SCIENCE AND TECHNOLOGY FACILITIES COUNCIL

Tools and Guidelines for Preserving and Accessing Software as a Research Output

Report I11: Tools

A Shaon, JC Bicarregui
4/1/2009

@ hiﬂlﬂiiﬂhﬂl’lill&i:iwﬂ
- a-Science

Contents
1 Introduction and RAIONAIE..........c.eoiiiiiieie ettt sttt be e
2 ArChitECTUIAl OVEIVIEW ...eiiiiiiiiii ettt ettt ettt ettt ettt e st e s bt e e s abe e sabeesabe e e ateesabeesabaesbeeesabeesabeeanns
3 VAT L I o T = o VPSPPI
3.1 Adding Significant Properties t0 SOftWAareccuuiieiiieiiiiiie e
3.2 Updating Significant Properties of SOftWare...........eiiioiiiiieiiie et e arree e
3.3 Exploring Software and Significant Properties VErsion TrEEccccvvveeeeeeeriiinreeeeeeeeecirreeeeeeeeenrnneees
3.4 Querying Significant Properties of SOftWare...........uiiiooiiiiiee e

N 0] ol [V K (o] K R

Ssinnar & Tesheelory Fasifein Crened

- e-Science

1 Introduction and Rationale

The experience of applying the framework for significant properties of software (Report I) to the
BADC WFS/GeoServer (Report 11, Section 4) has shown that it is currently necessary to have
considerable knowledge of both the framework and software in question to accurately map the
software to the framework. This indicates a need for tooling to facilitate the creation of
significant properties by providing guidelines which, for example, explain the underlying
concepts of the framework in a user-friendly manner. The Significant Properties Editing and
Querying for Software (SPEQS) is a “proof-of-concept” demonstration of such a tool.

SPEQS enables recording, editing and querying significant properties of software projects
directly from within the Eclipse environment. The rationale is to demonstrate how capturing
preservation information can be incorporated within the software development lifecycle to aid its
long-term preservation in future. Therefore, SPEQS is intended to provide software developers
with an easy-to-access interface and guidelines within their development environment for
efficiently recording significant properties of software during its development. This approach of
enabling the developer(s) of a software project to record its significant properties is envisaged to
contribute towards ensuring the accuracy of the information recorded. From a wider perspective,
this approach should also help increase awareness of the importance of significant properties of
software for its long-term preservation across various software developer communities that use
Interactive Development Environments (IDE)s, such as Eclipse.

SPEQS has been developed as a plug-in for Eclipse — a widely used Open Source interactive
software development environment.

2 Architectural Overview

The underlying architecture of SPEQS has been designed specifically to facilitate recording and
querying information based on the framework for significant properties of software (Report 1).
SPEQS uses an ontology representation of the framework, written in OWL (Web Ontology
Language)* for recording significant properties (SPs) in RDF? format and querying the recorded
SPs using SPARQL?, the query language for RDF. The SPEQS architecture consists of four
principal components: the SP Editor, the SP Query Interface, the SPEQS Data Store and a
software repository, such as Subversion* and SourceForge® (Figure 1).

! http:/Avww.w3.0rg/TR/owl-features/

2 http:/www.w3.0rg/RDF/

® http://www.w3.0rg/TR/rdf-sparql-query/
* http://subversion.tigris.org/

® http://sourceforge.net/

@ dsimwan & Techwotery isibin el
-

e-Science 1

>
&9

Data Store

SP
Framework

SP Query
-~ Interface [€

Figure 1: An Architectural View of SPEQS

The SP Editor and the SP Query Interface are Graphical User Interfaces (GUIs) for enabling
recording and updating of SPs and querying the recorded SPs respectively. The SPEQS Data
Store is a relational database that consists of a RDF Triple Store® for storing SPs and a standard
data storage section for storing other meta-information (e.g. developer name, creation date etc.)
associated with the software. SPEQS currently supports MySQL’ and PostgreSQL® as the
SPEQS Data Store.

SPEQS interacts with software repositories and management systems, such as Subversion, for
keeping track of changes made to software and ensuring accurate and consistent association with
its significant properties. It is envisaged that integration of SPEQS with commonly used software
repositories and IDEs (e.g. Eclipse) would promote and facilitate recording of SPs of software by
its developer(s) during its development. At present, SPEQS only supports Subversion based
software.

