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An exact and general approach to study molecular vibrations is provided by the Watson Hamiltonian. Within

this framework, it is customary to omit the contribution of the terms with the vibrational angular momentum

and the Watson term, especially for the study of large systems. We discover that this omission leads to results

which depend on the choice of the reference structure. The self-consistent solution proposed here yields a

geometry that coincides with the quantum averaged geometry of the Watson Hamiltonian and appears to be a

promising way for the computation of the vibrational spectra of strongly anharmonic systems.
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I. INTRODUCTION

The computation of vibrational spectra of polyatomic
molecules has been a challenging problem since the advent
of quantum mechanics f1–4g. During the last decades, the
availability of new methodologies and the continuing devel-
opment of computational capabilities have led to the possi-
bility of conducting calculations previously beyond reach
f5g.
In the study of molecular vibrations, the adiabatic separa-

tion of electronic and nuclear degrees of freedom is normally

employed f6,7g. In this approximation, the electronic energy
defines a multidimensional potential-energy surface sPESd,
which is a function of the nuclear positions. Then, in the

absence of external fields, the rovibrational problem is usu-

ally described in a frame of reference that rotates with the

molecule. In this body-fixed rotating frame, nuclei are de-

scribed in terms of vibrational internal coordinates. We dis-

tinguish in the literature two major trends to represent inter-

nal coordinates: curvilinear vibrational coordinates—usually

bond lengths and angles—and rectilinear vibrational coordi-

nates. sTwo recent well-written reviews can be found in
Refs. f5,8g.d For curvilinear vibrational coordinates, the
transformation of the kinetic-energy operator for the nuclei

leads to complicated expressions f5,8g. Nowadays, curvilin-
ear coordinate methods are routinely used to study up to

tetratomic f9g and pentatomic molecules f10g. A useful ap-
proach is the multiconfiguration time-dependent Hartree

method f11g, which has been used to study molecules con-
taining up to nine and ten atoms f12g.
In this work, we focus on rectilinear vibrational coordi-

nates whose significant advantage is their generality. These

coordinates are defined after choosing a reference molecular

structure sor reference configurationd. In terms of these coor-
dinates, the Watson Hamiltonian provides a general frame-

work for the description of the rovibrational problem of any

molecule f3g. The numerical solution of the Watson Hamil-
tonian is mainly limited by the number of degrees of free-

dom. Several methods have been developed over the years

f13,14g. Among them, MULTIMODE and its extensions f15,16g
are state-of-the-art in this field.

Because of their generality, the use of rectilinear vibra-

tional coordinates and the Watson Hamiltonian is preferable

when extending the study to large molecules. However, since

the complexity of the problem increases with the number of

atoms, it has been common practice to resort to approxima-

tions. For example, the computation of low-lying vibrational

states is often based on the vibrational-self-consistent-field

sVSCFd method and its extensions f17g. The VSCF is a pow-
erful methodology f18g, where one employs an approximate
form of the Watson Hamiltonian that ignores the complicated

contribution of the terms containing the vibrational angular

momentum and the Watson term. sIn the following, we shall
refer to these two terms as the “Watson correction terms” or

simply “Watson corrections.”d The effect of the Watson cor-
rection terms is probably less significant for larger mol-

ecules, but they may become important for very anharmonic

systems or when computing highly excited states. In general,

these terms present an extra computational challenge and

their omission is often desirable.

In this work, we investigate the consequences of neglect-

ing the Watson corrections in the computation of molecular

vibrational spectra. It will turn out that the choice of molecu-

lar reference structure plays an important role in the quality

of the results. In order to avoid introducing any further ap-

proximation, besides the omission of the Watson correction

terms, we restrict our study to triatomic molecules for which

the vibrational problem can be solved numerically exactly.

