
The advantages of Fortran 90

by

John Reid

Abstract

Fortran 77 is the most widely used language for scientific
programming. Its long-awaited revision is now called Fortran 90.
It was finalized (down to the last editorial detail) on 11 April 1991,
published as an ISO Standard in August 1991, and the first
compiler is now on the market. This seems an appropriate moment
to review its history and explain its advantages.

Submitted for publication in Computing.

Central Computing Department,
Atlas Centre,
Rutherford Appleton Laboratory,
Oxon OX11 0QX.

March 1994.

CONTENTS

1 Introduction…………………………………………………………… 1
2 History………………………………………………………………… 1
3 Language evolution ………………………………………………… 2
4 Array features ………………………………………………………… 2
5 Parallel processing …………………………………………………… 4
6 Derived data types …………………………………………………… 5
7 Modules ……………………………………………………………… 5
8 Procedures …………………………………………………………… 7
9 Kind parameters ……………………………………………………… 8

10 Pointers ……………………………………………………………… 9
11 Source form…………………………………………………………… 10
12 Miscellaneous improvements ………………………………………… 10
13 Program conformance checking ……………………………………… 11
14 Implementation ……………………………………………………… 14
15 Conclusions…………………………………………………………… 15

i

1 Introduction

The scientific and engineering computing community has a huge investment in codes written in Fortran
77. It also has a huge human investment in Fortran 77 experience and familiarity. A basic assumption
made by the Fortran committee X3J3 in designing a revision was that this investment must not be lost. It
would have been far easier and intellectually stimulating to have designed a new language, but that was
simply not a possibility. The aim was to enhance the language, using experience gained with extensions of
Fortran 77 and in other languages, to

provide greater expressive power,
enhance safety (likelihood that errors would be detected),
enhance regularity,
provide extra fundamental features (such as dynamic storage),
fix problems encountered with Fortran 77,
exploit modern hardware better, and
improve portability between different machine ranges.

This paper is addressed to the reader who accepts the objective of enhancing Fortran 77. Its aim is to
review the history of Fortran standardization and explain the advantages of Fortran 90 over Fortran 77.
Although we do make some references to other languages and to non-standard extensions of Fortran 77,
we make no attempt at a comprehensive comparison.

2 History

Fortran was the first computer language ever to be standardized. The original standard of 1966 was
replaced by a new standard in 1978 (Anon 1978a) and the languages have become informally known as
Fortran 66 and Fortran 77 (it is not Fortran 78 because the technical content was completed in 1977).
Fortran 77 was a modest revision of Fortran 66 and the ANSI committee X3J3 felt under tremendous
pressure to add further features such as dynamic storage and array syntax. It therefore went immediately
into a ‘tutorial’ mode, learning about experiences in other languages, and aimed to produce a new
standard in 1982. In fact, by 1982 most of the new features had been agreed, each as a separate extension,
and the task of integrating everything into a new document began. The draft was then known as ‘Fortran
8x’ and we expected that the unknown x would have the value 8 at most.

The basic reason for the delay was the difference of opinion between those who wished to see a large
range of new features and those with more modest goals. A ballot of X3J3 held in April 1986 was 16 for
and 19 against the draft of that date and led to some slimming down of the language. A second ballot held
in January 1987 showed that better agreement had been reached (29-7) and a draft was issued for public
comment later that year. Over 400 letters were received, representing varying shades of opinion, some
welcoming the power and safety of the new features but many saying that the language was too complex
and lacked certain popular extensions. The rules of X3J3 require that at this stage no change may be made
without a 2/3 majority vote. This led to deadlock for two meetings. Finally, in September 1988, the ISO
committee WG5, despairing of ever seeing a standard emerge from X3J3, defined exactly which changes
it required for the ISO Fortran standard and set a timetable for the preparation of a second draft.

From 1988, progress was steady, although there were always about 10 no votes within X3J3 for
successive versions of the whole standard, not enough to prevent acceptance by a 2/3 majority. A second
draft was issued for public comment in 1989 and the 150 responses were largely favourable. A third draft
in 1990 provoked only 29 letters. The new standard was finalized, down to the last editorial detail, on 11
April 1991 and was published as an ISO Standard (Anon, 1991) in August 1991. The technical content
was completed in 1990, which is why the name ‘Fortran 90’ has been chosen.

The first compiler for the whole language is now available from the Numerical Algorithms Group Ltd
(NAG, 1991). This compiler has been used to check all of the examples in this paper.

1

3 Language evolution

Fortran has been around for a long time and there is a huge volume of working code. To protect this
investment, Fortran 90 is a proper superset of Fortran 77 – a program that conforms to Fortran 77 will
conform to Fortran 90, too. Since the early deliberations, this aspect has not been controversial within the
committee.

Looking to the future, the committee has given everyone a warning of possible deletions in the next
revision by labelling a small number of features that have replacements in Fortran 77 as ‘obsolescent’.
Many groups already advise against the use of these features and again this has not been controversial
within the committee. The features involved are:–

Arithmetic IF,
Noninteger DO index,
DO termination other than on a CONTINUE or END DO statement,
Branching to END IF from outside its block,
Shared DO termination,
Alternate return,
PAUSE,
ASSIGN and assigned GO TO, and
Assigned FORMAT specifiers.

