to aid rendering a data object. For example, the

context information of a NetCDF
26

 reader might be a NetCDF file or a more complex

software suite for, say, producing Plume
27

 imagery that uses the NetCDF reader for

reading a NetCDF file into memory.

 Fixity Information: This describes the mechanisms (e.g. checksum, digital signature etc.)

used to verify that the software product has not been subjected to any unauthorised or

undocumented modification(s).

24

 Archival Resource Key - http://www.cdlib.org/inside/diglib/ark/
25

 The Digital Object Identifier System - http://www.doi.org/
26

 http://www.unidata.ucar.edu/software/netcdf/
27

 http://www.mantleplumes.org/PlumeDLA.html

http://www.doi.org/
http://www.unidata.ucar.edu/software/netcdf/
http://www.mantleplumes.org/PlumeDLA.html

 Significant Properties of Software

30

In view of future re-use of a preserved digital object, the PDI in the OAIS framework is

specifically intended to aid futures users in verifying the authenticity of the digital object.

Although the original OAIS model does not deal with authenticity very thoroughly but the

working draft revision
28

 of the model defines Authenticity as:

“the degree to which a person (or system) may regard an object as what it is purported

to be. The degree of Authenticity is judged on the basis of evidence”.

The key term in the aforementioned OAIS definition of authenticity is “evidence”. And as

underlined earlier in the report (section 5), the authenticity of a software product has two central

aspects: “Trust” (i.e. trusted preservation) and “Adequacy” (i.e. reliability of behaviour in

future). In terms of the OAIS model, the evidence on which the judgment of trusted preservation

i.e. if a software product has been preserved by a trusted preservation body and has not been

altered in an unauthorised manner, may consist of the provenance and fixity information of the

software. Verification of the adequacy of a preserved software product in future, on the other

hand, may require further information, which is not specified (at least not in direct terms) in the

OAIS model. At minimum, the information required to verify the reliability of the functions of a

preserved software product may consist of some pre-defined test routines and their expected

results. For example, this information for a software product used for converting a NetCDF file

to a GML
29

 format would be an example NetCDF file and its corresponding GML file.

As discussed earlier in this report, this type of “Adequacy” related information for a software

product may be considered amongst the Preservation Description Information of software for

demonstrating the satisfaction of significant properties, and thus viewed as an additional

component of the OAIS information object in the context of long-term software preservation.

The notion of “Test Suite” in the conceptual model for software components (section 6.1.2) is

intended to provide evidence of adequacy of the behaviour of software in future.

7.1.3 Descriptive Information

The information needed to facilitate efficient discovery and access to a preserved software

product, typically through search and retrieval facility provided by the long-term preservation

archive. Descriptive information about a software product may be derived from its PDI and

significant properties. This information for a software product may include its name, a brief

description of its features and so on. The software preservation framework also defines a

number of preservation properties of software to capture descriptive information of a software

product, such as its functional purpose (Section 6.1.2).

7.1.4 Representation Information (RI)

This is intended to facilitate proper rendering, understanding and interpretation of a preserved

digital object on in future. In terms of software preservation, this is equivalent to the information

required to understand the reconstruction process of a preserved software product and reconstruct

it on a future technological platform. This representation information can be recursive until there

28

 Based on personal communication with Dr. David Giaretta, one of the editors of the OAIS Reference Model.
29

 Geography Markup Language - http://en.wikipedia.org/wiki/Geography_Markup_Language

http://en.wikipedia.org/wiki/Geography_Markup_Language

 Significant Properties of Software

31

is sufficient information available to rebuild the software. The OAIS framework identifies two

different categories of representation information:

 Structure Information: For a software product, this may include the name of compiler

used to build it from source code, the name of the virtual machine, configuration

information, installation instructions, dependent library, and programming language. This

type of structural representation information for a software product is also identified

within the software preservation framework as preservation properties of software, such

as software environment and software architecture (Section 8.1).

