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ABSTRACT
In (NAR 08/18 and 08/21, Oxford University Computing Laboratory, 2008) we introduced a

second-derivative SQP method (S2QP) for solving nonlinear nonconvex optimization problems.

We proved that the method is globally convergent and locally superlinearly convergent under

standard assumptions. A critical component of the algorithm is the so-called predictor step,

which is computed from a strictly convex quadratic program with a trust-region constraint. This

step is essential for proving global convergence, but its propensity to identify the optimal active

set is paramount for recovering fast local convergence. Thus the global and local efficiency of the

method is intimately coupled with the quality of the predictor step.

In this paper we study the effects of removing the trust-region constraint from the computation

of the predictor step; this is reasonable since the resulting problem is still strictly convex and

thus well-defined. Although this is an interesting theoretical question, our motivation is based

on practicality. Our preliminary numerical experience with S2QP indicates that the trust-region

constraint occasionally degrades the quality of the predictor step and diminishes its ability to

correctly identify the optimal active set. Moreover, removal of the trust-region constraint allows

for re-use of the predictor step over a sequence of failed iterations thus reducing computation.

We show that the modified algorithm remains globally convergent and preserves local superlinear

convergence provided a nonmonotone strategy is incorporated.
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1 Introduction

In [8, 9], we presented S2QP—a sequential inequality/equality constrained quadratic pro-

gramming algorithm (an SIQP/SEQP “hybrid”) for solving the problem

(ℓ1-σ) minimize
x∈Rn

φ(x) = f(x) + σ‖[c(x)]−‖1,

where the constraint vector c(x) : R
n → R

m and the objective function f(x) : R
n → R

are assumed to be twice continuously differentiable, σ is a positive scalar known as the

penalty parameter, and we have used the notation [v]− = min(0, v) for a generic vector

v (the minimum is understood to be component-wise). The motivation for solving this

problem is that solutions of problem (ℓ1-σ) correspond (under certain assumptions) to

solutions of the nonlinear programming problem

(NP) minimize
x∈Rn

f(x) subject to c(x) ≥ 0 ;

see [5,14] for more details on exactly how these problems are related. The kth iteration of

the method involves the computation of a trial step, which is itself computed from three

separate steps. The first step—referred to as the predictor step [9, Section 2.1]—is defined

as the unique minimizer of a strictly convex quadratic approximation to φ subject to a

trust-region constraint. Global convergence of the method depends on the predictor step

since the second step—the Cauchy step [9, Section 2.2]—drives convergence and is com-

puted from the predictor step. Moreover, the predictor step affects global efficiency since a

“better” predictor step will generally result in a better Cauchy step. In the neighborhood

of a solution, however, this distinction becomes less important provided we compute a third

(optional) accelerator step. If an accelerator step is computed from any of the subproblems

considered in [9, Section 2.3], then the iterates converge superlinearly (under standard as-

sumptions) [8, Theorem 4.7, Theorem 4.9]. In the special case that the accelerator step is

computed from a so-called SEQP subproblem [9, Section 2.3.2], the proof requires that the

predictor step correctly identifies the set of constraints active at the local solution. Thus

the predictor step also plays a role in guaranteeing fast local convergence. It is also clear

that the quality of the predictor step is important when the (optional) accelerator step is

not computed, since then the efficiency of the method globally and locally is entirely con-

trolled by the predictor step. To summarize, the quality of the predictor step is extremely

important both globally and locally.

The justification provided by the previous paragraph combined with our preliminary

numerical experience with S2QP (an implementation of the algorithm outlined in [8, 9]),

suggests that improvements in how we define the predictor step will lead to an improved

algorithm; this is the primary purpose of this paper. To be precise, we study the effect

of removing the trust-region constraint from the computation of the predictor step. This

is reasonable since the problem is strictly convex and, therefore, well defined. This is

an interesting theoretical question, but equally it is important from a practical point-of-

view since the trust-region constraint may degrade the step quality and/or interfere with
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optimal active set identification. Moreover, removal of the trust-region constraint allows for

re-use of the predictor step over a sequence of failed iterations thus reducing computation.