4 Array features

The fact that all Fortran 77 arrays are static is a very big deficiency. Fortran 90 contains ‘automatic’
arrays, created on entry to a subprogram and destroyed on return; and it contains ‘allocatable’ arrays
whose number of subscripts (rank) is fixed but whose actual size and lifetime are fully under the
programmer’s control through explicit ALLOCATE and DEALLOCATE statements. The declarations in
Figure 1 include an automatic array WORK and an allocatable array HEAP. Note that a stack is an adequate
storage mechanism for the implementation of automatic arrays, but a heap will probably be needed for
allocatable arrays.

Figure 1. Declarations of an automatic and an allocatable array.

 SUBROUTINE X(N,A,B)
 INTEGER N, A(N), B(N)
 INTEGER WORK(N,N)
 INTEGER, ALLOCATABLE :: HEAP(:,:)

These two changes represent an enormous advance from Fortran 77 with its static storage. There will
no longer be any need for workspace to be set up by the user of a library procedure or for the argument list
to be cluttered with workspace arguments. It will now be straightforward to structure global storage
according to the size of the problem at hand, and there will no longer be any need for complicated and
unsafe storage management schemes within the code itself.

Arrays may be used in whole-array expressions such as

B + C*SIN(D)

The operations are performed element-by-element, that is, the sine function is applied to each element of
D, multiplied by the corresponding element of C, and added to the corresponding element of B. The arrays
must have exactly the same shape, but scalars may be intermixed freely. Array expressions may be used
as actual arguments. They may be used in whole array assignments such as

A = B + C*SIN(D)

2

provided the left-hand side array has exactly the same shape as the expression. Note that there is scope for
a computer to fully exploit multi-dimensional arrays in a statement such as this, whereas if it is rewritten
in the form of nested DO loops, existing vectorization techniques often vectorize only the inner-most loop.

Rectangular subarrays, called ‘sections’, may be used as arrays. Examples are A(:,7) which is the
7-th column of A and A(2:10:2,7) which consists of components 2, 4, 6, 8, 10 of the 7-th column of A.

Dummy arrays may be ‘assumed-shape’ (take their shapes from the corresponding actual arguments).
No longer will we need to specify the leading dimensions of arrays as separate arguments when calling
library codes. For example, a call of the BLAS (Basic Linear Algebra Subroutine) SDOT of Lawson,
Hanson, Kincaid, and Krogh (1979) to calculate the dot product of row I of array A and row J of array B
takes the form

CALL SDOT(N,A(I,1),LDA,B(J,1),LDB)

where N is the row length, LDA is the leading dimension of array A, and LDB is the leading dimension of
array B. The corresponding Fortran 90 call would need just two arguments to specify the two vectors, for
example,

CALL DOT(A(I,1:N),B(J,1:N))

using the array section notation explained in the previous paragraph. Arrays may be of size zero, which
will mean that we no longer have to write special-case code in case it happens. For example, the basic step
of Gaussian elimination is to add a multiple of row K of the reduced matrix to row I:

A(I,K+1:N) = A(I,K+1:N) + AMULT*A(K,K+1:N)

and this will execute correctly on the last step when K equals N (it will do nothing). Functions may be
array-valued. All but one of the Fortran 77 intrinsics (and a few new ones) may be called ‘elementally’ in
the way SIN was called in the above example. The exception is LEN, which has become an inquiry
function that always returns a scalar result; since the character lengths of the elements of an array are all
the same and scalars are permitted to be mixed freely in array expressions and assignments, the difference
is merely a technicality. There are many new inquiry intrinsics that return the array properties of their
arguments and many new array-valued intrinsics, for example MATMUL for matrix multiplication,
MAXVAL for the largest element, and SUM for summation. Arrays of rank one may be constructed as lists
of scalars and other arrays of rank one, just as in input-output statements in Fortran 77. An example of an
array constant of size 10 is

(/ 21.0, 2.7, (21.0,2.0,I=1,4) /)

There is a RESHAPE intrinsic function to allow arrays of other shapes to be constructed.

WHERE statements allow array assignment statements to be masked. For example

WHERE (A.GT.0) B=LOG(A)

causes the evaluation and assignment of logarithms only for elements that are positive. There is also a
block form with an optional ELSEWHERE block.

The array features represent a major advance over Fortran 77. They were envisioned from the earliest
days of Fortran, as evidenced by the whole-array input-output statements. It is obvious that a language
intended for ‘FORmula TRANslation’ should include a notation for arrays, the more so in an era when an
increasing number of computers have the hardware capability to perform operations on vectors or arrays
of operands. Vendors have always been well represented on the Fortran committee and care has been
taken to avoid any serious performance losses. The introduction of assumed-shape and pointer arrays has
been criticized by some on performance grounds because they cannot be addressed quite so directly, but
their use is not obligatory and the extra power and convenience will often be judged more important than
a small performance penalty. Note also that new optimization techniques will be required to take
advantage of the concise array syntax. In the longer term, we will surely regard our present reliance on DO
loops as a primitive and obscure style of programming.