 Semantic Information: The additional information required to properly understand the

intended meaning and purpose of technical representation information. For example, a

Linux-based software product might require the name of the operating system, i.e. Linux

included in its representation information. However, it might also be necessary to

include detailed information about Linux, e.g. description, installation instructions,

tutorial, etc. to ensure proper understanding of the term “Linux” in future. It should be

noted that the level of granularity of semantic representation information should depend

on the knowledge base of the designated community associated with the software. This

is discussed in more detail later. The notion of semantic representation information is not

addressed directly in the software preservation framework presented in this report.

However, the framework does provide scope for recording reference(s) to further

information about a preservation property. Therefore, the value of the preservation

property, operating system for the aforementioned Linux-based software could be Linux

and an URL to the Linux website or, in the case where a copy of Linux operating system

is also being preserved (either in the same or different archive), a reference to its

preserved version which would have its own (structural and semantic) representation

information.

7.1.5 Packaging Information

The information that is used to bind the software product and its associated metadata, such as

PDI and Descriptive Information into an identifiable unit or package for preservation. For

example, if a software instance is compressed before being ingested into the archive, the

packaging information for this software would be information about the underlying structure of

its compressed form.

7.1.6 Designated Community

This encompasses all identified potential consumers (e.g. human, software application etc.) to

whom the preserved software product is beneficial in terms of accurate interpretation and proper

utilisation of the software. The level of recursion for a particular element of representation

information about a software product is likely to depend on the level of knowledge that the

designated community has about that element. For example, if the designate community has

considerable understanding of Java, then the representation information of Java-based software

 Significant Properties of Software

32

need only include the name of the programming language, i.e. Java. Conversely, if the

designated community has no understanding of Java, then the representation information of such

a software product might have to include detailed information about Java Virtual Machine

(JVM) needed to compile and run the program as well as other Java-related information. Ideally,

the task of defining an appropriate designated community for a digital object should be a part of

the overall preservation strategy. Therefore, it is not considered within the remit of the

framework for software preservation.

 Significant Properties of Software

33

7.2 The OAIS Information Model and Software Performance

Figure 8: The Relationship between the OAIS Information Model and the Software Performance

Model

Considering the relationship of the OAIS information model with the Software Preservation

Framework and its applicability to long-term software preservation, it is possible to apply the

model to the conceptual model of performance software discussed in Section 5.1. As illustrated

in Figure 8 and outlined below, the OAIS information model can be applied to the process for

rendering a preserved Data Source on a future technological platform, where the rendering of the

data requires the use of a particular software, which in turn requires a specific complier, to be

rebuilt from its preserved state:

 Descriptive Information about the Data Source is used to locate it in the archive.

 Representation Information(RI) about the Data Source is used to determine the name of

the software required to process it.

 Descriptive Infromation about the sofware record in the RI of the DataSource is used to

locate the source code of the software product in the archive.

 Representation Information(RI) of the software is used to determine the name of

compiler required to re-build the software. It may also be necessary to use the Packaging

Information of the software for its reconstruction, especially if it needs to be

reconstructed in the form in which it was originally ingested into the preservation

archive. For example, if the software was compressed (i.e. zipped) before being ingested

into the preservation archive, verification of its fixity information after reconstruction

would need to be done against its original compressed form in order to ensure accuracy.

 Significant Properties of Software

34

Therefore, the reconstruction of software in future would need to retain its original

comrpessed form.

 Descriptive Information about the compiler is used to locate and access it in the archive

or elsewhere.

 Representation Information(RI) of the software is used to determine the instructions for

re-building the software from source code using the compiler and subsequently re-build

it.

 Preservation Description Information (PDI), such as provenance and fixity information

of the software, is used to verify the integrity of the re-constructed instance of the

software.

 Representation Information(RI) of the Data Source is used to process it using the re-

built software

 Significant Properties(SP) is used to measure the adequacy of the software in

processing the Data Source, which in turn measures the performance of the compiler in

re-building the software from its source code.