Although this may be considered a “minor” change, new proofs of global convergence are

needed. We must also mention that our algorithm has commonalities with the work by

Morales, Nocedal, and Wu [12]; a detailed comparison is given at the end of Section 2.

In Section 2 we formally state and describe the modified SQP method, while in Section 3

prove that it is both globally and locally superlinearly convergent. We conclude by giving

final comments in Section 4. Before proceeding, however, we list essential notation.

1.1 Notation

We let g(x) be the gradient of f(x), and H(x) its (symmetric) Hessian; the matrix Hj(x)

is the Hessian of cj(x); J(x) is the m × n Jacobian matrix of the constraints with ith

row ∇ci(x)T . The Lagrangian function associated with (NP) is L(x, y) = f(x) − yT c(x).

The Hessian of the Lagrangian with respect to x is H(x, y)
def
= ∇2

xxL(x, y) = H(x) −
∑m

j=1 yjHj(x).

For a general vector v, the notation [v]− = min(0, v) is used, where the minimum is

understood to be component-wise; given two general vectors v and w, the notation v · w

represents the vector whose ith component is viwi. Given a general indexing set S, a vector

v, and a matrix V , we let vS and VS denote the rows of v and V that correspond to the

indexing set S. If V happens to be a function of x, we often write VS(x) instead of [V (x)]S .

Finally, we often consider problem functions evaluated at a specific point xk. To simplify

notation we define fk = f(xk), ck = c(xk), gk = g(xk) and Jk = J(xk).

2 Algorithm

In this section we state and describe our nonmonotone algorithm for minimizing prob-

lem (ℓ1-σ). This method is a modification of that proposed in [8, 9] that uses the new

predictor step subproblem; the algorithm is given as Algorithm 2.1.

First, the user supplies an initial guess (x0, y0) of a solution to problem (ℓ1-σ). Next,

“success” parameters 0 < ηS ≤ ηVS < 1, a maximum allowed predictor trust-region radius

∆u, predictor trust-region radius “reset” value ∆RESET, expansion and contraction factors

0 < ηc < 1 < ηe, sufficient model decrease and approximate Cauchy point tolerances

0 < η ≤ ηACP < 1, accelerator trust-region radius factor τf , and the maximum number of

nonmonotone steps allowed max fails are defined. With parameters set, the main iteration

loop begins. First, the problem functions are evaluated at the current point (xk, yk). Next,

we approximate H(xk, yk) with a symmetric positive-definite matrix Bk [8, Section 2] and

form the predictor step subproblem

minimize
s∈Rn

fk + gT
k s + 1

2
sT Bks + σ‖[ck + Jks]

−‖1
def
= MB

k (s). (2.1)
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By introducing elastic variables [7], we may solve the equivalent strictly convex quadratic

programming problem

minimize
s∈Rn

fk + gT
k s + 1

2
sT Bks + σeTv subject to ck + Jks + v ≥ 0, v ≥ 0 (2.2)

for the predictor step sP

k ; we let yP

k denote the multiplier vector associated with the general

constraint ck + Jks + v ≥ 0. Now, yF

k is defined as any first-order multiplier estimate

such that yF

k − y∗ = O(‖xk − x∗‖2) and [yF

k ]I = 0, where (x∗, y∗) is a local solution to

problem (NP) and I
def
= {i : ci(x

∗) > 0}; the vector yF

k is only relevant when we consider

local convergence, and then [8, Lemma 4.8] allows the choice yF

k ≡ yP

k . We then define Hk to

be any symmetric approximation to H(xk, y
F

k), but for the local convergence results given

in Section 3 we choose Hk ≡ H(xk, y
F

k). The Cauchy step is now defined as sCP

k = αks
P

k ,

where αk is the solution to

minimize
0≤α≤αu

MH

k (αsP

k) for αu
def
=

∆P

k

‖sP

k‖∞
, (2.3)

where

MH

k (s)
def
= fk + gT

k s + 1
2
sT Hks + σ‖[ck + Jks]

