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Abstract

In an axisymmetric approximation we demonstrate a parity-breaking phase
transition to a twisted configuration in tangentially anchored nematic
liquid crystal droplets. The twisted phase occurs when Kj| 2 K9y + 0.431
K33. In a magnetic field there {s another phase transition corresponding

to the droplet axis changing from parallel to normal to the field.
]

1. Introduction

A nematic liquid crystal 1is anisotropic, for the rod-like molecules are on
average parallel to a unit vector n. On macroscopic scales, n is a
continuous fileld Iﬂl)- and an elastic energy density 1s associated with
the squares of gradients of n. Thus the elastic energy of a volume of
nematic is proportional to the linear dimension L of the volume. For a
compact volume, such as a drop of nematic suepended in isotropic fluid,
there 1s also surface energy, proportional to LZ. Thus the internal
energy of a large drop 1s dominated by the surface energy, and so the drop
is spherical. At the nematic surface, there 1s energy per unit area
associated with deviations of the anchoring angle from the easy angle[l].
By the same dimensional reasoning ss above (given more explicitly f1in
Section 2) the anchoring angle is always the easy angle: so-called strong

anchoring.

If the director at the surface 1s normal to the surface, the director
points radially from the centre of the sphere, with perhaps a twist. If
the easy angle 1is between O and 90° (conical boundary conditions), then
the position of the singularities in n change continuously with the
elastic constants and also with the easy anglelg]. Furthermore there are
problems from the sign ambiguity of n, which arise for the following
;eason. Although the ends of a nematogen molecule are 1in general
different, the energy difference between a parallel and an aﬁtlparallel
pair ie much smaller than the temperature, so ordering in direction n is
phyeically the same as ordering in directlion -n, Thus there may be
"branch-cut surfaces" across which n changes sign. 1f one of these
surfaces is bounded in part by the surface of the sphere and in part by a
line disclination, then it cannot be removed, only moved. This 1s
analogous to the representation of an angle by a real number: the number
can have discontinuities of 2m even though the underlying angle ls

continuous.

The situation is considerably simpler when the director is tangential to
the surface. The bipolar configuratlion, suggested by Chandraaekharlal and
experimentally verified by Dubois-Violette and Pnrodl‘sl, seems to be
adopted by many nematics. The director 1s parallel to curves which join
two diametrically opposite points of the surface of the drop, these curves

lying on planes of constant azimuth. Twisted bipolar configurations (cf



Flgure 2) have been observed[:”; with the limiting case of these twisted
drops where the director is in the azlmuthal direction like the magnetic
field of a stralght wire: we call thig the toroidal configuration,

In this paper we examine tangentially anchored nematic drops, using the
topology of the untwisted bipolar configuration, but with varylng amounts
of twist {n the director field. We find that when the splay constant is
small, the droplet is untwisted and when the splay constant is large, the
droplet 1is¢ twisted. This breaking of parity symmetry is assoclated with a

second-order phase transition.

Since nematogen molecules tend to be parallel to a wmagnetic field, we
expect the axis of an untwisted drop (when the splay constant is small) to
be parallel to the field, and that of a very twisted toroidal drop
perpendicular. There 18 a second order transition between these phases,

assodlated with a breaking of axial symmetry,

"l

Theory

If & droplet of nematic 1is sufficiently large and in an isotropic
environment, it will be spherical, The droplet 1s characterised by a
unit-vector director n(x), and the Frank elastic energy per unit volumelb]_
is

Fa il(“(divﬁ)z + ikzz(ﬂ.curlﬂ)z + §K33(£xcurl_n_)2 (2.1)
where K, K22 and K33 are the splay, twist, and bend elastic constants

reapectively. The total elastic eneryy is U = ]dv F, and there is an

energy associated with the surface anchoring angle

[ ds Wy £(n.k) (2.2)
where W, 18 the anchoring coefficient with dimenaions of gurface tension,
k 1s the unit surface normal, and f {8 a dimensionless function with a
einimum at the easy angle [

f' (tcosp) = 0 (2.3)

The sign ambiguity arises because a director n 1s physically equivnl.enl:[61

to -n. To obtain the equilibrium director fleld, we minimise
[ dv (F-4Mx)n.n) + [ ds (W, f(n.k) ~ {Mx)n.n) (2.4)

where A(x) and Ax) are Lagrange multipliers keeping n unit, The Euler-

Lagrange equations are (with summation convention)

oF 9 3F
ani - 3)(1 [3“1'_]] - mi 62.5)
oF
' -
kj a—ni-:+ wo k‘. I3 (L.L) Ani (2-6)

where (2.5) 18 true within the drop and (2.6) only on the surface of the
drop. It 18 now clear why strong anchoring holde for large drops; the
first term of (2.6) involves a gpace derivative of n, and behaves like r!