8. Preservation Properties of Software

8.1 Categories of Properties

In considering what preservation properties are needed for software, we need consider the

following seven general categories of features which characterise software.

 Functionality Software is typically characterised by what it does. This may be in terms of its

input and outputs, a description of its operation and algorithm, or a more semantic-based

description of its functionality in terms of the domain it addresses. All these levels may be

significant and should be considered for preservation. In terms of the OAIS information

model, software functionality related information may be regarded as Descriptive

Information (Section 7.1.3) of the software that can aid efficient discovery and accessibility

of the software in future.

 Software Composition. Typically software is composed of several components. Normally

these would include binary files, source code modules and subroutines, installation scripts,

usage documentation, and user manuals and tutorials. A more complete record may include

requirements and design documentation, in a variety of software engineering notations (for

example UML), test cases and harnesses, prototypes, even in some cases, formal proofs.

These items each have their own significant properties, some of which are the properties of

their own digital object type, e.g. of documents or of data for test data. The relationships

between these items need to be maintained. In the context of long-term software

preservation, this type of information should be useful for rebuilding and reusing the

software in future. Therefore, it serves the same purpose as that of the Representation

Information in the OAIS information model (Section 7.1.4).

 Significant Properties of Software

35

Further, software typically goes through many versions, as errors are corrected, functionality

changed, and the environment (hardware, operating system, software libraries) evolves.

Earlier versions may need to be recalled to reproduce particular behaviour. Again the

complex relationships need to be maintained. In addition, detailed history of significant

changes that a software product has undergone facilitates verification of its authenticity in

future. In view of the OAIS information model, software version history is a type of the

Preservation Description Information (PDI) (Section 7.1.2).

 Provenance and Ownership. The provenance and ownership of the software should be

recorded. Different software components have different and complex licensing conditions. In

order to maintain the usability of software, these need to be considered in the preservation

planning. In the OAIS information model, this directly corresponds to the Provenance

Information category of Preservation Description Information (PDI)

 User Interaction. If complete applications are preserved, there is also the question of the

human-computer interaction, including the inputs which a user enters through a keyboard,

pointing device or other input devices, such as web cameras or speech devices, and the

outputs to screens, plotters, sound processors or other output devices. The Look and Feel and

the model of user interaction can play a significant factor in the usability of the software and

therefore should be considered amongst its Significant Properties. If using a tool such as a

Web browser or a Java platform to provide an interface, then client libraries need to be taken

into account. Of particular note here is that sufficient documentation about the intended user

interaction with a software product should also contribute towards the assessment of

adequacy of the functionality of the software in future.

 Software Environment. The correct operation of the software is dependent on a wider

environment including; hardware platform, operating system, programming languages and

compilers, software libraries, other software products, and access to peripherals (e.g. a high-

definition graphics system may run differently according to the resolution of the display).

Each of these factors is not in the direct control of the software developer, and each also goes

through a series of versions. Such dependencies must be recorded. Further, artefacts have

different requirements on their environments. Binaries usually require an exact match of the

environment to function; source code may function with a different environment, given a

compatible compiler and libraries; while designs may be reproducible even with different

programming language, given sufficient effort to recode. In essence, this information about

the environment in which a software product operates, may be categorised as the

Representation Information of the software.

 Software Architecture. The software architecture can play a significant part in the

reproducibility of the function of the software. For example, client/server, peer-to-peer, and

Grid systems all require different forms of distributed system interaction which would

require the configuration of hardware and software to be reproduced to reproduce the correct

behaviour. In common with the software environment related information, the information

about the underlying architecture of a software product may also be viewed as a part of the

Representation Information of the software.