−‖1 (2.4)

is the faithful model of φ. We emphasize that the predictor step computation (2.2), in

contrast to [8, 9], does not involve any trust-region constraint. The predictor trust-region

radius ∆P

k is only used during the Cauchy step computation (2.3) for constraining the

length of the step. To further contrast [8, 9], the Cauchy step sCP

k may now have a larger

infinity-norm than the predictor step, but will always satisfy

‖sCP

k ‖∞ ≤ ∆P

k . (2.5)

The next step is to compute the change in the faithful model at the Cauchy step, which

is given by ∆MH

k (sCP

k ) where ∆MH

k (s)
def
= MH

k (0) − MH

k (s). We then have the option of

computing an accelerator step sA

k as the solution of any of the subproblems discussed

in [9, Section 2.3]. If subproblem (SEQP) (see page 17) is used to compute the accelerator

step, then we define the trial step as

sk =

{

sP

k + sA

k if ∆MH

k (sP

k + sA

k ) ≥ η∆MH

k (sCP

k )

sCP

k otherwise
(2.6)

for some constant 0 < η ≤ 1 (independent of k); otherwise, if subproblem (SIQP-E) (see

page 17) is used to compute the accelerator step, we define

sk = sCP

k + sA

k . (2.7)

Note that this ensures in all cases that the full step sk satisfies

∆MH

k (sk) ≥ η∆MH

k (sCP

k ) ≥ 0. (2.8)
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See [9, Section 2.3] for more details. We then evaluate φ(xk + sk) and ∆MH

k (sk).

The strategy for updating the trust-region radii and for accepting or rejecting candidate

steps is similar to traditional methods and based on the ratio rk of actual versus predicted

decrease in φ. Differences are that we must account for nonmonotone steps, ensure that

the predictor trust-region radius is bigger than a pre-defined constant following a successful

iteration (to ensure fast asymptotic convergence), and update the accelerator trust-region

radius. More precisely, if the ratio rk is larger than ηVS , then we believe that the model

is a very accurate representation of the merit function within the current trust-region;

therefore, we increase the predictor trust-region radius with the belief that the current

trust-region radius may be overly restrictive. If the ratio is greater than ηS , then we believe

the model is sufficiently accurate and keep the current predictor trust-region radius with

the possibility of increasing it only to satisfy ∆P

k+1 ≥ ∆RESET. Otherwise, the ratio indicates

that there is poor agreement between the model MH

k and the merit function. It is precisely

this case that differentiates the nonmonotone Algorithm 2.1 from its monotone variant.

In fact, if every iteration is successful, then the two algorithms are identical. However,

if a failure occurs then Algorithm 2.1 still accepts the step (provided max fails > 0)

with the hope that the next iterate will make progress; we say that a “nonmonotone

phase” has been entered. If we enter a nonmonotone phase, the ratio rk of actual to

predicted decrease in the merit function is computed based on the trial point xk + sk and

the best-known point, i.e., the solution estimate directly before the nonmonotone phase

was entered. If the number of consecutive failures reaches the maximum number allowed

(as denoted by the parameter max fails), then we check whether the first Cauchy step

computed during the current nonmonotone phase makes progress; this allows us to prove

global convergence in Section 3. If it does not make sufficient progress, the algorithm

reverts to the best-known point, reduces the predictor trust-region radius, and proceeds

on. In less precise terms, the algorithm has “gone back in time” and proceeds as if we

were using the monotone variant until the next failure occurs. In all cases we define

the accelerator trust-region radius to be a constant multiple of the predictor trust-region

radius, although the condition ∆A

k+1 ≤ τf ·∆
P

k+1 for some constant τf is also sufficient. For

more details on nonmonotone algorithms (sometimes known as nonmonotone “watchdog”

techniques), see [4, Chapters 10.1 and 11.3].

Algorithm 2.1. Nonmonotone algorithm.

Input: (x0, y0)

Set parameters 0 < ηS ≤ ηVS < 1, 0 < ∆RESET ≤ ∆u, 0 < η ≤ ηACP < 1, τf ≥ 1, and

0 ≤ max fails ∈ N.

Set expansion and contraction factors 0 < ηc < 1 < ηe, fail counter fails ← 0, and counter

k ← 0.

do

Evaluate fk, gk, ck, Jk and then compute φk.