3

5 Parallel processing

A strong plea was made in the summer of 1983 during the X3J3 meeting at Los Alamos for features for
explicit control of parallel processing to be added to the language. The committee responded by asking
exactly what features were wanted, and from then on there was a consensus that it was too early to
standardize explicit syntax for parallel processing in Fortran. In the event, a separate ad hoc committee
called PCF (Parallel Computing in Fortran) was formed in 1987 and published some draft proposals in
1989. These were widely criticized as too complicated and the PCF committee accepted that some
simplification was needed. However, it is my opinion that the latest published revision (PCF, 1991) is also
too complicated. I have written a detailed critique of this revision (Reid, 1992). The slow progress of the
PCF committee demonstrates that X3J3 was wise not to attempt to include such features in Fortran 90. If
it had, the standard would still be incomplete.

The work has now been transferred to an ANSI committee, X3H5, that was formed in 1990 with many of
the PCF committee as members. It has the task of defining a language-independent model and bindings
for Fortran 77, Fortran 90, Pascal, and C. The model chosen is based on a shared-memory machine and a
new program construct, the parallel construct. When a base process encounters a parallel construct, a
‘team’ of processes is formed to share the work that it contains. When the work is complete, the team is
dissolved and the base process continues execution. Each data object that is referenced must be specified
(perhaps implicitly) as either private (having a separate instance for each team member) or shared (by all
team members). Within the parallel construct are work-sharing constructs that allow the work to be
shared. Examples for Fortran are the parallel DO (the iterations may be executed in parallel by different
team members) and the parallel sections (containing distinct sequences of statements that may be
executed in parallel by different team members). There is an implicit synchronization of the team
members at the start and end of a work-sharing construct, and there are explicit synchronization features,
needed for example when a shared data object is changed by one process and accessed by another. We
will not attempt to describe the features fully since work is still in progress. It is disappointing that the
emphasis is on the Fortran 77 binding and no start has yet been made on the Fortran 90 binding.

Another effort at adding features for parallel execution is the High Performance Fortran Forum (HPFF),
which met for the first time in Houston in January 1992. Here the starting point is Fortran 90 with
directives to distribute arrays among the partitions of a distributed-memory machine.

The array features provide scope for implicit parallelization. Their design was much influenced by
early experience (Flanders, 1979 and ICL, 1979) on the ICL DAP, a SIMD machine consisting of a 64x64
array of bit processors, and they are proving effective on recent hardware such as the Connection Machine
of Thinking Machines Corp. (see, for example, Bailey, 1990). The parallelism is immediately apparent in
a whole-array statement such as that illustrated in Section 4. It was noted there that the Fortran 77 intrinsic
functions have been extended to allow them to be called for an array argument and return an array result
obtained by applying the function to each array element. There are also 7 new elemental functions that
manipulate real numbers (see Section 9), 11 new elemental procedures for bit processing (Section 12), an
elemental function to merge two arrays under the control of a mask array, and 11 other new elemental
procedures that we do not describe here.

Besides the elemental intrinsics, there are 15 functions that take one or more array arguments and
produce an array result: DOT_PRODUCT for dot products, MATMUL for matrix multiplication,
TRANSPOSE for transposition, 7 functions that perform simple operations such as summing array
elements or counting the number of true elements, 2 functions to pack and unpack required array elements
(specified by a mask array), a function to replicate an array, and functions for circularly and end-off
shifting arrays. All these functions provide scope for significant parallel processing.

4

6 Derived data types

Fortran 90 permits data to be grouped into a structure. For example, the code in Figure 2 shows the
declaration of a ‘type’ for the x and y coordinates of a point together with the declaration of a scalar and an
array of this type. The symbol % is used to select a component; for example, A%X is the X component of A
(unfortunately ‘.’ is unavailable because of its use for operators such as .GE.).

Figure 2. Declaration of a derived type and objects of this type.

 TYPE POINT
 REAL X, Y
 END TYPE POINT
 TYPE(POINT) A, B(10,20)

Functions may be used to define operations on such types of data and subroutines may be used to define
assignments between them. The operators may be intrinsic (for example, +, *, .EQ.), in which case the
existing priorities are used for the new operators, or nonintrinsic (for example, .MERGE.), in which case
the priority is maximum for unary operators and minimum for binary operators.

Derived data types provide the language with a powerful form of extensibility. It means that ordinary
infix operator notation (operator between the operands) will be available for matrices, extended-precision
arithmetic, interval arithmetic, and so on. We will defer showing an example until the next section since
the most convenient way to program this involves the use of a module.

7 Modules

Modules are collections of data, type definitions, and procedure definitions. For example, a module for
interval arithmetic is shown in Figure 3. It contains the definition of a type whose components are the
lower and upper bounds of the intervals, a procedure for adding two intervals, an interface block that tells
the compiler to associate this function with the operator +, similar code for doing other operations on
intervals, and similar code for doing operations between reals and intervals.