We first analyze the case of water molecule as an example of

a semirigid system. We observe that the omission of the Wat-

son correction terms leads to results that depend on the

choice of the reference structure. However, we are more in-

terested in the description of highly excited states and in

floppy molecules, both characterized by a large delocaliza-

tion of the vibrational wave function. To this end, we study a

model triatomic molecule, which is constrained to move only

in two dimensions s2Dsd. This model exhibits a symmetric
double-well potential. We observe that here the choice of the

reference structure becomes crucial. So far, in order to deal

with the symmetric double well appearing in floppy mol-

ecules, such as NH3 and H5O2
+, the reference structure has

been chosen ad hoc at the inversion saddle point f16g. How-
ever, the choice of an optimal reference structure is not ob-

vious a priori for more general anharmonic potentials.

PHYSICAL REVIEW A 80, 022516 s2009d

1050-2947/2009/80s2d/022516s6d ©2009 The American Physical Society022516-1



II. THEORY

The Watson Hamiltonian provides a general framework

for the description of the rovibrational problem of any mol-

ecule f3g. This Hamiltonian is expressed in terms of rectilin-
ear slocally definedd vibrational coordinates together with the
Euler angles. For the sake of simplicity, we study states with

zero total angular momentum sJ=0d, where the nuclear wave
function does not depend on the Euler angles. For a nonlin-

ear molecule with N atoms, the Watson Hamiltonian reads as

ĤW
J=0 =

1

2
o
a,b

mabp̂ap̂b +
1

2M
o
k=1

3N−6

P̂zk

2 + U + Ez, s1d

where 3N−6 is the number of smass-scaledd vibrational co-
ordinates, a ,b are the Cartesian coordinates x ,y ,z, in the

rotating frame of reference, and M is the common mass of

the mass-scaled coordinates as defined in Ref. f19g. Matrix
elements mab are the components of the effective reciprocal

inertia tensor,

mab = sI8dab
−1 , s2d

with

Iab8 = Iab −M o
k,l,m=1

3N−6

jml
b jkl

azmzk, s3d

where Iab is the instantaneous moment of inertia tensor and

jkl
g = o

m=1

N−1

o
a,b

eabgAk,maAl,mb s4d

gives the coupling of the vibrational coordinates. Matrix A

defines the vibrational coordinates from a set of coordinates

relative to the center of mass f19g. The function Ez is the PES

expressed in terms of the vibrational coordinates and U is the

so-called Watson term, which is proportional to the trace of

the effective reciprocal inertia tensor s2d

U = −
1

8
"2o

a

maa. s5d

Finally, p̂ is the vibrational angular momentum, whose com-
ponents are given by

p̂a = o
l,k=1

3N−6

jlk
azlP̂zk

, s6d

where P̂zk
=−i"] /]zk. The volume element for integration is

dV = ssin xdxdfdudsdz1dz2 ¯ dz3N−6d , s7d

and sin x is the weight factor of the volume element f5g. It is
important to note that the Watson Hamiltonian s1d is exact;
no approximations have been introduced in its derivation and

no limit is placed on the amplitude of the vibrations. In Ref.

f19g, it was demonstrated numerically that the full solution
of the Watson Hamiltonian does not depend on the choice of

the reference structure. In fact, we had found that within

numerical accuracy, not only the energy but also the quantum

averaged geometry, f20g for each vibrational state, were in-
dependent of the reference configuration.

In the past, the applicability of the Watson Hamiltonian

for nonlinear triatomic molecules has been questioned f21g
because the Hamiltonian becomes singular at the linear con-

figuration. If the Watson Hamiltonian is nevertheless used,

vibrational excursions that sample the linear configuration

must be avoided f14,22g. In a forthcoming publication, we
explain in detail how we have dealt with this issue f23g.
What we have termed the Watson corrections are defined

as follows:

Ŵ =
1

2
o
a,b

mabp̂ap̂b + U . s8d

With this, the Watson Hamiltonian s1d reads as

ĤW
J=0 = Ĥ0 + Ŵ , s9d

where

Ĥ0 =
1

2M
o
k=1

3N−6

P̂zk

2 + Ez. s10d

In the rest of the paper, we employ Ĥ0 above to solve ap-

proximately the vibrational problem.

