Porting and Optimising TELEMAC-MASCARET for
the OpenPOWER Ecosystem

Yoann Audouin
EDF R&D
Chatou, France
yoann.audouin @edf fr

Judicaél Grasset
STFC, Daresbury Laboratory
Warrington, United Kingdom

judicael.grasset@stfc.ac.uk

David R. Emerson
STFC, Daresbury Laboratory
Warrington, United Kingdom

david.emerson@stfc.ac.uk

Abstract— TELEMAC-MASCARET is a suite of software for
free-surface flow modelling. It is written in Fortran, parallelised
with MPI and has been in development since the 1990s. This work
aims to parallelise the code on the OpenPOWER architecture
without heavily modifying its codebase. To do so the pragma-
based programming directives from OpenMP and OpenACC
have been tried on IBM POWERS CPUs and NVIDIA GPUs.
The results achieved for the wave propagation module of the
suite on GPUs are promising and future works will be carried
out on more challenging test cases.

Index Terms—TELEMAC, POWERS, GPU, OPENMP, OPE-
NACC

I. INTRODUCTION

TELEMAC-MASCARET is an open-source suite of hydro-
dynamic solvers for free-surface flow modelling, originally
developed by EDF R&D in the 1990s [1]. Development is now
pursued through the TELEMAC-MASCARET Consortium. The
software can be used to simulate 2-D or 3-D flows, sediment
transport, water quality, wave propagation in coastal areas and
rivers. More details on the possible applications and other
capabilities can be found on the software’s website [2].

At the moment TELEMAC-MASCARET is only parallelised
with MPI, although attempts at hybrid parallelism have been
tried in the past [3]. Improving the parallelisation and weak-
scaling of TELEMAC-MASCARET would be useful for users
who frequently do long time scale simulations.

Current computer trends favour the increase of the number
of cores in a single processor and as shown by the current
TOPS500 list [4], this is alongside the addition of accelerators
such as GPUs, combined with memory interconnects designed
to reduce latency introduced by transferring data between
different memory locations. It is therefore now important that
TELEMAC-MASCARET is modified to take advantage of these
CPUs and GPUs.

There are two key options when choosing how best to run
on GPUs. Either going low-level and programme the kernel
directly for GPUs with OpenCL or CUDA, or using pragma-
based programming with OpenMP and OpenACC. The first
option will give more control and usually more performance
but it also means that a specific code has to be written and that

STFC, Daresbury Laboratory
Warrington, United Kingdom

Charles Moulinec
STFC, Daresbury Laboratory
Warrington, United Kingdom

charles.moulinec @stfc.ac.uk

Stephen Longshaw

stephen.longshaw @stfc.ac.uk

two different versions of the same kernel has to be maintained.
However, when using the pragma-based approach, algorithmic
changes to code do not infer a re-write of the GPU kernel, with
the bulk of the changes needed being the addition of pragmas
around the existing code. This approach reduces the burden on
those that maintain the original codebase and mean acceptance
of changes is more likely. This work therefore concentrates
on enabling multi-threaded CPU and GPU acceleration of
portions of TELEMAC-MASCARET using a pragma approach.

This paper presents the use of OpenMP in order to reduce
the number of MPI processes needed to utilise the CPUs in
an OpenPOWER system, combined with the use of OpenACC
and OpenMP to offload appropriate computations to available
GPUs.

II. RELATED WORK

An attempt to use GPUs with TELEMAC-MASCARET has
already been made in [3]. However the method used was
completetely different from the one described in this ar-
ticle. Belaoura replaced the original matrix-vector product
of TELEMAC-MASCARET with the one from the MAGMA
library [5], which is able to offload it to GPU. The major
problem they encountered was that the MAGMA library was
not using the same matrix format. Doing the conversion
before and after every matrix-vector product prevented any
real-world performance improvement. This work shows how
directly accelerating the existing data structures in TELEMAC-
MASCARET allows significant gains to be made.

III. PORTING TO THE OPENPOWER ARCHITECTURE

The OpenPOWER foundation [6] is a consortium of entities
working to provide an architecture revolving around the IBM
POWER processors and accelerators. In this work the archi-
tecture used consists of POWERS processors and NVIDIA
GPUs. The processors are interfaced to the GPUs with NVLink
instead of PCI-Express. NVLink a high-bandwidth proprietary
interface developed by NVIDIA [7], is also used to enable
GPU to GPU interconnection.