Figure 3. A module for interval arithmetic

 MODULE INTERVAL_ARITHMETIC

 TYPE INTERVAL
 REAL LOWER, UPPER
 END TYPE INTERVAL

 INTERFACE OPERATOR(+)
 MODULE PROCEDURE ADD_INTERVALS
 END INTERFACE
 :

 CONTAINS

 FUNCTION ADD_INTERVALS(A,B)
 TYPE(INTERVAL) ADD_INTERVALS, A, B
 ADD_INTERVALS%LOWER = A%LOWER + B%LOWER
 ADD_INTERVALS%UPPER = A%UPPER + B%UPPER
 END FUNCTION ADD_INTERVALS
 :

 END MODULE INTERVAL_ARITHMETIC

5

Access to this module requires a USE statement whose simplest form is

USE INTERVAL_ARITHMETIC

This will permit variables to be declared of this type and expressions and assignments to be written in the
usual way but interpreted in this new way. A simple example is

INTERVAL = INTERVAL + REALA*INTERVALA + REALB*INTERVALAB

For another illustration of the power of derived types and modules, we consider the problem of
calculating derivatives, often wanted in optimization calculations and when solving differential equations.
We take the simple case of wanting the first and second derivatives with respect to t of the function

f (x, t).

We suppose that this is coded as in Figure 4. We define a new type, REAL2 (Figure 5), to hold a value
together with first and second derivative values and define associated operations. The operation for
multiplication, shown in Figure 5, expresses the chain rule for calculating the first and second derivatives
of the product of two functions whose values and first and second derivatives are known. This is placed in
a module along with similar code for the other operations and associated with operators as in Figure 3.
Once this has been done, we have only to insert a USE statement in FUNCTION F, declare F and X to be
of type REAL2, and recompile. We then have a code that when given values of x and t, calculates f (x, t)
and its first and second derivatives with respect to t. The idea can be generalized to functions of many
variables and the calculation of Jacobians and Hessians, though Griewank (1989) has shown that for
efficiency some calculations should be performed in reverse order.

Figure 4. Code for f(x,t).
 FUNCTION F(X,T)
 REAL F, X, T
 :
 END

Figure 5. Definition of the type REAL2 and the multiply function.

 TYPE REAL2
 REAL VALUE, DERIV, DERIV2
 END TYPE

 FUNCTION MULT(X,Y)
 TYPE(REAL2) MULT,X,Y
 MULT%VALUE = X%VALUE*Y%VALUE
 MULT%DERIV = X%VALUE*Y%DERIV + X%DERIV*Y%VALUE
 MULT%DERIV2 = X%VALUE*Y%DERIV2 + &
 2.0*X%DERIV*Y%DERIV + X%DERIV2*Y%VALUE
 END FUNCTION MULT

To allow for possible name clashes when accessing two or more modules, perhaps written by different
people, there is a renaming facility within the USE statement. Also, the module may specify which entities
are accessible and which are not. This allows changes to be made to the inaccessible entities in the
certainty that code outside the module is not making any direct use of it.

Modules provide a safe replacement for COMMON. Note that the definitions are given only once. It is
more general than COMMON in that type and procedure definitions are included. It is likely that libraries
will become libraries of modules instead of libraries of procedures. Using modules will mean that silly
mistakes, such as omitting an argument in a procedure call, are far more likely to be noticed at compile
time by the compiler, as has already been our experience with the NAG compiler.

6

8 Procedures

A procedure may be called recursively provided its leading statement includes the qualifier RECURSIVE.
A procedure may be internal, at one level only, to an external subprogram or to a subprogram in a module.
Keyword calls, as in the input-output statements of Fortran 77, are available. The dummy argument
names serve as keywords. Arguments may be omitted provided they are declared as OPTIONAL. The
intrinsic function PRESENT may be used to inquire whether an optional argument is present. Dummy
arguments may be declared to be IN, OUT, or INOUT. Figure 6 illustrates most of these features.

Figure 6. A recursive subroutine and a call of itself.

 RECURSIVE SUBROUTINE CALC(LEVEL,A,B,C,FLAG)
 INTEGER, INTENT(INOUT) :: LEVEL
 REAL, INTENT(OUT) :: A
 REAL, INTENT(INOUT), OPTIONAL :: B
 REAL, INTENT(OUT), OPTIONAL :: C
 INTEGER, INTENT(OUT), OPTIONAL :: FLAG
 :
 IF(PRESENT(B))THEN
 :
 ELSE
 :
 END IF
 :
 IF(LEVEL.GT.0)CALL CALC(LEVEL-1,AA,FLAG=FL)
 :

Interface blocks that contain copies of the leading statements of a procedure may be used to specify the
interface to an external or dummy procedure. For example, this permits keyword calls to be made to a
procedure written in assembly language. An interface block may also be used to give a generic name to a
set of procedures, provided they may be distinguished by the types or ranks of their arguments. This is
exactly as for the specific and generic intrinsic functions in Fortran 77 and will allow a library to bundle
together different precision versions of the same procedure so that the user is concerned only with the
generic name. Figure 7 illustrates a generic interface to a single and a double precision version of a
function that calculates the error function erf(x).

Figure 7. A generic interface block.

 INTERFACE ERF
 FUNCTION SERF(X)
 REAL SERF, X
 END FUNCTION SERF
 FUNCTION DERF(X)
 DOUBLE PRECISION DERF, X
 END FUNCTION DERF
 END INTERFACE

A generic reference to this function would be ERF(X); the appropriate subprogram SERF(X) or
DERF(X) will be called, depending on the type of X.