when the radius R of the drop increases, however, the second term is
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independent of size scaling, From now on we shall consider only large

drops. Taking (2.6) in the direction k, 1t 1s dominated by the surface

term @
Wof'(n.k) + o(R™!) = 0 (2.7)

which ehows that strong anchoring prevails. The component 1in the
direction n merely defines the field A, the Lagrange multiplier, or
equivalently since (2.6) is the change in energy with n, we can note that
n 18 unit and cannot change along 1its length. The component in the

remaining direction nxk is a zero~torque condition at the surface,
K22 (xk)? (n.curln) - Kyy(n.k) [(nxk).(nxcurln)] = 0 (2.8)

The ‘surface tension W, and anchoring energy f are now irrelevant because

the hrops are assumed large.

Throughout the rest of this paper we shall consider only tangential

anchoring, partly because the boundary conditions simplify to

nuk = 0

(2.9)

MN.curln = 0
but mainly for the reasons given in Section 1.

The energy of the drop has two parts, a surface energy proportional to r?

and an elastic energy to proportional to R, The elastic part can be
written

"RK) yuin) (2.10)

where u 1is a dimensionless functional of a director field in a unit
sphere, and involves the dimensionless bend and twist elastic constants g
= KJJ/KII and Kp = KZZ/KII respectively, The factor w has been removed

for later convenience.

The energy fucntional 18 a sum of splay, bend and twist contributions
u[n] = ug(n] + KBunlﬂl + kqupln} (2.11)

We expect each of these three terms to contribute about equally, so that a
small splay (bend, twist) constant ie associated with a large ug (ug, up);

in the same way as any small elastic modulus causes a large distortion.

Experimental studies indicate that tangential boundary conditions imply
the bipolar configuration: there 1s a singularity at diametrically
opposite points of the surface (the "poles"), with the director locally
polating radially away from each aingularity. Under some
conditionsl3:7:8] ¢the director field lines are planar, or the parity
symmetry may be broken, giving a twisted appearance to the droplz] (cf
Figures 2b, 2c). We have calculated numericnllylg] the director fileld
with the one-constant approximation «p = «p = 1, and no other
approximation, and the drop has the appearance shown in Figure l. 1t can
be seen that circles (overdrawn in Figure 1) which pass through both poles
are a good approximation to the field lines. It 1is for this reason that
we use an orthogonal coordinate system tallor-made for the singularities

of the problem.

Bispherical coordinates (E,n,¢) consist of two poles a distance 2 apart
connected by an axis of cylindrical symmetry, which i8 associated with the
angle ¢. Part of a plane of constant ¢ is {llustrated in Figure 2a. The
lines of constant n are circles passing through both poles, and the
orthogonal set of constant E are also circles. The transformation to
cylindrical coordinates (x,r,¢) measured from an origin midway between the

poles is
X = Z'lcosz
(2.12)
r = Z-lging sinn

where Z = } + s8inf cosn.

The quadrant in Flgure 2a 18 the area 0 < § <w/2, 0 < n € w/2, and the

metric elements hE = ds/dE etc, are given by



he = 27!
hy = Z7 ! ging (2.13)
hy = ! sinE sinn

We now assume the director to have no n component, which we justify by

looking at Figure 1, and write

'1'£°°ﬂlf(n>]+iﬂin[r(n)] (2.14)

A A oA

where £in,¢ 18 the triad of unit vectors, and the angle t 1s the twist
angle. A field line remains on a surface of constant n and ends at each
of the poles, and makes a constant angle with planes through the poles,
The surface n = #/2 is a sphere which 1s the surface of the drop, 8o the
tangential anchoring condition is satisfied. Figure 2b illustrates the
flelll lines on the surface of the drop and Figure 2c shows them on an
interior surface. Using the ansatz (2.14) and the divergence theorem,

after some algebra we find

/2 dn
ug = [ dv {(di.vl)2 =4 f
o slnzn

(n-cosn einn) cos?r (2.15a)

2
up = f av *(l'c“'ll)z -2y ['/ dn n [dr/dn + sint cost col:n]2 (2.15b)
o

n

- 2. . '/ﬁn { [l+sin2ﬂ'2coszn cos® 1 (2.15¢)
ug = [ dV {(nxcurln) LI

8in‘n
= 3cotn coazt}

It can be seen that the twist and bend energies are logarithmically
infinite at the axis (n+0) unless 1+0. If (r,z,¢) 1s a cylindrical
coordinate system, the director field must be n e é at the axis. An
infinite splay energy n = i will escape by converting to finite aplay and
finite bend energy[(’l, and an 1infinite bend energy Nh = ¢ will escape by
converting to finite bend and finite twist energy“ol. Here we have the

latter: indeed for emall bend constant we expect the drop to have n=4
-6 ~

il

everywhere except near the axis, where there 1s a twist relaxation - this
limit we call the toroidal configuration. The condition n = 2, together
with n.curln = 0 on the surface (cf (2.9)) give the boundary conditions

for t(y)

w(0) = 0
(2.16)
dt/dnln_ﬂ/z =0

The director configuration ™(n) 1s obtained by minimising the sum of the
splay, twist and bend energles (2.15a,b,c) respectively, The Euler-
Lagrange equation is