Define Bk to be a symmetric positive-definite approximation to H(xk, yk).
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Solve problem (2.2) for predictor step and multipliers (sP

k , y
P

k).

Define yF

k to be any multiplier estimate for which yF

k−y∗ = O(‖xk−x∗‖2) and [yF

k ]I = 0.

Define Hk to be a symmetric approximation to H(xk, y
F

k).

Solve problem (2.3) for sCP

k and compute ∆MH

k (sCP

k ).

Optionally, compute an accelerator step and multipliers (sA

k , yA

k ).

Define the full step sk from (2.6)/(2.7) that satisfies (2.8) and then evaluate φ(xk+sk) and

∆MH

k (sk).

if fails = 0 then

rk ←
(

φ(xk)− φ(xk + sk)
)

/∆MH

k (sk) [standard definition]

If sk = sCP

k , set Cauchy tried = true; otherwise set Cauchy tried = false.

else

rk ←
(

φR − φ(xk + sk)
)

/∆H

R
[change in φ based on point xR]

end if

if rk ≥ ηVS then [successful]

xk+1 ← xk + sk, yk+1 ← yA

k (yk+1 ← yF

k if accelerator step not computed)

∆P

k+1 ← min
(

max(ηe ·∆
P

k , ∆RESET ) , ∆u

)

fails ← 0

else if rk ≥ ηS then [successful]

xk+1 ← xk + sk, yk+1 ← yA

k (yk+1 ← yF

k if accelerator step not computed)

∆P

k+1 ← max( ∆P

k , ∆RESET )

fails ← 0

else

fails ← fails + 1

if fails = 1 then [save current point]

xR = xk, yR = yk, φR = φk, sCP

R
= sCP

k , yF

R
= yF

k

∆H

R
= ∆MH

k (sk), ∆HCP

R
= ∆MH

k (sCP

k ), ∆P

R
= ∆P

k

end if

if fails ≤ max fails then [unsuccessful]

xk+1 ← xk + sk, ∆P

k+1 ← ∆P

k

else

fails ← 0

if Cauchy tried [revert to saved point]

xk+1 ← xR, yk+1 ← yR, ∆P

k+1 ← ηc∆
P

R

else

Evaluate φ(xR + sCP

R
)

if
(

φR − φ(xR + sCP

R
)
)

/∆HCP

R
≥ ηS then [successful Cauchy]

xk+1 ← xR + sCP

R
, yk+1 ← yF

R
, ∆P

k+1 ← max( ∆P

k , ∆RESET )

else [revert to saved point]

xk+1 ← xR, yk+1 ← yR, ∆P

k+1 ← ηc∆
P

R

end if

else if
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end if

end if

∆A

k+1 ← τf ·∆
P

k+1

k ← k + 1

end do

Before giving convergence results for our method, we compare Algorithm 2.1 with the

work by Morales et al. [12]. Roughly, they compute a predictor step (without a trust-

region constraint) followed by an accelerator step defined as the solution to the equality

constrained subproblem we considered in [9, Section 2.3.2]. They then reduce the ℓ1-merit

function by performing a line search along the “bent” path defined by the steps sP

k and sA

k .

Our methods differ in the following ways. Firstly, Algorithm 2.1 is based on trust-region

methodology even though the predictor step is computed without a trust region radius;

their algorithm is based on line-search philosophy. Secondly, global convergence of our

algorithm is guaranteed by the Cauchy step, while convergence of their algorithm is ensured

by the predictor step with a suitable line search. Thirdly, we allow and have analyzed an

accelerator step computed as the minimizer of an inequality constrained subproblem, which

allows for active set refinement; they have not considered such a subproblem, although one

could imagine that such an analysis is possible. Finally, our algorithms differ even when

using an equality constrained subproblem [9, Section 2.3.2] to compute an accelerator step.

Following the rejection of a trial step, Morales et al. perform a line search in the direction

of the predictor step. We, on the other hand, perform the equivalent of a backtracking line

search with each trial point enhanced by a new accelerator direction. Since convergence of

our method relies on the Cauchy point, we could easily use more sophisticated line search

techniques without sacrificing convergence.

3 Convergence properties

We begin by defining a criticality measure based on the predictor step subproblem.