7

9 Kind parameters

All the intrinsic types have been generalized to have a ‘kind’ parameter. This will permit processors to
support short integers, very large character sets such as Japan’s Kanji, more than two precisions for real
and complex, and packed logicals. Unlike Fortran 77, complex must be supported with the same set of
precisions as real; there must be at least two kinds, corresponding to single and double precision. There is
an intrinsic function that returns the kind value for a desired precision and exponent range. For example,
the code in Figure 8 determines the kind value SKIND of the least precise machine representation that

−99 99gives the equivalent of at least 10 significant decimals and a range of at least 10 to 10 . This kind
value is used to declare the real variable A.

Constants may be specified with the help of an underscore and an integer constant that gives the KIND
value. Some examples are shown in Figure 9.

Figure 8. Using a named constant for a KIND value.

 INTEGER, PARAMETER :: SKIND = SELECTED_REAL_KIND(10,99)
 REAL(SKIND) A

Figure 9. Using KIND parameters.

 INTEGER, PARAMETER :: LONG = SELECTED_REAL_KIND(10,99)
 INTEGER, PARAMETER :: SHORT = SELECTED_INT_KIND(5)
 REAL (LONG) PI
 INTEGER (SHORT) ISHORT
 PI = 3.141592654_LONG
 ISHORT = 12_SHORT

Parameterization offers the same advantages for typing as it does for setting array sizes. The single
statement giving a value to the constant SKIND may control a very large number of declarations of REAL
and COMPLEX entities in a program unit. If placed in a module, it can be used throughout the whole
program. The syntax REAL*8, COMPLEX*16, ..., widely used in extensions of Fortran 77, would require
every declaration to be changed if a change of precision were needed.

There are many inquiry and manipulation intrinsic functions that return information on the
representation or manipulate parts of a data value. They are described in terms of the model of Brown
(1981) for the representation and behaviour of numbers on a processor. The model set for real X is
determined by the parameters b (base), ν (number of digits), e (maximum exponent), and emax min

(minimum exponent), which must be chosen by the implementor to best fit the machine. The set consists
of the numbers

ν
e −k0 and s × b × f × b∑ k

k=1

where s is +1 or –1, e is an integer in the range e ≤ e ≤ e , each f is an integer in the range 0 ≤ f ≤ b,min max k

and f ≠ 0. For X real, the inquiry functions RADIX(X), DIGITS(X), MAXEXPONENT(X), and1
MINEXPONENT(X) return the model parameters for the representation of X. No account is taken of the
current value of X; indeed X is permitted to be undefined. There are five further inquiry functions that
return values that could be deduced from the four parameters; for example, HUGE(X) is the largest real
number. There are seven functions for manipulating real values in terms of the model; for example,

−eEXPONENT(X) returns the exponent value e, FRACTION(X) returns the fractional part X × b , and
ISCALE(X,I) returns X × b . These functions will permit code that works carefully with the arithmetic to

be written in a portable fashion. For example, code could be written to scale the rows and columns of a
matrix by powers of the base, thereby avoiding all roundoff.

8

10 Pointers

Data objects may be declared with the attribute POINTER. Such an object does not have any storage until
storage is explicitly allocated for it by an ALLOCATE statement, or it is ‘pointer associated’ with an
existing target object:

POINTER => TARGET

In the case of an array, only the rank is declared initially:

REAL, POINTER :: A(:,:)

and a shape is acquired when it is associated with a target.

As a simple example of the use of pointers, suppose we have code that performs the matrix-vector
product y = Ax and wish to calculate the product BCz. We might pointer associate y, A, x with r, C, z,
respectively, use our code to find r = Cz, then pointer associate y, A, x with s, B, r and use our code to
place the result we want in s. This is shown in Figure 10.

Figure 10. Use of pointers for a matrix-matrix-vector product.

 REAL, TARGET :: B(10,10), C(10,10), R(10), S(10), Z(10)
 REAL, POINTER :: A(:,:), X(:), Y(:)
 INTEGER MULT
 :
 DO MULT = 1, 2
 IF(MULT.EQ.1)THEN
 Y => R; A => C; X => Z ! No data movement.
 ELSE
 Y => S; A => B; X => R ! No data movement.
 END IF
 : ! Compute y = Ax
 END DO

Components of derived types are permitted to have the pointer attribute. This permits a major
application of pointers: the construction of linked lists. As a simple example, we might decide to hold a
sparse vector as a chain of variables of the type shown in Figure 11, which allows us to access the entries
one by one and create additional entries when necessary by an appropriate ALLOCATE statement. When
an ordinary assignment is executed for a value of such a derived type, pointer assignment is executed for
the pointer components.

Figure 11. A type for holding a sparse vector as a chain.

 TYPE ENTRY
 REAL VALUE
 INTEGER INDEX
 TYPE(ENTRY), POINTER :: NEXT
 END TYPE ENTRY

To avoid performance degradation for nonpointer objects, the attribute TARGET must be declared for a
nonpointer object that is to be used as a target.

There is an intrinsic function that allows enquiries to be made about whether a pointer is pointer
associated and whether it is pointer associated with a given target. There is a NULLIFY statement to
disassociate a pointer.

Fortran’s treatment of pointers differs from that of most other languages in that no special syntax is
required to access the target object, but is required for an assignment of the pointer itself. The reason for

9

this choice is the expectation that in scientific and engineering applications references to the target objects
are likely to occur far more frequently. It also builds on experience with dummy arguments, which are
analogous since they may be associated with a variety of different actual arguments during the execution
of a program.