III. DEPENDENCE OF RESULTS ON

THE REFERENCE STRUCTURE

When one neglects the contribution of the Watson correc-

tions, the exact solution of the approximate Hamiltonian Ĥ0

exhibits a strong dependence on the reference geometry

sRGd. To illustrate this effect, we first study the water mol-
ecule. The reader is referred to Ref. f19g, where a general
method was presented explaining how to construct a local set

of rectilinear vibrational coordinates for a given a reference

structure of a nonlinear molecule. For the water molecule,

we use the PES by Partridge and Schwenke f24g for which
the equilibrium structure corresponds to an oxygen-hydrogen

distance of dOH=1.81 bohr and an internal angle of V
=104.44°. We solve the approximate problem at equilibrium

and take the resulting spectrum as our target. We then con-

sider two arbitrary nonstationary reference configurations:

sad dOH=2 bohr, V=120° and, sbd dOH=1.8 bohr, V=90°.
For each one of these configurations, we define the local set

of vibrational coordinates and compute the approximate vi-

brational spectra using Ĥ0. Figure 1 shows the differences of

the resulting spectra sblack triangles and red circlesd from the
target spectrum sgreen trianglesd. The magnitude of the en-
ergy differences clearly highlights the dependence of results

on the reference structure. The root-mean-square srmsd de-
viation from the target spectrum is about 40 cm−1 from both

reference geometries, whereas this value reduces to

0.01 cm−1 if the full Watson Hamiltonian is used ssee Fig. 3
in Ref. f19gd. Based on this observation, we conclude that the
Watson corrections in the Watson Hamiltonian compensate

for the effect of different reference structures. A few ques-

tions now arise: as the results for the approximate Hamil-

tonian appear to depend on the choice of the reference struc-

ture, is it meaningful to search for a structure from which the
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results will be more accurate than from other structures? If

so, what would this optimal reference structure be? Could it

be determined without using the Watson corrections?

In relation to the search for an optimal geometry, we dis-

covered that for all our calculations from different structures,

the input reference structure and the output quantum average

structure differed. Therefore, none of the calculations in Fig.

1 were a self-consistent solution of the approximate Hamil-

tonian Ĥ0.

Within this framework, we can identify two well-defined

geometries that play a role in this study. The first is the

quantum averaged geometry that results from the solution of

the full Watson-Eckart Hamiltonian and is independent of the

choice of the input RG f19g. We refer to it as the Watson
geometry sWGd. When we use the WG as the reference

structure, the vibrational excursions will be minimized and

the Watson corrections will be small. For these reasons, we

expect that a calculation involving the approximate Hamil-

tonian Ĥ0 from that structure would yield more accurate re-

sults than from other structures. The second well-defined ge-

ometry arises when employing the approximate Hamiltonian:

it is the one for which the input RG and the output quantum

averaged geometry coincide fwe call it the self-consistent
geometry sSCGdg. This geometry corresponds to the self-

consistent solution of the approximate Hamiltonian Ĥ0. The

surprising result of our work is that for all cases we studied,

even in the extreme case of tunneling, the WG and the SCG

coincide to an excellent extent.

IV. SELF-CONSISTENT METHODOLOGY

To determine the self-consistent geometry of a given vi-

brational state, we propose the algorithm shown in Fig. 2:

starting from an initial input reference configuration swhich
is not necessarily stationaryd, we calculate the vibrational
coordinates z f19g and compute the vibrational wave func-

tion cszd for that particular state and the corresponding quan-
tum geometry sQGd. Then, the input reference configuration
is replaced by this new QG and the procedure is repeated

until convergence is reached, i.e., until the sinputd RG coin-
cides with the soutputd QG yielding the SCG of that particu-
lar vibrational state.