Lemma 3.1 The quantity

χ(x, B)
def
= f(x)+σ‖[c(x)]−‖1−min

s∈Rn

[

f(x) + g(x)Ts + 1
2
sTBs + σ‖[c(x) + J(x)s]−‖1

]

(3.9)

is a criticality measure in the sense that

(i) 0 ≤ χ(x, B) <∞ for all x and every positive-definite matrix B;

(ii) for any positive-definite matrix B, it holds that χ(x, B) = 0 if and only if x is a

first-order critical point for problem (ℓ1-σ); and

(iii) if {xk} → x∗, {Bk} is a sequence of matrices such that for some positive scalars κmin

and κmax

0 < λB
min
≤

vTBkv

vTv
≤ λB

max
for all v 6= 0, (3.10)
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and χ(xk, Bk)→ 0, then x∗ is a first-order critical point for problem (ℓ1-σ).

Proof. Part (i) follows immediately from the fact that the minimization problem in (3.9)

is strictly convex and has value f(x) + σ‖[c(x)]−‖1 at s = 0.

We now prove part (ii). The equation χ(x, B) = 0 is true if and only if s = 0 is the

unique minimizer to the strictly convex minimization problem used in equation (3.9). First

order optimality implies that

there exists w ∈ ∂ ‖[c(x)]−‖1 such that
(

g(x) + σJ(x)Tw
)T

v ≥ 0 for all v ∈ R
n, (3.11)

where ∂ ‖[c(x)]−‖1 is the sub-differential [6, Section 14.3] of ∂ ‖[·]−‖1 at the point c(x).

This proves part (ii) since condition (3.11) is precisely the first-order conditions for x to

be a first-order critical point for problem (ℓ1-σ).

Given a symmetric matrix B we define the vector obtained by stacking all of the

entries of the lower triangular part of B (in a specified order) as b(B) ∈ R
nB, where

nB

def
= n(n + 1)/2. The assumption on the matrix sequence {Bk} in part (iii) guarantees

that the vector sequence {b(Bk)} is bounded so that there exists a subsequence K such

that limk∈K b(Bk) = b∗. This implies that

lim
k∈K

xk = x∗ and lim
k∈K

Bk = B∗ with B∗ positive definite, (3.12)

where B∗
def
= b(b∗). Now define the function

F
(

s, x, b(B)
)

= f(x) + g(x)Ts + 1
2
sTBs + σ‖[c(x) + J(x)s]−‖1 (3.13)

so that F (s, x, b) is defined and continuous on R
n × R

n × R
nB and convex for each fixed

(x, b). It follows from [4, Theorem 3.2.8 using the continuous point-to-set map C(x, b) = R
n

] that

F∗(x, b)
def
= min

s∈Rn
F
(

s, x, b
)

(3.14)

is continuous so that we may deduce from (3.9) that χ(x, B) is also continuous as a function

of (x, B). Thus we have

χ(x∗, B∗) = lim
k∈K

χ(xk, Bk) = 0, (3.15)

where the first equality follows by continuity and the second by assumption. Part (ii) and

(3.12) then imply that x∗ is a first-order critical point for problem (ℓ1-σ). 2

We now give a lower bound for the change in the faithful model obtained from the

Cauchy step; this is the essential estimate for proving global convergence of Algorithm 2.1.

The result uses the change in the convex model MB

k , which we define as

∆MB

k (s)
def
= MB

k (0)−MB

k (s). (3.16)

Lemma 3.2 Let sP

k and sCP

k be defined as previously. Then

∆MH

k (sCP

k ) ≥ 1
2
∆MB

k(sP

k) min

(

1,
∆P

k

‖sP

k‖∞
,

∆MB

k(sP

k)

n‖Bk −Hk‖2‖sP

k‖
2
∞

)

. (3.17)
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Proof. We consider two cases.