3 A Walk Through

The following subsections provide an overview of the key features and functional entities of SPEQS
presented in Figure 2.

® Databases specially configured to store and enable querying large RDF models.
" http://www.mysgl.com/
® http://www.postgresql.org/

@ siinwen & Trshwolers Fsiktin Srensd
- e-Science 2

—> Upload SW

= Check-in
SW ‘
r | Receive
- SVNID
Process Subversion
e—
SW& SP
=T—> AddSP |5 Version&
Store SW
Yo Execute
Queries _5 Attach SVN
ID to SP G
3 Query SP J SPEQS

Diata Store

> Prepare :

Results

Figure 2: Functional Entities of SPEQS

3.1 Adding Significant Properties to Software

Let us consider a scenario where the developer of a Subversion-based software project, say,
“svn-test” is using SPEQS to record significant properties of the software from within his Eclipse
environment. To do this, the developer selects the project in the Eclipse project explorer and
subsequently invokes the SP Editor (Figure 3), a graphical interface specifically designed for this
purpose, from the SPEQS menu of Eclipse. Using the SP Editor, he asserts values to different
significant properties of “svn-test” as defined in the framework for significant properties of
software (Report I). For example, to assert a value to the “purpose” property of the “svn-test”
software, the developer selects the property from a drop down menu, followed by the type of
value to be asserted (i.e. text or URI), enters the value in a text box and finally clicks on the
“add” button of the SP Editor. It should be noted that SPEQS would automatically determine
and assert values to some of the significant properties of “svn-test”, such as Programming
Language, Operating System and Subversion Source URL. However, the developer could
change or update these automatically generated values as required.

@ dsimwan & Techwotery isibin el

- e-Science 3

tware Significant Properties Editor

AEsE)

Tools

S Package Properties | SW Yersion Properties || S Yariant Properties | SW Instance Properties

rFunctionality -

Walue Added Property Type Walue Type Walue Added

1 rSoftware Architecture -

! Keyword w | | Text 1w |

Yalue

Classification of soFtwara‘ﬁ?a

Software Package Properties

including general descriptions of Functionality and architecture,
ownership of the system, overall licence, tutarial material,
requirements and purpose of the package.

-Provenance & Dwnership

Yalue Added

_:!-‘) Packages properties provide general and provenance information on the system,

Definition of a

property

3 1
! Overview bt | | Text | v |

Yalue

T
iF‘;zlége Marne V! |Te><t L

Property Type Yalue Type

ESoftware Qveryi, ., v| |Text Vi

Yalue Yalue
Definition of significant =
property category
Added a keyword

Figure 3: The Significant Properties Editor of SPEQS

When adding significant properties to “svn-test”, the developer may query the intended meaning
of a particular significant property directly from the SP Editor by selecting it from the
corresponding drop down menu. The SP editor then displays a brief text explaining the intended
connotation of the property in the text field below the drop down menu (Figure 3). In addition,
the developer could also view a general definition of a category of significant property by right
clicking on the corresponding Tab in the SP editor and selecting the ? option (Figure 3).

Furthermore, the developer may also visualise all asserted properties during the SP adding
operation by selecting a SP visualisation option from the SP editor. The current version of the
SP Editor enables three ways to visualise a SP record: as a Table (Figure 4), as a Graph and as

RAW RDF source code.

dsimwen & Treheolesy Fsilitin Crene

- e-5cience

«* SPEOS - Tabular Yiew of Software Significant Properties

Software Variant Properties
Property Value

operatmgsystem | Windows XP 86 5.1

Software Version Properties

Property Value
prografmingl anmiage Java

source hitps:#fzvn codehaus. org/geoserverirunld/genserver
Software Package Properties

Property Value

purpose |postgresgl purpose

Figure 4: Tabular View of a SP Record

After asserting values to different significant properties of “svn-test”, the developer has the
option to either store the SP record in the SPEQS data store or save it in a file as a draft for
adding more properties or making changes later. In this particular scenario, the developer decides
to store the SP record that he has created, in the SPEQS data store and invokes a very simple
“Commit” interface from the SP editor. Using this interface, the developer associates additional
metadata, such as his/her name and name of the record, to the SP record. After this, he commits
the SP record to the SPEQS Data Store. SPEQS will then create a record for “svn-test” in the
SPEQS Data Store and store the new SP record as the current version of SP record associated
with “svn-test”. SPEQS will use a combination of the subversion Identifier and revision number
of “svn-test” to identify it within the SPEQS Data Store. As for the SP Record that the developer
has associated with “svn-test”, SPEQS will assign an identifier based on the SPEQS id of “svn-
test”. For example, if the SPEQS id for “svn-test” is “12erer-335fds-fggeer3:8787”, then the
SPEQS identifier for its SP record will be “urn:12erer-335fds-fggeer3:8787_1”