Note that a Fortran pointer has a type and rank (number of dimensions) and that these must match those
of the target. This makes for safety in the use of pointers; they cannot accidentally be used to alter the
values of other sorts of data. This is often called ‘strong typing’.

11 Source form

The Fortran 77 limit of 6 characters in a name is raised to 31, and end-of-line comments following the
character ! are permitted. Underscores are allowed in names (as significant characters). These simple
changes will make an enormous difference to the readability of code.

The alternative spellings <, >, <=, >=, ==, and /= have been introduced for the relational operators
.LT., .GT., .LE., .GE., .EQ., and .NE. . Again, this helps readability.

There is also a free source form that is much more appropriate for work at a terminal. It attaches no
particular significance to columns 1 to 6 or 72 onwards, does not allow blanks within tokens (with a few
exceptions such as END IF), and uses a terminating & to indicate continuation to the next line. Lines may
have length up to 132 characters, and statements may appear on up to 40 lines. Not allowing blanks within
tokens will mean that it is far more likely for silly errors to be noticed by the compiler. For example, the
classic case

DO 10 I=1.3

is noticed by the NAG compiler as an error.

12 Miscellaneous improvements

The only major new input-output features are NAMELIST and nonadvancing input-output. Nonadvancing
input-output obviates the Fortran 77 insistence that records must be read as a whole and that their length
be known beforehand. It is specified with ADVANCE=’NO’ on the READ or WRITE statement and
inhibits the automatic advance to the next record on completion of the statement. On a READ, if the record
contains insufficient values to satisfy the input list, an end-of-record condition results and a SIZE=
specifier may be used to return the number of characters read.

There are two new control structures. The CASE construct is exemplified in Figure 12. There is also a
form of the DO loop that does not use labels, exemplified in Figure 13. Together with the IF construct that
is already present in Fortran 77, these mean that there will be far less need for labels. Labels are
undesirable from the maintenance point of view since the reader must always be conscious that there may
be a jump from elsewhere in the code.

Figure 12. The case construct.

 INTEGER N
 SELECT CASE(N)
 CASE(:0) ! N negative or 0
 :
 CASE (1) ! N = 1
 :
 CASE(5:7) ! N = 5, 6 or 7
 :
 CASE DEFAULT ! Any other value
 :
 END SELECT

10

Figure 13. The DO construct.

 INTEGER I
 OUTER: DO ! Unlimited DO, named OUTER
 :
 DO I=1,N ! I=1,2,...,N
 :
 IF(...)EXIT OUTER ! Possibly exit loop OUTER
 IF(...) CYCLE ! Skip to end of the inner loop
 :
 END DO
 END DO OUTER

The statement

IMPLICIT NONE

has been added. Its use will mean that it is far more likely for silly errors such as the transposition of two
letters in a name to be noticed by the compiler.

The MIL-STD (Anon, 1978b) bit intrinsic functions have been added (and made elemental).

Binary, octal, and hexadecimal integer values are permitted in DATA statements and there are edit
descriptors for them.

13 Program conformance checking

A very significant aspect of Fortran 90 is the requirement that a Fortran 90 processor must be capable of
detecting certain errors in programs and of detecting the use of any syntax not specified by the standard.
For Fortran 90 programs, the processors must be able to detect and report:

the use of syntax not specified in the standard;
the violation of a constraint of the syntax rules of Fortran 90;
the use of unsupported kind values for the intrinsic data types;
the use of obsolescent features;
the use of nonFortran characters in the source text other than in character constants, character edit
descriptors, and comments;
the violation of the scope rules for names, labels, and operators; and
the reason for rejecting a program.

Such a requirement is of tremendous benefit to the Fortran community. The Fortran 90 processors will
be required to flag those constructs in programs that are not available on all Fortran 90 processors, in
particular, extensions that are not available in all environments. Note, however, that this requirement does
not prohibit extensions to Fortran 90; it only requires that the Fortran processor be capable of detecting
extensions and report those extensions on request.

Using the NAG compiler, we illustrate the kinds of erroneous programs that must be flagged as
nonconforming Fortran programs. For the first example, Figure 14 uses a CASE construct in which the
case ranges overlap. This is a violation of one of the constraints for the syntax rules for the CASE
construct. The diagnostic produced by the NAG compiler is shown in the figure.

Consider next the program in Figure 15. It specifies a kind value for the intrinsic type real that is not
supported by the NAG compiler.

11

Figure 14. Required detection of an invalid CASE construct.

 PROGRAM ILLEGAL_CASE
 INTEGER I

 SELECT CASE(I)
 CASE (1:10)
 CALL PROCESS_SMALL(I)
 CASE (9:20)
 CALL PROCESS_LARGE(I)
 CASE DEFAULT
 CALL PROCESS_OTHER(I)
 END SELECT
 :
 END

 Error: CASE(9:20) overlaps CASE(1:10) at line 7

Figure 15. Required detection of an invalid kind parameter.

 PROGRAM ILLEGAL_KIND
 REAL(100) R
 R = 1.1
 PRINT *, R
 END

 Error: KIND selector (100) does not specify a valid
 representation method at line 2

Figure 16. Required detection of an invalid label.