Case 1: sP

k
THks

P

k ≤ sP

kBks
P

k

Subcase 1 : ‖sP

k‖∞ ≤ ∆P

k

This subcase implies αu ≥ 1 so that α = 1 is in the domain of the Cauchy step computa-

tion (2.3). This implies MH

k (sCP

k ) ≤MH

k (sP

k) ≤MB

k (sP

k), where the second inequality follows

since sP

k
THks

P

k ≤ sP

kBks
P

k by assumption. Since MH

k (0) = MB

k (0), we conclude that

∆MH

k (sCP

k ) = MH

k (0)−MH

k (sCP

k ) ≥MB

k (0)−MB

k (sP

k) = ∆MB

k (sP

k). (3.18)

Subcase 2 : ‖sP

k‖∞ > ∆P

k

Note that we now have 0 ≤ αu < 1. For a general 0 ≤ α ≤ 1, we have

∆MB

k (αsP

k) = σ
(

‖[ck]
−‖1 − ‖[ck + αJks

P

k]
−‖1
)

− αgT
k sP

k −
α2

2
sP

k
T Bks

P

k (3.19)

≥ ασ
(

‖[ck]
−‖1 − ‖[ck + Jks

P

k ]
−‖1
)

− αgT
k sP

k −
α

2
sP

k
T Bks

P

k . (3.20)

= α∆MB

k (sP

k) (3.21)

so that

∆MB

k (αus
P

k) ≥ αu∆MB

k (sP

k). (3.22)

Equation (3.19) follows from the definition of ∆MB

k , (3.20) follows since 0 ≤ α ≤ 1 and

from [9, Lemma 2.2], and (3.21) follows from the definition of ∆MB

k . We may then deduce

∆MH

k (sCP

k ) = MH

k (0)−MH

k (sCP

k ) ≥MH

k (0)−MH

k (αus
P

k)
(

using def. of ∆MH

k and sCP

k

)

≥MB

k (0)−MB

k (αus
P

k)
(

using defs. of MB

k and MH

k and the fact

sP

k
THks

P

k ≤ sP

k
TBks

P

k

)

= ∆MB

k (αus
P

k) ≥ αu∆MB

k (sP

k)
(

using def. of ∆MB

k and (3.22)
)

=
∆P

k

‖sP

k‖∞
∆MB

k (sP

k)
(

using def. of αu

)

. (3.23)

Case 2: sP

k
THks

P

k > sP

kBks
P

k > 0

Since αk ≤ ∆P

k/‖s
P

k‖∞ by definition and αk < 1 as a consequence of sP

k
THks

P

k > sP

kBks
P

k > 0,

we conclude that 0 ≤ αk ≤ min
(

1,
∆P

k

‖sP
k
‖∞

)

= min(1, αu); for ease of notation, we define

αmin = min(1, αu). For all 0 ≤ α ≤ αmin, we must have

∆MH

k (sCP

k ) ≥ ∆MH

k (αsP

k) (3.24)

= σ
(

‖[ck]
−‖1 − ‖[ck + αJks

P

k ]
−‖1
)

− αgT
k sP

k −
α2

2
sP

k
T Hks

P

k (3.25)

= σ
(

‖[ck]
−‖1 − ‖[ck + αJks

P

k ]
−‖1
)

− αgT
k sP

k −
α2

2
sP

k
T Bks

P

k +
α2

2
sP

k
T (Bk −Hk)s

P

k .

(3.26)

Equation (3.24) follows since sCP

k minimizes MH

k (αsP

k) for 0 ≤ α ≤ αmin, while (3.25) and

(3.26) follow from the definition of ∆MH

k and simple algebra. Continuing to bound the



10 N. I. M. Gould and D. P. Robinson

change in the faithful model, we have

∆MH

k (sCP

k ) ≥ ασ
(

‖[ck]
−‖1 − ‖[ck + Jks

P

k ]
−‖1
)

− αgT
k sP

k −
α

2
sP

k
T Bks

P

k +
α2

2
sP

k
T (Bk −Hk)s

P

k

(3.27)

= α∆MB

k (sP

k) +
α2

2
sP

k
T (Bk −Hk)s

P

k (3.28)

for all 0 ≤ α ≤ αmin. Equation (3.27) follows from equation (3.26), [9, Lemma 2.2], and

the inequality α2 ≤ α, which holds since 0 ≤ α ≤ αmin ≤ 1, while equation (3.28) follows

from the simplification of equation (3.27) and the definition of ∆MB

k (sP

k).