For the vibrational states of the water molecule, we found

that the SCG and the WG for each state were almost the

same: the bond lengths were the same to numerical accuracy

and the internal angles were the same within a hundredth or

at most a tenth of a degree. Only for the few pathological

states reported in Ref. f19g where convergence was difficult,
we found that the SCG and the WG differed by a couple of

degrees. However, convergence of the full Watson results

was also in doubt for these states.

Approximately, to first order, the effect of the Watson cor-

rections in the energy spectrum can be included by calculat-

ing their expectation value in terms of the wave function

cszd computed from the approximate Hamiltonian Ĥ0. In this

way, considering the Watson correction terms Ŵ as a pertur-

bation of Ĥ0, we can evaluate the first-order energy correc-

tion sFOCd of the vibrational spectrum by

EFOC = kcszduĤ0ucszdl + kcszduŴucszdl . s11d

This first-order correction also depends on the RG and we

found that it is small at the SCG swhere it was often but not
always exactly minimizedd. This is consistent with the theo-
retical expectation since the SCG almost coincides with the

WG and, for the latter, the Watson corrections are small f2g.
For the water molecule, the improvement of the results

using the SCG is not significant. The water molecule is a

semirigid molecule and the vibrational wave functions are

quite localized around the minimum, even for some highly

excited states. Consequently, the calculated SCGs are close
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FIG. 1. sColor onlined Effect of the choice of the reference
structure in water molecule J=0 for the approximate Hamiltonian

without Watson corrections.

FIG. 2. sColor onlined Self-consistent procedure.
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to the reference geometry at the minimum of the PES. The

energy differences for the low-lying vibrational states with

respect to the Watson spectrum are less than 2% and, with

the FOC, most of the effect is recovered swithin 0.2%d. To
our mind, these results justify the omission of the Watson

corrections for the calculation of semirigid molecules and the

use of the minimum of the PES as the choice of the reference

geometry f17g.

V. TRIATOMIC C2V MOLECULE IN A PLANE

To investigate the effects of the Watson corrections in

highly anharmonic systems, we employed a simplified C2v
triatomic model molecule constrained to move in the fixed

x-y plane of the laboratory frame of reference. The main

difference with the three-dimensional s3Dd case is that while
a bent triatomic in 3D does not tunnel f25g, tunneling be-
comes possible when the same molecule is confined in 2D.

Tunneling is not possible in 3D because the two minimum-

energy configurations that would be explored by the “tunnel-

ing” vibrational coordinate—if tunneling were possible—are

actually connected by an out-of-plane rotation and in the

rotating frame of reference the two configurations coincide.

In our model sFig. 3d, the interaction between atoms is simu-
lated by harmonic springs and the nuclear masses have been

chosen like those in the water molecule.

In the rotating frame of reference si.e., rotating in the xy

planed, there are two nonequivalent equilibrium structures

sthese configurations are denoted by A and C in Fig. 4d. To
go from one to the other, the molecule has to overcome the

inversion barrier at the linear configuration. If the atoms are

displaced from the equilibrium configuration A along the

direction of the arrows, they reach the linear configuration B.

Analogously, from the linear configuration B they reach con-

figuration C. Clearly, it is necessary to overcome a potential

barrier to go from configuration A to C following the

minimum-energy path f26g. In this path, the linear configu-
ration B corresponds to the stationary saddle point.

The rovibrations of the 2D model are characterized by

one Euler angle u and three vibrational degrees of freedom.
Based on Watson’s work f3g, the form of the Watson Hamil-
tonian for this planar triatomic model can be readily ob-

tained. The difference from the Watson Hamiltonian in 3D is

that the latter exhibits a singularity when the molecule be-

comes linear f14g, while the Hamiltonian is not singular
when the molecule is restricted in a plane. As before, we

restrict to states with zero total angular momentum sJ=0d.
The expression of the Watson Hamiltonian reads as