This work uses the UKRI Science and Technology Facilities
Council (STFC) Paragon POWERS cluster, maintained and
run by the Hartree Centre [8] at Daresbury laboratory in
Warrington in the UK. Each node of the cluster consists of
2 POWERS CPUs, each of them with 8 physical cores (up to
8 hardware threads per core) and 4 NVIDIA P100 GPUs with
NVLink 1.0 interconnects. Each P100 has 16GB of memory
and the 2 POWERS CPUs share 1TB of memory.

IV. TEST CASE

In order to facilitate the evaluation of the OpenPOWER
architecture a test case has been chosen in which most of the
computational time is concentrated in a small part of the code
and not spread accross a lot of different subroutines. Following
benchmarks it was decided to use the fetch_limited/tom_test6
case of the wave propagation module TOMAWAC of the
TELEMAC-MASCARET suite. Preliminary benchmarks showed
that about 95% of the execution time was spent in a single
function called gnlin3. This function is short and is made of
a four-level imbricated loop. As the original test-case mesh
was very small, it was refined once in order to increase the
computation time. This was achieved with STBTEL, a tool
from the TELEMAC-MASCARET suite. The final mesh was
made of 18,916 elements and 9,606 points. This test case is
part of the official TELEMAC-MASCARET test suite and can
be found freely with the source code.

All timings presented in this paper are for the whole
duration of the program’s execution and not only for the
accelerated function. This ensures modifications are generally
beneficial for users of the software and not only improvements
visible in specific benchmarks.

V. VERSIONS OF SOFTWARE USED

e TELEMAC-MASCARET V8PORO (revision 12565)
o Compiler IBM xIf 16.1.1.1

o Compiler GCC gfortran 8.2

o Compiler PGI pgfortran 18.10

o Library CUDA 9.2

e Library IBM Spectrum MPI 10.2.0

VI. TAKING ADVANTAGE OF SMT

Each core of the POWERS CPU is able to work at differ-
ent levels of Simultaneous Multi-Threading, (SMT1, SMT2,
SMT4, SMTS8). This means that each core can execute more
than one thread at the same time, e.g. two threads with SMT2.
This functionality is comparable with the Hyperthreading
technology of Intel processors. While Intel’s Hyperthreading
can only be used to run a maximum of two threads in parallel,
a POWERS core is able to run up to eight. Benchmarks
have shown that TELEMAC-MASCARET does not benefit from
the use of SMTS8 (maybe because the memory bandwith is
saturated, also SMTS is not on par with SMT2 or SMT4 as
it deactivates the CPU’s instruction prefetcher [9]). Standard
TELEMAC-MASCARET uses MPI parallelisation and is able to
run on thousands of cores [10]. As shown in Table I, the code
is able to benefit from using SMT to run MPI processes. It

TABLE I
ORIGINAL MPI VERSION. ONE MPI PROCESS PER ACTIVATED HARDWARE
THREAD
PGI pgfortran SMT1 SMT2 SMT4
1 node 1092s 857s 826s
2 nodes 569s 462s 452s
4 nodes 309s 258s 288s
8 nodes 174s 161s 169s
IBM xIf SMT1 SMT2 SMT4
1 node 1264s 1018s 1019s
2 nodes 656s 552s 559s
4 nodes 356s 303s 329s
8 nodes 201s 181s 196s
GCC gfortran SMT1 SMT2 SMT4
1 node 1388s 1034s 974s
2 nodes 639s 546s 526s
4 nodes 344s 295s 309s
8 nodes 193s 176s 182s

is always beneficial to use SMT2 and in some cases SMT4.
This work therefore presents results using SMT1, SMT2 and
SMT4.

The problem with adding more MPI processes is that it in-
creases the communication time for collective communication.
Eventually it is likely that parts of the code will spend more
time doing MPI communications than actually performing
computation. To decrease this problem this work next looked
at using OpenMP to parallelise the gnlin3 subroutine and so
reducing the number of MPI processes.

A. OpenMP

The gnlin3 subroutine consists of a four level imbricated
loop, with two arrays being updated in the most imbricated
loop. OpenMP provides a set of directives to parallelise this
kind of problem. In this case the best solution was to add a
parallel for directive on top of the outermost loop. By doing
so the processor is told to distribute the iterations of this to
differents threads, and each of these threads will execute the
whole of the three inner loops. Another point to take into
consideration is the fact that several different iterations of the
loops can modify the same index of the result arrays, therefore
it is necessary to avoid this potential race condition. OpenMP
offers two ways of doing this, either by declaring an instruction
to be atomic or by using a reduction. Using atomic instructions
is usually very costly on CPU, it is therefore preferable to use
a reduction. One side-effect of using a reduction is that each
thread needs to allocate a temporary array of the size of the
original one, which significantly increases the total memory
consumption.