The previous string of inequalities holds for all 0 ≤ α ≤ αmin, so it must hold for the

value of α that maximizes the right-hand-side of (3.28). As a function of α, the right-

hand-side may be written as q(α) = aα2 + bα where

a = 1
2
sP

k
T (Bk −Hk)s

P

k < 0 and b = ∆MB

k (sP

k) ≥ 0.

There are two sub-cases to consider.

Subcase 1 : −b/2a ≤ αmin

In this case the maximizer on the interval [0, αmin] must occur at α = −b/2a so that the

maximum is

q(−b/2a) = a
b2

4a2
+ b
−b

2a
= −

b2

4a
.

Substituting for a and b, using the Cauchy-Schwarz inequality, and applying norm inequal-

ities shows

q(−b/2a) =

(

∆MB

k (sP

k)
)2

2|sP

k
T (Bk −Hk)sP

k|
≥

(

∆MB

k (sP

k)
)2

2‖Bk −Hk‖2‖sP

k‖
2
2

≥

(

∆MB

k (sP

k)
)2

2n‖Bk −Hk‖2‖sP

k‖
2
∞

. (3.29)

Subcase 2 : −b/2a > αmin

In this case the maximizer of q on the interval [0, αmin] is α = αmin and the maximum is

bounded by

q(αmin) = aα2
min

+ bαmin = αmin(aαmin + b) >
αmin

2
b =

min(1, αu)

2
∆MB

k (sP

k) (3.30)

since the inequality −b/2a > αmin implies aαmin > −b/2 because a < 0.

If we denote the maximizer of q(α) on the interval [0, αmin] by α∗, then equations (3.29)

and (3.30) show that

q(α∗) ≥ 1
2
∆MB

k (sP

k) min

(

1,
∆P

k

‖sP

k‖∞
,

∆MB

k (sP

k)

n‖Bk −Hk‖2‖∆P

k‖
2
∞

)

. (3.31)

Returning to equation (3.28), we have

∆MH

k (sCP

k ) ≥ q(α∗) ≥ 1
2
∆MB

k (sP

k) min

(

1,
∆P

k

‖sP

k‖∞
,

∆MB

k (sP

k)

n‖Bk −Hk‖2‖s
P

k‖
2
∞

)

,
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Combining this with equations (3.18) and (3.23) gives the required result. 2

We now show that under reasonable assumptions on the convex models MB

k , the pre-

dictor steps will be uniformly bounded.

Lemma 3.3 Let f and c be continuously differentiable functions. Assume that {xk} is

any vector sequence such that {xk}k≥0 ⊂ B ⊂ R
n for some compact set B, and that {Bk}

is any matrix sequence such that

0 < λB
min
≤

vTBkv

vTv
for all v 6= 0 ∈ R

n (3.32)

for some positive constant λB
min

independent of k. Then there exists a positive constant

κpred such that ‖sP

k‖∞ ≤ κpred where sP

k is the predictor step, i.e., the unique minimizer of

problem (2.2).

Proof. Writing down the optimality conditions for problem (2.2) shows that

sP

k = −B−1
k

(

gk − JT
kyP

k

)

and ‖sP

k‖∞ ≤ σ, (3.33)

where yP

k is the vector of Lagrange multipliers. It is now easy to see that the required result

holds by using (3.33), standard norm inequalities, (3.32), the fact that {xk} is contained

in the compact set B, continuity of norms, and continuity of g and J . 2

The following global convergence proof for Algorithm 2.1 requires the following sets:

S = {k ∈ N | iterate k is labeled either ”successful” or ”successful Cauchy” by Alg. 2.1};

U = {k ∈ N | iterate k is labeled ”unsuccessful” by Algorithm 2.1}; and

R = {k ∈ N | iterate k is labeled ”revert to saved point” by Algorithm 2.1}.
(3.34)

Theorem 3.4 Let f and c be twice continuously differentiable functions, and let {xk},

{Hk}, {Bk}, {∆
P

k}, and {∆A

k}, be sequences generated by Algorithm 2.1. Assume that the

following conditions hold:

1. {xk}k≥0 ⊂ B ⊂ R
n for some compact set B; and

2. there exist positive constants λB
min

, λB
max

and bH such that 0 ≤ λB
min
≤ (vTBkv)/‖v‖22 ≤

λB
max

for all v 6= 0 ∈ R
n, and ‖Hk‖2 ≤ bH .