 PROGRAM ILLEGAL_LABEL
 ! This program references a label that is only available
 ! in the internal subroutine PROCESS_END_FILE

 READ(5, END=10) R

 CONTAINS

 SUBROUTINE PROCESS_END_FILE
 :
 10 PRINT *, 'An end of file occurred on unit 5'
 :
 END SUBROUTINE
 END

 Error: Missing label 10 at line 12
 detected at END@<end-of-statement>

As a third example, consider the program in Figure 16, which violates the scoping rules for a label in a
READ statement; the intention is that the program transfer to statement 10 to handle an end-of-file
condition on unit 5.

In addition, the language has introduced program statements that permit the compiler to detect many
common programming errors. For example, when the

IMPLICIT NONE

statement is used, a mistyped identifier name will probably be flagged by the compiler. Where the
interface to a procedure is visible to the compiler (for an internal procedure, for a module procedure, or if
an interface is supplied), the compiler is able to detect an invalid reference. For example, mismatched
types of actual and dummy arguments can be detected; incorrect arguments such as constants and
expressions corresponding to dummy arguments specified as output arguments can also be detected.

12

Finally, in cases where the arrays have static bounds (or in other special cases), the compiler can detect
invalid array expressions when the array shapes do not conform. The new standard thus encourages
Fortran processors to detect invalid programs. But what is most impressive of the first complete
implementation by NAG of Fortran 90 is that it has gone considerably beyond the requirements. It detects
many erroneous programs at compile time by maintaining and developing more complete symbol tables
throughout the compilation process. It uses this information to diagnose erroneous constructs. For
example, it will detect that several calls to the same procedure are inconsistent in their argument pattern,
as illustrated in Figure 17.

Figure 17. Detection of an invalid subroutine reference.

 PROGRAM ILLEGAL_CALL
 INTEGER I
 REAL R
 CALL XXX(I)
 CALL XXX(R)
 END

 Error: Inconsistent datatype for arg 1 in call to XXX at line 5

As a second example, given the program in Figure 18, the NAG compiler indicates that the vector sizes
do not conform for a valid array expression.

Figure 18. Detection of an invalid array expression.

 PROGRAM ILLEGAL_ARRAY_EXPRESSIONS
 INTEGER A(10), B(11), C(10)
 A = 1.0
 B = 1.0
 C = A + B
 C(2:4) = A(3:5) + B(1:5)
 END

 Error: Different vector lengths (10 and 11) at line 5
 Error: Different vector lengths (3 and 5) at line 6

As a third example, consider the program in Figure 19 in which both references to the subroutine are
invalid and are detected. In the first call, the third argument of EQ_SOLVE is an integer but the called
program is expecting a real array. In the second call, the second argument is a constant, which cannot
receive a value, and corresponds to a dummy argument that is specified as an output argument.

For this extra error reporting and reliability, what is the cost? The NAG compiler is the only one
available at the time of writing and it is not an optimizing compiler. We have found that on a SUN
SPARCstation 1, the compile time of pre-release 1 is broadly comparable with that of the SUN f77
compiler, release 1.3.1, though somewhat slower than the Edinburgh Portable Compiler epcf77, release
2.6.3. For example, a code of 3091 lines compiled in 27.6 seconds compared with 23.4 seconds for f77
and 8.7 seconds for epcf77. This provides some evidence that the cost need not be prohibitive.

13

Figure 19. Detection of invalid procedure references.

 PROGRAM ILLEGAL_CALLS

 INTERFACE
 SUBROUTINE EQ_SOLVE(A, X, B)
 REAL A(:,:), X(:), B(:)
 END SUBROUTINE
 SUBROUTINE SEARCH(A, FOUND, LOCATION)
 INTEGER, INTENT(OUT) :: A(:)
 LOGICAL, INTENT(OUT) :: FOUND
 INTEGER, INTENT(OUT) :: LOCATION
 END SUBROUTINE
 END INTERFACE

 REAL A(10,10), B(10), X(10)
 INTEGER LIST(100)

 CALL EQ_SOLVE(A, X, LIST)
 CALL SEARCH(LIST, .TRUE., LOC)

 END

 Error: Incorrect data type for argument B (no. 3) of EQ_SOLVE
 at line 16
 Error: Argument FOUND (no. 2) of SEARCH is OUT or INOUT -
 must be writable at line 18

14 Implementation

The last few years have seen a steady increase in the number of people attending X3J3 meetings, mainly
from the vendors. Many of them have been actively working on implementations, but are unwilling to
commit themselves to dates for release of compilers. We have already mentioned the NAG compiler,
which was designed as a tool to aid the investigation of a NAG Fortran 90 library, but in fact is a full
ISO-conforming Fortran 90 compiler. It has been used to check all the examples in the book of Metcalf
and Reid (1990), and the figures in this paper. It is available on a wide range of hardware types. It is
implemented in C and uses C as an intermediate language. Other compilers are likely to appear from 1992
onwards. Lahey have announced a system that aids the construction of compilers, and NAG offer a
similar facility.

Performance, particularly at run time, has always been a major consideration for X3J3. If a Fortran 77
program is run under a Fortran 90 system, there is no fundamental reason for its speed differing from that
achieved under a Fortran 77 processor. For example, an array must be explicitly given the attribute
POINTER or TARGET if it is to be used as a pointer or accessed through a pointer, and a procedure must
be declared as RECURSIVE if it is to be referenced recursively. It is reasonable to ask, however, what the
effect will be when the program is changed to take advantage of the extra power and safety of the new
features. We will concentrate on array processing since this is likely to be the most time consuming.