2 -
by (" d 12 n dr ) - 8in21 [(4 2:1. + JKB) cotn
dn dn + (-4 + 2xp + KB) moseczn (2.17)
2

+ 2ncot®n (g - Zchoaz-()]

One solution 18 1(n)=0, corresponding to the parity-symmetric untwisted
drop, with energy

u[n] = ug + kgug = 4 + Kp (3-:2/A) (2.18)
which has no dependence on the twist elastic constant. The ratio us/"B is
7.5, 8o we expect this solution to be the absolute minimum when the bend

constant is large.

In the rest of this Section, we make some analytic estimates of the

8olution 1(n), and in Section 3 we shall calculate it numerically.
We can calculate the energy u[n] when t is slightly different from zero,
by linearising the Euler-Lagrange equation, and solve the resulcting Sturm-

Liouville problem, to obtain a set of eigen functions 1y(n) with

eigenvalues A; such that for swall deviations from =0:

u[fegrgm] = § & 2 (2.19)
1 i
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When these eigenvalues are all positive, the solution t(n)=0 is stable,
and if the transition is second-order, the line min{i;} = 0 in the (xgsxp)
plane separates the parity-symmetric bipolar phase from the twisted phase.
The lowest-) eigenfunction will have no nodes and satisfy the boundary
conditions (2.16), so we approximate it by sin n, in which case the energy

can be calculated and we find that the untwisted drop is realised when

2.
kg > (mep) 2528 5 2,32 (1) (2.20)
20~+

so that for large «y and for large xp the untwisted configuration 18 the

minimum energy.

The.only dependence on dt/dn in the energy functional occurs in the twist
energy. Thus when tT-O, the energy minimisation can be done separately at
each value of n; the splay and bend energies are quadratic in sinzr, which
can be minimised immediately,

tann 3tann aeczn

' 1
sinz[T(r\)] = — (sec?n - ) + 1 -
Xp n 4n 4

(2.21)

When this expression is less than zero or greater than 1, t is 0 or =/2

respectively. When n is close to ite limits,

2 2 _ 1y 2
sin“1 + ET;; 2] n n+0
(2.22)
sinlt + (1——%} (w/2-n)"2 n+ w2
B

For «y » 4 the untwisted bipolar drop is preferred; for kg ? 4/3 there 1is
part untwisted (small n) and part with t=x/2; and for ky € 4/3, there ie
twist for all n » 0, with t=#/2 for the larger values.

We shall now investigate the response of the drop to a weak magnetic
field. The nematogen molecules tend to line up parallel to the field, so
we expect the untwisted drop to have its axis parallel, and the limiting

toroidal drop to have its axis normal to the fleld, 1If the field 18 not

_u_

“

weak, the director field will be distorted, and in the toroidal case lose
axial symmetry, so that all the analysis of this paper would be invalid,
We would, however, expect a second-order phase transition to be assoclated
with the loss of axial symmetry, and we shall calculate the transition
line in the weak field case.

The energy density aesoclated with the magnetic fileld is pruportionallé]
to (n.B)Z, and for axisymmetric drops, we find that the axis ie parallel
to the fileld 1if

1/3 ¢ vl [ qv (n.%)? (2.23)

2
=3 L% ae g anngn g 520 S ot

where Z 18 from (2.12) and hEhnh0 is the volume element from (2.13). This
quantity 1is the average of the square of the component of n along the
axis: for the untwisted drop with =0 it 1s 79/150, so the axis 1is
parallel to the field, as observed experimentnllylS]. For the toroidal
drop t=w/2 and the average 18 zero, so the drop axis 1s normal, as

surmised above.