Now, if the developer had made any changes to the “svn-test” project prior to adding significant
properties to it, he would also be able to commit those changes at the time of committing the
added SP record to the SPEQS Data Store. In such a case, SPEQS would attempt to commit
“svn-test” to Subversion first before tying to store it and its corresponding SP record in the
SPEQS data store.

dsimwen & Treheolesy Fsilitin Crene

- e-5cience 5

3.2 Updating Significant Properties of Software

In the above scenario, having stored the SP record in the SPEQS data store, the developer
decides to make some changes to the record. Therefore, he re-invokes the SP Editor from the
SPEQS menu of his Eclipse with the “svn-test” selected in the Eclipse project explorer. This
time, SPEQS displays the SP editor automatically populated with all asserted properties in the
existing SP record. This enables the developer to update and/or remove any of the existing
properties as well as adding new ones. The developer makes some changes to the record and
subsequently commits the updated record to the SPEQS Data Store. In this case, SPEQS marks
the updated record as the current version of SP record associated with the “svn-test” project and
appropriately links it with the previous version.

3.3 Exploring Software and Significant Properties Version Tree

o* SPEOS - Search/Query Software Significant Properties
File BE{aN Help

Vi Open Query Wizard

Run Query From File
Run Example Quaties » SW Version Tree

P TTTT
W 1 6e69-9765-0310-af46-Bal1 9420 n 20
=) 5wlnfo Load 5P Ve-sion Tree

----- # Developer:&if Shaon Attach a new vers

|| P ¥ersion Tree SP Record Version Tree
[5P Version Tree { eF1dBea0-07e5-1310-af46-8306 1 M4da3za:3135)

[Sof|

132a:8138_7

fo | View ROF Source

- & Name:Geo ey por Gy

------ # MamPaeoseryver
[1055742 1437-0410- 38de- 88532887 3214:2043

AL urm:ef 1dEe69-9765-0310-af46-8a06 Tda32a: 8136 _6

) 10857af211427-0410-fde-B8538873214,2041 \ .
= 5w Info 'E_r"_} Record Info
Proiect Metadata 8 NameGenservey Recopd
""" ¥ TETESITES Option for loading the version "% Sp Record viewing
) 0310- .
tree of the SP record associated options
with the project selected H
- 3

Figure 5: SPEQS Version Tree for Software and corresponding SP Records

After updating the SP record associated with “svn-test” and committing it to the SPEQS Data
store, the developer may explore the version trees of both “svn-test” and the corresponding SP
record through an interactive graphical interface of SPEQS as illustrated in Figure 5. Using the
version tree, the developer can also view a particular SP record in one of the three formats
mentioned earlier.

dsimwen & Treheolesy Fsilitin Crene

- e-5cience 6

3.4 Querying Significant Properties of Software

B=E3

#* SPEQS - SP Query Wizard

File
Save Query gnificant Properties
SPARCL ~ - Properties to be queried Query Skring
Exit] == .
OpErannIg ISR programmingLanguage _ %Py
outpUtParameter programmingLanguagell)
oiner pUrpOsE
package_name Operator
parentiersion -ﬁ.ND "
platform =
processorPerformance Ordering:

programminglanguage

purpose [crder By DOptimX\ [Search] [Reset

Query-able properties Properties to be queried

Cther Query Parameters

Search in 3w Versions 4_\ Search in 5P Versions Search By Reqgistration Dates

Al Projects Al versions

All Current Projects Current Yersions Only Begin: |Click to open calender |
10557af2-1427-0410-a8de-
10557af2-1427-0410-a8de- Software Mame:
10557af2-1427-0410-a8de-
10557af2-1427-0410-a8de- | |
10557af2-1427-0410-a8de-
10557af2-1427-0410-a8de- ¥
< | 3 || |