Fig. 1 shows the execution time of this implementation
with the IBM compiler. Each core executes an MPI process
and a number of OpenMP threads, depending on the level
of SMT. For instance, on one node with SMT4, 32 MPI
processes are executed (16 per processor, 1 per core) and 64
OpenMP threads are executed (4 threads per MPI process).
When compared to the original execution time (see Table I)
it is clear that the implementation does not perform well.



1600
== SMT 2 —¢— SMT 4

1400

1200

1000

800

600

Execution time in seconds

400

200

1 node 2 nodes 4 nodes 8 nodes

Number of nodes

Fig. 1. MPI+OpenMP version. One MPI process per core and one OpenMP
thread per activated hardware thread with the IBM compiler

In fact, in no case was it found to be better to replace
MPI processes with OpenMP threads when using the IBM
compiler. Executing one MPI process per processor then using
all available cores and SMT for OpenMP threads was also
tried, but the results were similar to the previous solution,
showing no improvements against the pure MPI version with
the IBM compiler. Some small tests have shown that there are
some performance benefits when using the GCC compiler (see
Table II) but the speedup is small (about 1.15x).

TABLE II
COMPARISON OF THE ORIGINAL MPI VERSION AND MODIFIED
MPI+OPENMP VERSION ON 8 NODES WITH THE GCC GFORTRAN

COMPILER
SMT2 SMT4
Original MPI 176s 182s
New MPI+OpenMP 154s 160s

B. Conclusion

Testing and benchmarks have shown that, at least in this
specific case with TELEMAC-MASCARET, the use of pure
MPI achieves better performance on SMT enabled POWERS
processors than a hybrid MPI+OpenMP approach.

VII. TAKING ADVANTAGE OF GPUS

Following the current trend of adding or increasing the num-
ber of GPUs in HPC clusters, Paragon provides four NVIDIA
P100 GPUs on each node. We have therefore investigated
the possibilty of using these to increase the performance of
TELEMAC-MASCARET.

A. OpenACC

OpenACC is an open standard set of directives to offload
computations on GPUs, the standard is mainly developed by
Cray and NVIDIA. While the test cluster used provides three
compiler choices (GCC, IBM and PGI), only PGI appears to
provide an efficient implementation of the OpenACC standard.
The GCC compiler has an OpenACC implementation but it is
still a work in progress, and IBM does not implement the
OpenACC standard.

1000
900
800
700
600
500
400
300

—&— Best original MPI (IBM)

—— Best original MPI (PGI)
MPI+OpenMP(IBM)

—&— MPI+OpenACC (PGI)

Execution time in seconds

200

100 \\

0 n

1 node 2 nodes 4 nodes 8 nodes

Number of nodes

Fig. 2. Comparison of the best original MPI time against the modified
MPI+OpenACC on GPUs version and MPI+OpenMP on GPUs version

The OpenACC implementation for GPUs is quite similar to
the OpenMP implementation for CPUs. OpenACC pragmas
are used to collapse the four loops in the gnlin3 subroutine
used in the fetch_limited/tom_test6 test-case and distribute
the iterations on the available GPUs. The main difference of
note for this work between OpenACC and OpenMP is that
the version of OpenACC used (version 2.6) does not allow
reduction on arrays (this functionality is available in OpenACC
2.7). To replace the reduction, atomic operations are used, in
a pure CPU implementation this would be considered a bad
approach as atomic instructions are typically slow but here
GPU performance implications appear minimal. Using atomic
operations also frees the code from creating and merging
temporary arrays, leading to no notable increase in memory
consumption. This is a welcome result as GPUs often have
less memory available than CPUs.

In Fig. 2, results are shown for the OpenACC implementa-
tion compared to the original MPI version compiled with the
PGI compiler. A notable improvement in execution time can
be observed. On one node, the version running on GPUs is five
times quicker than the original MPI version, on eight nodes it
is seven times faster than the original. The OpenACC version
was run on 4 MPI processes and 4 GPUs on each node, with
each GPU being linked to an MPI process at the beginning of
the program, which is the only process it then communicates
with for the duration of its execution.