 Operating Performance. The performance of the software with respect to its use of

resources (as opposed to its performance in replaying its content) may play a significant part

of the reproducible behaviour of software. Therefore, this contributes towards the

information needed to measure the overall adequacy of software preservation in future

(Section 5.1 and 7.1.2). For example, speed of execution, data storage requirements,

 Significant Properties of Software

36

response time of input and output devices, characteristics of specialised peripheral devices

(e.g. resolution of plotters, screens or scanners), colour resolution capability may all be

important. Note that in some circumstances, we may wish to replay the software at the

original operating performance rather than a later improved performance. A notable example

of this is games software, which if reproduced at a modern processor’s speed would be too

fast for a human user to play.

Note that one of the categories of properties is encapsulated in the conceptual model of software

itself; that is the breakdown of the software structure into sub-entities, versions and entities, and

into components with dependencies between components. For the other six categories, we can

give different significant properties for different entities in the model. We consider each in turn.

We also try to demonstrate the relationship of each of these properties to the relevant OAIS

information entity. Note that as specified earlier, we do not give details on the significant

properties of the user interaction.

8.1.1 Product Properties

Products properties provide general and provenance information on the system, including general

descriptions of functionality and architecture, ownership of the system, overall licence, tutorial

material, requirements and purpose of the product. We would also expect a general classification

of the system within a controlled vocabulary to refer to a product. The following properties are

associated with a Product.

Property Category Software Property Equivalent OAIS

Terminology

Functionality Purpose Description of overall

functionality of software

system

Descriptive

Information

Keyword Classification of

software under a

specified controlled

vocabulary

Descriptive

Information

Provenance and

Ownership

product_name Name of the product Descriptive

Information

Owner Owner of the product,

with contact details
Provenance

Information

Licence Overall licensing

agreement
Provenance

Information

Location URL of website of

software
Reference

Information

Software

Architecture

Overview Overview of software

architecture
Descriptive

Information

Software

Composition

software

overview

Documentation on the

overview of the

software

Descriptive

Information

 Significant Properties of Software

37

Tutorials Teaching material on

the system.
Representation

Information

requirements requirements of product Representation

Information

8.1.2 Version Properties

Versions are associated with a release with specific functionality, and would typically provide

access to source code modules within specific programming languages, which would be

provided with a build and install instructions to establish the version on a specific machine.

Thus the properties associated with a version would describe the function of the version in detail,

dependencies on architecture, device types and programming languages, and provide installation

and manual material. The following properties are associated with a software version:

Property Category Software Property Equivalent OAIS

Terminology

Functionality functional_description Description of

relationship of

between inputs and

outputs of the

version.

Descriptive

Information

release_notes Description of

changes of this

version from other

versions.

Provenance

Information

algorithm Description of the

algorithm used.
Representation

Information

input_parameter Details of names and

formats of inputs
Representation

Information

output_parameter Details of names and

formats of outputs
Representation

Information

interface API description Representation

Information

error_handling Description of how

errors are handled.
Representation

Information

Provenance and

Ownership

version_identifier Identifier for this

particular version
Reference

Information

licence Licence specific to

this version.
Provenance

Information

Software

Environment

programming_language Programming

language used for

this version.

Representation

Information

hardware_device Category of

hardware device
Representation

Information

 Significant Properties of Software

38

which the software

version depends

upon.

Software

Architecture

detailed_architecture Detailed description

of architectural

dependencies of the

version.

Representation

Information

dependent_product Dependency on

another software

product being

installed.

Representation

Information

Software

Composition

source Source code modules

for this version.
Representation

Information

manual Usage instructions

for this version
Representation

Information

installation Installation, build

and configuration

instructions for this

version.

Representation

Information

test_cases Test suite for this

version.
Significant

Properties (Not

addressed in the

OAIS Model)

specification Specification of this

version
Representation

Information

8.1.3 Variant Properties

A variant is associated with an adaptation of a version for a specific target environment. Usually

it would be associated with an executable binary, but also could provide addition source modules

which are tailored to the target environment. Thus we would expect details of the environment,

with specific dependencies,, and also the expected operating characteristics in such an

environment. The following properties are associated with a software variant:

Property

Category

Software Property Equivalent OAIS

Terminology

Functionality variant_notes Description of the

variations in

behaviour specific to

this variant.