ĤW,2D
J=0 =

1

2
mzzp̂zp̂z +

1

2M
o
k=1

3

P̂zk

2 + U2D + Ez, s12d

where mzz is now given by

mzz =
1

Izz8
s13d

and

Izz8 = Izz −M o
k,l,m=1

3

jml
z jkl

z zmzk. s14d

In this case, the Watson term reads as

U2D = −
1

8
"2mzz s15d

and the volume element for integration is

dV2D = sdudsdz1dz2dz3d . s16d

The inversion barrier has to be low to allow for appreciable

tunneling between the two equilibrium configurations. We

have chosen the minimum geometry to correspond to an O-H

bond length of 1.8 bohr and a bending angle of 122°. Setting

the spring constants to be 0.4 and 0.16 hartree /bohr2 for kOH
and kHH, respectively, the inversion barrier is 1987.6 cm

−1.

We note by symmetry that for the planar model triatomic

molecule, a good choice for the reference geometry must

correspond to the linear configuration. Still, the optimal ref-

erence bond length cannot be guessed by symmetry and the

question remains on how to obtain an optimal geometry in

the general case, when it will not be possible to predict it

using symmetry arguments.

When we solve the approximate Hamiltonian, starting

from one of the two minima sminimum Id, we find for the
ground state that the output geometry is at the other well

sminimum IId. This is because when the local vibrational
coordinates at minimum I are extrapolated to minimum II,

they acquire a partly rotational character there. As the PES is

constant along a rotational coordinate, the PES around mini-

mum II sin terms of the vibrational coordinates of minimum
Id appears less stiff and the ground state tends to localize
around it.

FIG. 3. sColor onlined A triatomic C2v model molecule confined

in the xy plane.

FIG. 4. sColor onlined Qualitative picture of the process to over-
come a potential barrier in a triatomic C2v model molecule that is

constrained to move in a plane.

SCIVETTI, KOHANOFF, AND GIDOPOULOS PHYSICAL REVIEW A 80, 022516 s2009d

022516-4



To aid convergence during the iterative procedure sFig.
2d, we mix input and output geometries and observe that the
probability of finding the particle in the other well builds up
until the two potential wells become symmetric at the linear
configuration. A similar trend is observed for the excited

states although the corresponding self-consistent O-H dis-

tances are different.

Figure 5 demonstrates the convergence to self-consistency

using the algorithm sFig. 2d for the planar model. Both the
internal angle and the O-H distance converge toward their

self-consistent values. It is worth mentioning that the SCG

can be determined in fewer number of steps sfrom three to

five steps depending on the vibrational stated by optimizing
the mixing between output and input geometries.

The SC parameters sangles as well as bond lengthsd coin-
cide with the WGs obtained from the solution of the exact

Watson Hamiltonian. In this case, the double-well nature of

the problem forces all the quantum averaged geometries to

be at the linear configuration but the bond lengths vary. For

the low-lying vibrational states sthose reported in Table Id,
the rms deviation of the SC bond lengths from the WG val-

ues is 0.01 bohr.

Table I shows the low vibrational excitation spectrum cal-

culated at the minimum of the PES and at the SCG sfourth
and fifth columnsd in comparison with the full Watson
Hamiltonian results seighth columnd. Vibrational coordinates
z1, z2, and z3 are similar to symmetric stretching, breathing,
and asymmetric stretching motion, respectively f19g. There
is a noticeable improvement when using the corresponding

SC geometry.

The advantage of choosing the SCG becomes evident

when the effect of the Watson correction terms is introduced

as a FOC sresults in sixth and seventh columns in Table Id. At
the minimum of the PES, the resulting spectrum is still a

poor estimate of the full Watson results. In fact, the order of

some vibrational states is reversed leading to an unphysical

negative tunneling frequency. On the other hand, results at

the SCG are considerably improved. The tunneling fre-

quency is very well predicted swithin a 10% errord consider-
ing that this value is a very sensitive quantity.