B. OpenMP

Since version 4.0, OpenMP has offered its own GPU
offloading capabilities similar to those provided by OpenACC,
again these are pragma-based. Even though the pragmas are
completely different from OpenACC those used for offloading
are almost functionally equivalent. As the PGI compiler used
only supports OpenMP pragmas for CPU, the IBM compiler
has been used to evaluate OpenMP GPU offloading perfor-
mance.

Fig. 2 shows the results for the OpenMP offloading com-
pared to the original MPI version, the two being compiled
with the IBM compiler. It can be seen that there is still
a notable acceleration when using the GPUs. On one node
the version running on GPUs is three times faster than the



10

—— Ideal—— MPI-— MPI+GPUs (OpenMP offloading) /

Speedup

1 node 2 nodes 4 nodes 8 nodes

Number of nodes

Fig. 3. Comparison speedup of the MPI+OpenMP version on GPUs against
the original MPI version

original MPI version and it is four times faster on eight nodes.
However the speedup achieved is smaller than the one achieved
with OpenACC. In fact, the OpenMP version is about two
times slower than the OpenACC version. This difference in
performance could be attributed to having to use the IBM
compiler rather than the PGI compiler used for the OpenACC
tests as the IBM compiler produces slower, standard MPI code
as it can be seen in Fig. 2.

C. Conclusion

It has been shown that it is possible, and beneficial, to
use accelerators such as GPUs to accelerate some parts of
TELEMAC-MASCARET, either by using OpenACC or by using
OpenMP. The PGI compiler has been used for the OpenACC
implementation and the IBM compiler for OpenMP. It would
have been interesting in both case to try the GCC compiler
(which should support offloading with either OpenACC or
OpenMP) but significant results are yet to be generated, either
because the implementation was very slow compared to the
other compilers or because it was not working at all.

VIII. GENERAL CONCLUSION

This article first explored the use of a hybrid MPI+OpenMP
implementation of the TOMAWAC portion of the TELEMAC-
MASCARET suite of solvers for use on an OpenPOWER
platform. However, results showed that the classical MPI-
only implementation provided better utilisation, even on SMT-
enabled POWERS CPUs. In order to fully utilise the POWERS
platform, an evaluation of the use of GPU acceleration (by
way of OpenACC and OpenMP pragmas) was also presented.
It was found that it was possible for the test case used in
this study to have a five to seven times speedup with PGI
and OpenACC and a three to four times speedup with the
IBM compiler and OpenMP in comparison to the original MPI
version. Finally, as seen in Fig. 3 the scalability is also better
than the original MPI version. This increase in performance
will benefit users who are using similar cases, they will be
able to either run their case quicker or to run it with the same
execution time but use the acceleration to increase the accuracy
of the simulation.

Future work will look to offload more modules of the suite
to GPUs and use test cases provided by users who have com-
putation time distributed across several subroutines. This work
will be more complicated and may lead to smaller speedup
figures because this will likely involve a larger number of
discrete memory transfers between host and GPU. We will also
evaluate how OpenMP and OpenACC offloading performs on
the GCC 9 gfortran compiler.

IX. ACKNOWLEDGMENTS

This work is supported by the Hartree Centre through the
Innovation Return on Research (IROR) programme.

REFERENCES

[1] GALLAND, Jean-Charles, GOUTAL, Nicole, HERVOUET, Jean-
Michel. TELEMAC: A new numerical model for solving shallow water
equations. Advances in Water Resources, 1991, vol. 14, no 3, p. 138-
148.

[2] http://www.opentelemac.org/

[3] BELAOURA Hamza, Intégration de la bibliotheque MAGMA dans le
systtme TELEMAC-MASCARET, Université de Versailles, Saint Quentin
En Yvelines, Internship report

[4] https://www.top500.org/statistics/overtime/

[5] https://icl.utk.edu/magma/index.html

[6] https://openpowerfoundation.org/

[7] https://www.nvidia.com/en-gb/data-center/nvlink/

[8] https://www.hartree.stfc.ac.uk/Pages/home.aspx

[9] SINHAROY, Balaram, VAN NORSTRAND, J. A., EICKEMEYER,

Richard J., et al. IBM POWERS processor core microarchitecture. IBM

Journal of Research and Development, 2015

MOULINEC, Charles, DENIS, Christophe, PHAM, C.-T., et al.

TELEMAC: An efficient hydrodynamics suite for massively parallel

architectures. Computers & Fluids, 2011, vol. 51, no 1, p. 30-34.

[10]