Descriptive

Information

Provenance and

Ownership

Licence Licence specific to

this variant.
Provenance

Information

Software Platform Target hardware Representation

 Significant Properties of Software

39

Environment machine architecture

of version.
Information

operating_system Version of operating

system
Representation

Information

Compiler Version of compiler

used to construct this

variant.

Representation

Information

dependent_library Version of dependent

software libraries

used.

Representation

Information

hardware_device Specific auxiliary

hardware devices

supported by the

variant.

Representation

Information

Software

Architecture

dependent_product Dependency on

another software

product being

installed.

Representation

Information

Operating

Performance

processor_performance A specification that a

specific speed of

processor is required.

Significant

Property (Not

addressed in the

OAIS Model)

memory_usage Minimal/typical

memory usage for

RAM and disk of the

variant.

Significant

Property (Not

addressed in the

OAIS Model)

peripheral_performance Performance of

specific peripheral

hardware, for

example screen or

colour resolution,

audio range.

Significant

Property (Not

addressed in the

OAIS Model)

Software

Composition

Binary Machine executable

code for this version.
Representation

Information

Source variants of source

modules for this

version

Representation

Information

Configuration installation and

configuration

instructions for this

variant

Representation

Information

 Significant Properties of Software

40

8.1.4 Instance Properties

An instance of a software product is associated with a number of different files stored at specific

locations on a specific machine. Thus we would expect to find properties identifying the

components. The following properties are associated with a software instance:

Property Category Software Property Equivalent OAIS

Terminology

Provenance and

Ownership

Licensee Named licensee of the

instance
Provenance

Information

 Conditions Local conditions of

use of this instance.
Representation

Information

 licence_code Licence key value Representation

Information

Software

Environment

environment_variable Specific settings for

environmental

variables.

Representation

Information

 hardware_address Specific MAC address

(or equivalent)

identifying a specific

machine.

Representation

Information

Software

Composition

File Names and addresses

of specific files in the

instance.

Representation

Information

8.2 Component Properties

Components can also have properties associated with them, which can overlap with the

properties of the version or variant they are in, depending on the detail required. They could

have most of the functional and environmental properties associated with versions or variants, so

the following table is a selection of the properties available. Note the components properties

may be viewed as a subset of the version properties and therefore have the same associations

with the OAIS information model as those of the version properties.

Property Category Software Property

Functionality

functional_description Description of relationship of

between inputs and outputs of the

version.

release_notes Description of changes of this

version from other versions.

Algorithm Description of the algorithm used.

input_parameter Details of names and formats of

 Significant Properties of Software

41

inputs

output_parameter Details of names and formats of

outputs

Interface API description

error_handling Description of how errors are

handled.

Provenance and Ownership Licence Licence specific to this version.

Software Environment programming_language Programming language used for

this component.

hardware_device Category of hardware device

which the software version

depends upon.

dependent_library Version of dependent software

libraries used.

Software Architecture detailed_architecture Detailed description of

architectural dependencies of the

version.

dependent_product Dependency on another software

product being installed.

In our above analysis of different categories of preservation properties, we also underline a

considerable commonality between the framework for software preservation and the information

model embedded within the OAIS reference model. In essence, the software preservation

framework attempts to articulate the OAIS information model for the specific task of long-term

software preservation. In doing so, it introduces the notion of “Adequacy” of software behaviour

in order to facilitate assessment of the efficiency of preservation in future; an area that is not

comprehensively addressed in the OAIS reference model. The framework also identifies a

number of properties of software, termed as Significant Properties against which the adequacy

of software behaviour may be measured in future. The underlying notions of these significant

properties of software are also not captured within the OAIS information model. Therefore, the

conceptual framework for software preservation presented in this report may be regarded as a

specialisation of the OAIS Information Model for the long-term preservation of software

artefacts.