VI. CONCLUSIONS AND DISCUSSION

We observed that the omission of Watson correction terms

in the solution of the Watson Hamiltonian leads to results

that depend on the choice of the reference geometry. This is

in contrast with the results of the full Watson Hamiltonian.

Wondering how to determine an appropriate geometry to

improve the accuracy of the approximate results, we argued

that probably the best geometry should be the quantum av-

eraged geometry from the solution of the Watson Hamil-

tonian. We realized, however, that the plethora of different

choices for the RG is only apparent because different input

RG geometries lead to different output quantum averaged

geometries and the solution of the approximate Hamiltonian

H0 is not self-consistent in general. Nevertheless, a SC solu-

tion can be obtained and the SCG turns out to coincide with

the WG to an excellent extent.

For a semirigid molecule, the SCG is close to the equilib-

rium geometry sminimum of the PESd and this justifies the
routine omission of Watson corrections and the use of the

classical equilibrium reference geometry in the literature.

However, for highly anharmonic systems, the improvement

of using the SCG can be significant.
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FIG. 5. sColor onlined Convergence of the geometrical param-
eters toward self-consistency sground stated.

TABLE I. Comparison of low vibrational excitation spectrum of exact Watson results with approximate

results, from the minimum and at the SCG, when Watson corrections are neglected or included within FOC.

yz1
yz2

yz3

H0 H0+FOC

WatsonMin SCG Min SCG

0 0 0 3648.47 4177.16 4672.85 4375.34 4357.68

0 1 0 705.45 0.42 −316.90 0.71 0.78

0 2 0 1088.55 1028.61 991.30 985.82 983.88

0 3 0 1677.74 1055.13 706.14 1026.67 1026.45

0 4 0 1980.93 1749.64 1638.51 1652.08 1660.12

0 5 0 2431.88 2025.13 1741.17 1989.65 1990.42

0 6 0 2897.31 2555.46 2375.10 2521.72 2523.98

0 7 0 3456.27 3098.58 2950.94 3091.68 3088.16

Error sMSDd 463.59 43.33 209.48 3.52
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In this context, it is worth recalling that for highly anhar-
monic systems, such as tunneling molecules, it is believed
that the use of normal modes at the minimum reference ge-
ometry is not suitable to describe tunneling within the frame-
work of the VSCF method swith its omission of the Watson
correctionsd. It is further argued that a multireference wave
function composed of the wave functions at different minima
would be appropriate to describe tunneling f17g.
Our observation sFig. 1d that the accuracy of the approxi-

mate description depends strongly on the reference geometry
suggests that an inappropriate choice of reference structure is
probably behind the failure to describe tunneling. It is also

worth remembering that the wave functions at different

minima scorresponding to different structuresd are defined in
different vibrational spaces and building a linear combina-

tion of them is not straightforward. Our results on the tun-

neling triatomic model suggest, instead that the use of recti-

linear vibrational coordinates together with the employment

of the SCG as the reference geometry is a promising way to

describe approximately a general molecule exhibiting strong

anharmonicity.

For large molecules, obtaining the self-consistent solution

for each vibrational state can be expensive computationally

and, therefore, the methodology to determine the SCG for

each vibrational state will not be practical as a routine

method. In addition, different vibrational states will gener-

ally have different SCGs and the resulting vibrational states

will belong to different vibrational spaces. Therefore, calcu-

lating matrix elements between the different vibrational

states will not be an easy task. As a practical routine scheme,

we propose instead to use an “average” SCG that would

correspond to a set of vibrational states. For example, one

could compute the average SCG by performing a thermal

average over a set of vibrational states. This would allow the

approximate computation of vibrational spectra and thermo-

chemical quantities as a function of temperature.

However, when the full Watson Hamiltonian cannot be

used and the best possible accuracy of the results is required,

especially when the target is a small number of vibrational

states with particularly large amplitude of motion, then, em-

ploying the SCG as the reference is the best strategy.
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