3. Calculation

The Euler-Lagrange equation (2.17) ts of boundary-layer type near n=0,
which 1s caused by the gmall quantity n multiplying the highest
derivative. We can remove this singularity by transforming to the

independent variable y=In(2n/#) so that

2 2
d d
131_“2_; + == (3.1)
dy dn dn
The boundary conditions for 1(n) are now

dr

Fy(y‘o) =0 (3.2a)
{

T(y +-=) = (3.2b)

We directly minimise the energy u[n} by the method of successive over-
relaxatlonl“]. First we choose a large negative number Yomin and
discretise the interval (ymln'o) with spacing h, The energy is then
quadratic in the discretised values Ti» and we cycle through these points
ad justing Ty to mintmise the energy locally. This process is completely
equlvalent to the numerical solution of the diffusion-like equation of

Euler-Lagrange form:

¥ 0 a_f]
it ar + dy [31" (3.3)

We find that the energy decreases monotonically to a limit, and we used
the convergence criterion that the change 1in each T; per step should be
less than 10™% radiana. We then make Ypin WOre negative and repeat the
relaxation. This is continued until a further decrease 1in Yain Makes no

difference within the above criterion.
The resulting solution +(n) can be characterised by the elastic enerygy
u[n], the exterfor ctwist angle t(m=n/2), and the intttal slope dt/dn

(n=0): these are shown 1n Flgures 3, 4 and 5 respectively as contour plots

in the (KH,KT) plane.
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In each of these Figures, the most obvious feature 18 the curved 1line
joining ¥p=l, xg=0 to kp=0, ky=4, which is the second-order parity-
breaking phase transition from untwisted to twisted droplets. When wp 18
large, the condition (2,20) is a good approximation: the dashed line in
the figures 1s the continuation of that atralght 1line. When kr 18 zero,
the analysis (2.22) Indicates that KB-4 18 a transition point: this ig
marked in the figures. The planar part of the energy surface in Figure 3
is the exact expression (2.18), and the energy is zero at k=0, k=0,
because this 1s the limiting toroidal case t=w/2 which has no splay

energy.

In Figure 5 18 the slope of 1(n) at w0. When this is large the twist
angle rises sharply to #/2 and 8tays there, so the director is azimuthal
except near the axis, where there is a disclination. The width of this
disclination 1is proportional to '/“B when xp 18 small. The surface twist
angle in Figure 4 is /2 for small kg or small xr» and has a square-root

singularity at the phase-transition line,

We have calculated the double integral (2.23) by Simpsons rule with 50
points each way, and the chained line in Figure 5 shows where 1t is 1/3,
and 18 the transition from the drop axis being parallel to normal (to a

weak magnetic field).

Also marked on Figure 4 are some experimental measurements of
nematicall2], All except one of these are short-rod nematics, and one
(PBG, poly-y-benzyl-glutamate) 1s a polymer, These may not be
tangentially anchored, although it 1s known that temperaturelal.
concentration, and surfactamls] can all change the anchoring angle., It
18 clear, however, that short-rod nematics generally lie outside the
twisted region, although APAPA9 should be somewhat twisted. The
measurement of the elastic constants of PBG 1ie recent, and bears out
theoretical studies“o'”] of elastic constants of nematic polymers. We
predict that if an interface prefers tangential anchoring, then PBG should
exhibit highly twisted droplets.,

_ll-



4, Conclusions

We have taken a simple approximation to the elastic energy functional for
a nematic droplet, and shown that a phase transition to a twisted
configuration occurs for large splay constant. While we do not expect our
results to be quantitatively correct, in view of the approximation, it is
reasonable to expect the main features to be qualitatively accurate. A
treatment using the full elastic energy functional could be used to
measure elastic constants, especially since some nematica will be Just

inside the twisted region, giving great sensitivity.

In a8 magnetic field, the director tends to align parallel to the field.
For the untwisted drop, the axis must then be parallel, but for
sufficlently large splay constant, the axis is perpendicular, In this
casq the drop will cease to be axisymmetric, so we expect a second-order
phase transition. As above, any finite magnetic fleld will distort the
drop and move the transition line, but the qualitative conclusion does not

change,

Although elastlc constants are available for only one polymer nematic,
theoretical work suggests that the relatively small Ky, and K33 are
generic features, 6o it would be interesting to observe droplets of
polymer nematic to wmeasure their twist characteristics, perhaps by
polarised light scattering. The concentration of polymer affects the
elastic constants, and these twisted drops would be a good way of

observing such variation.

_12_
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Figure Captions

Figure |

Figure 2

Figure 3

Figure 4

Figure 5

Exact director configuration in the one-constant approximation,
from Ref 9, with overlaid circles to show goodness of fit,

(a) Bispherical coordinate system with wunit vectors. The

vector ¢ is normal to the paper.
(b) Director field lines for W %/2)=29°,
(¢) Fileld lines for m=25°, 1(n)=22°,

Dimensionless energy “LE) 48 a contour plot {ian the plane

®p=K33/K) |, «1=Ky9/K;) . The contour spacing 1s 0.5. The thin
line is the phase transition line.

Contour plot of the eurface twist angle 1(n) at n=w/2, with
contour interval 10°. Data for some short-rod nematice is from
Reference 12; the dashed Lllne for PAP 18 a temperature
variation, and the disk for MBBA 1s an error estimate,

Contour plot of the internal twist dt/dn at =0, which 1s the
twiet disclination strength at the axis.
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