9 Conclusions

In this report we have developed a conceptual framework to express a rigorous approach to

software preservation. This is a development on the approach given in (Matthews et. al. 2008)

as it: develops and extends the notion of performance and emphasises the notion of adequacy

and relates it to authenticity; narrows the notion of significant property to those properties which

are testable within a performance; and considers the concepts introduced within the OAIS model,

and uses them within the framework to categorise the preservation properties identified within

the model. Thus this framework can be seen as a specialisation of the OAIS model to handle the

case of software preservation.

 Significant Properties of Software

42

We believe that this is a general and principled approach which can cover the preservation needs

of a wide range of different software products, including modern distributed systems and service

oriented architectures, which are typically built of pre-existing frameworks (e.g. Eclipse) and

have a large number of dependencies on a widely distributed network of services, many of which

are outside the control of the typical user (e.g. DNS services, proxies, web services provided by

external organisations (e.g. Amazon Web Services).

We also believe that the performance model presented here, which has a notion of user feedback

to influence the performance represents an approach to preserving the user interface and the user

interaction model, although work is required to further develop that notion.

Further work is required to test this model and to provide tooling. Within the JISC sponsored

Tools and Guidelines for Preserving and Accessing Software Research Outputs, some initial

tooling work has been undertaken to integrate the capture of preservation properties of software

within a software development process, and also to use the framework within case studies.

Further work on case studies is required, especially across a range of software types to cover the

diversity of software considered above, and to consider how to support the preservation of legacy

software, both methodologically, and also using suitable tools, including tools which have been

developed to support OAIS (such as those developed within the CASPAR project), including

tools to express representation information, and assess the authenticity of a preservation package.

Acknowledgements

We would like to thank our colleagues David Giaretta, Esther Conway, Steven Rankin and other

members of the Digital Curation Centre and CASPAR projects for their advice and discussions.

The work was carried out under the JISC study into the Significant Properties of Software and

also the JISC sponsored Tools and Guidelines for Preserving and Accessing Software Research

Outputs.

References

The Cedars Project. (2002). The Cedars Guide to Digital Preservation Strategies. Retrieved July

29, 2008, from http://www.leeds.ac.uk/cedars/guideto/dpstrategies/dpstrategies.html

(2002)

Computer History Museum. (2006). The Attic & the Parlor: A Workshop on Software Collection,

Preservation & Access, proceedings May 5, 2006. Retrieved July 29, 2008, from

http://www.softwarepreservation.org/workshop/

Heslop, H., Davis, S., Wilson, A. (2002). An Approach to the Preservation of Digital Records,

National Archives of Australia, 2002. Retrieved July 29, 2008, from

http://www.naa.gov.au/Images/An-approach-Green-Paper_tcm2-888.pdf

http://www.leeds.ac.uk/cedars/guideto/dpstrategies/dpstrategies.html
http://www.softwarepreservation.org/workshop/
http://www.naa.gov.au/Images/An-approach-Green-Paper_tcm2-888.pdf

 Significant Properties of Software

43

Matthews, B.M., McIlwrath, B., Giaretta, D., Conway, E. (2008). The Significant Properties of

Software: A Study. JISC, draft report, 2008. Retrieved July 29, 2008, from

http://sigsoft.dcc.rl.ac.uk/twiki/pub/Main/SigSoftTalks/SignificantPropertiesofSoftware.do

c

Zabolitzky, J.G. (2002). Preserving Software: Why and How. Iterations: An Interdisciplinary

Journal of Software History, 1. Retrieved July 29, 2008, from

http://www.cbi.umn.edu/iterations/zabolitzky.html

http://sigsoft.dcc.rl.ac.uk/twiki/pub/Main/SigSoftTalks/SignificantPropertiesofSoftware.doc
http://sigsoft.dcc.rl.ac.uk/twiki/pub/Main/SigSoftTalks/SignificantPropertiesofSoftware.doc
http://www.cbi.umn.edu/iterations/zabolitzky.html