There is bound to be some storage-management overhead for the actual allocation and deallocation of
dynamic arrays, but this will be small if such allocations are avoided within intensively executed code.
Once an array is allocated, there is no reason for code that uses the array to be any less efficient than for
any other array; it will be contiguous and have a known base address.

Pointer arrays and assumed-shape arrays introduce the new complication of the possibility of the
elements of an array not being stored contiguously; a straightforward address calculation for an element
will need an additional integer multiplication, but within many loops the compiler will avoid this
calculation for every array element. A more significant overhead may occur an a machine that can access
a vector held contiguously much more rapidly, but on such a machine, care must always be taken over
data access if high efficiency is wanted. If a discontigous array is associated as an actual argument with a

14

dummy argument that is always contiguous (an array that is not a pointer or of assumed-shape), ‘copy-in
copy-out’ will probably occur. We anticipate that this will be a relatively rare occurrence since it really
amounts to mixing a new style of actual argument with an old style of dummy argument, but it also offers
an opportunity to provide contiguous storage for an intensive computation on a discontiguous array.

A further problem is associated with the maturity of optimization for Fortran 77. Some new
optimization techniques will need to be developed for the new features. The only indication that we
presently have of actual performance is that of the NAG compiler. It was originally designed as a
development tool rather than as an optimizing compiler, but the increase of running times of converted
code over using the native Fortran 77 compiler is reported by Metcalf (1992) to be in the range 30% to
60% on the Apollo, by Maine (1991) to be about 30% on the Sun, and by Metcalf (private
communication) to be about 20% for different code on the Sun, all of which seem most reasonable.

15 Conclusions

We have aimed to give you a flavour of the advantages of Fortran 90. For example, the additions will
make libraries much more friendly to use. Optional arguments, dynamic storage, and assumed-shape
arrays will mean that the user need only specify what is truly special to the particular problem; and
arguments may be grouped logically together in the form of a derived type. In one case, we found that 73
arguments could be reduced to 6. The safety features such as modules, IMPLICIT NONE, and the
interpretation of spaces in the new source form will mean that it is far more likely for silly errors to be
detected by the compiler.

For an informal description of the whole language, see Metcalf and Reid (1990). For a book that covers
the principal new features and contains more examples, see Brainerd, Goldberg and Adams (1990).

If you want to have the power and safety of the new features, without the need to rewrite your code in
another language, put pressure on a vendor whenever you get a chance.

Acknowledgements
I would like to thank Mike Metcalf of CERN, Geneva, for urging me to write this article and Brian Smith
of the University of New Mexico, Albuquerque, for writing section 13. I would like to thank them both for
carefully checking the original draft and making many helpful comments. I would also like to thank the
referee for suggestions that have led to a strengthened paper.

References
Anon (1978a). ANSI X3.9-1978, ISO 1539:1980 (E). Programming language FORTRAN. ANSI 1430 Broadway,

New York.

Anon (1978b). MIL-STD-1753. FORTRAN, DOD supplement to American National Standard X3.9-1978.
Department of Defense, Washington DC.

Anon (1991). ISO/IEC 1539:1991, Fortran. ISO, Publications Dept, Case Postale 56, 1211 Geneva 20, Switzerland.

Bailey, J. (1990). Implementing fine-grained scientific algorithms on the Connection Machine supercomputer.
Report TR90-1, Thinking Machines Corp.

Brainerd, W.S., Goldberg, C.H. and Adams, J.C. (1990). Programmer’s Guide to Fortran 90. McGraw-Hill, New
York.

Brown, W.S. (1981). A simple but realistic model of floating-point computation. ACM Trans. Math. Softw., 7,
445-480.

Flanders, P.M. (1979). Fortran extensions for a highly parallel processor. Infotech state of the art report on
supercomputers, Pergamon Infotech Ltd., vol. 2, 119-133.

15

Griewank, A. (1988). On automatic differentiation. In Mathematical Programming 88, Kluwer Academic Publishers.

ICL (1979). DAP: FORTRAN language reference manual. ICL Tech. Pub. TP 6918.

Lawson, C.L., Hanson, R.J., Kincaid, D.R., and Krogh, F.T. (1979). Basic linear algebra subprograms for Fortran
use. ACM Trans. Math. Softw. 5, 308-325.

Maine, R. (1991). Review of NAG Fortran 90. To appear in Fortran Journal.

Metcalf, M. and Reid, J. (1990). Fortran 90 Explained. Oxford University Press, Oxford, New York and Tokio.

Metcalf, M. (1992). A first encounter with Fortran 90. ACM Fortran Forum, 11, 24-32.

NAG (1991). NAGWare f90 compiler. Report of NAG Ltd, Wilkinson House, Jordan Hill Road, Oxford OX2 8DR.

PCF (1991). PCF parallel Fortran extensions. ACM Fortran Forum, 10, 3 (special issue).

Reid, J. K. (1992). On PCF parallel Fortran extensions. ACM Fortran Forum, 11, 17-23.

16