End: |Cli|:k ko open calender |

5P Record Mame: Exact: |Clin:k to open calender |

Figure 6: SPEQS Query Wizard

The developer then decides to query the SP record he has just created and stored, using the
SPEQS Query Wizard (Figure 6). This query wizard enables construction of both simple and
complex queries against the SP records stored in the SPEQS Data Store. In short, using the
query wizard, the developer would be able to select the properties to be queried as well as
specifying conditions to be met for a particular query. The developer could also have his own
SPARQL queries executed through SPEQS using the SPARQL editor of the query wizard
(Figure 6).

dsimwen & Treheolesy Fsilitin Crene

- e-5cience 7

#* SPEQS - Search/Query Software Significant Properties
File Search Help

Wersion Tree

Search Result

programmingLanguage purpose SP Record Software ID

Geoserver Record

Description of overall ;)
Java functionality of Lreation date2009-03-13 ef1 d6e60-0765-03 10-af46-8206 1 940a322:8138

1T
frware syst —
SOIWAIE SYSIEM rief] d6e60-0765-03 10-aF46-8a06 1 P32 8138_8

Eﬁsh:;f pu.bl:?;lg Geoserver Record
i Creation date:2000-07-00 i
Jawva Geospatial data on the Heies H;_ efldd Hyperlmk to tabular E
web using open urmefl d6e60-07e5-0310-af46-8a06104da372:8138_1 view of SP record
standards —
Eﬁsh:;f pu.bl:?;lg Geoserver Record
i Creation date:2000-07-00
Java Geospatial data on the Heies 1;_ Bf1d6e60-0725-0310-af46-806 1 04da32a ;8138
WED USIG OPER | oFldfie60-07e5-03 10-ar46-8a06194da30a 81382 v
Operation Log
INFO: Exelcutina clluer;f.... A

INF(: Finished executing query
IMFC: Preparing query. ..

IMFC: Executing query. ...
INF(: Finished executing query

Figure 7: Query Results Representation in SPEQS

Having constructed his queries using the wizard, the developer submits them for execution.
SPEQS executes the queries and display the results in a tabular format as shown in Figure 7.
The table containing the results of the developer’s query clearly indicates in two separate
columns, the SP record and Software version to which a particular row of the table corresponds.
The SP record names displayed in a search result table are in fact hyperlinks that would enable
the developer to view the corresponding SP record in a tabular format (Figure 4).

4 Conclusions

SPEQS demonstrates the underlying concept of a tool that would enable recording and querying
significant properties of software from within its development environment. Additionally, it aims
to promote awareness of the role of significant properties in long-term preservation of software
among software developers. The current version of SPEQS provides user-friendly means of
recording, editing and querying significant properties of Subversion based software projects
directly from within the Eclipse environment. It also provides users with suitable guidelines for
accurately recording significant properties of software. Thus, SPEQS demonstrates the feasibility
of providing effective guidance through suitable tooling for accurately annotating software with
its significant properties. More importantly, it shows how capturing preservation information can
be incorporated within the software development lifecycle to aid its long-term preservation.

@ dsimwan & Techwotery isibin el
-

e-Science 8

However, there is still considerable scope for further improvement in SPEQS. In particular,
SPEQS needs to incorporate an efficient mechanism for semantically validating values asserted
in a SP record. This could involve integrating SPEQS with a suitable controlled vocabulary.
Furthermore, the SPEQS Data Store should be subjected to effective long-term preservation
technique, e.g. by integrating it with an efficient long-term preservation archive, to ensure
longevity of the SP records. Additionally, to cater for a wider range of software projects, SPEQS
would benefit from incorporating support for other widely used software development
environments, such as NetBeans® and other software repositories, such as SourceForge and
cvs®h.

Despite these shortcomings, we believe that SPEQS is already a significant step towards a
comprehensive software system that would facilitate capturing, validating, querying and
preserving significant properties of software.

® http://www.netbeans.org/
19 http://ximbiot.com/cvs/wiki/Main%20Page

@ dsimwan & Techwotery isibin el
-

e-Science 9

	1 Introduction and Rationale
	2 Architectural Overview
	3 A Walk Through
	3.1 Adding Significant Properties to Software
	3.2 Updating Significant Properties of Software
	3.3 Exploring Software and Significant Properties Version Tree
	3.4 Querying Significant Properties of Software

	4 Conclusions