Then, either xK is a first-order critical point for problem (ℓ1-σ) for some K ≥ 0, or there

exists a subsequence of {xk} that converges to a first-order solution of problem (ℓ1-σ).

Proof. If xK is a first-order point for problem (ℓ1-σ) for some K ≥ 0 then we are done.

Therefore, we assume that xk is not a first-order solution to problem (ℓ1-σ) for all k. We

consider two cases.
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Case 1 : there exists a subsequence of {∆P

k} that converges to zero.

Since ∆P

k is only decreased following an unsuccessful nonmonotone phase and since the

first Cauchy step of each nonmonotone phase is always checked for sufficient progress, we

may conclude that there exists a subsequence K ⊆ N such that

lim
k∈K

xk = x∗, (3.35)

lim
k∈K

∆P

k = 0, (3.36)

lim
k∈K
‖sCP

k ‖∞ = 0, and (3.37)

rCP

k < ηS for all k ∈ K, (3.38)

where

rCP

k

def
=

φk − φ(xk + sCP

k )

∆MH

k (sCP

k )
.

Subcase 1: There exists a subsequence of {∆MB

k (sP

k)}k∈K that converges to zero.

It follows immediately from Lemma 3.1 that x∗ is a first-order critical point for problem

(ℓ1-σ) since χ(xk, Bk) ≡ ∆MB

k (sP

k).

Subcase 2: There does not exist a subsequence of {∆MB

k (sP

k)}k∈K that converges to zero.

This implies the existence of a positive scalar δ such that

∆MB

k (sP

k) ≥ δ > 0 for all k ∈ K. (3.39)

A Taylor expansion of f at xk in a general direction v gives

f(xk + εv) = fk + εgT
k v + o(ε) = fk + εgT

k v +
ε2

2
vT Hkv + o(ε) (3.40)

since {Hk} is bounded by assumption, while a Taylor expansion of c at xk gives

c(xk + εv) = ck + εJkv + o(ε). (3.41)

Combining these two equations gives

φ(xk + εv) = fk + εgT
k v +

ε2

2
vT Hkv + o(ε) + σ‖[ck + εJkv + o(ε)]−‖1

= fk + εgT
k v +

ε2

2
vT Hkv + σ‖[ck + εJkv]−‖1 + o(ε)

= MH

k (εv) + o(ε),

(3.42)

where the first equality follows from the definition of φ and the Taylor expansions, the

second equality follows from the boundedness of ∂ ‖[·]−‖1, and the last equality follows

from the definition of MH

k (εv). Choosing v = sCP

k /‖sCP

k ‖∞ and ε = ‖sCP

k ‖∞ in equation

(3.42) yields

φ(xk + sCP

k ) = MH

k (sCP

k ) + o(‖sCP

k ‖∞). (3.43)
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Equation (3.43) then implies the equation

rCP

k =
φk − φ(xk + sCP

k )

∆MH

k (sCP

k )
=

∆MH

k (sCP

k ) + o(‖sCP

k ‖∞)

∆MH

k (sCP

k )
= 1 +

o(‖sCP

k ‖∞)

∆MH

k (sCP

k )
(3.44)

since φk = MH

k (0). We now proceed to bound ∆MH

k (sCP

k ). For all k ∈ K sufficiently large,

we have for some constant κpred > 0 that

∆MH

k (sCP

k ) ≥
1

2
∆MB

k (sP

k) min

(

1,
∆P

k

‖sP

k‖∞
,

∆MB

k (sP

k)

n‖Bk −Hk‖2‖sP

k‖
2
∞

)

(

use Lemma 3.2
)

≥
δ

2
min

(

1,
∆P

k

κpred

,
δ

n(λB
max

+ bH)κ2
pred

)

(

use (3.39), assumption 2, and Lemma 3.3
)

=
δ

2κpred

∆P

k

(

use (3.36)
)

. (3.45)

It now follows that there exists a positive sequence {zk} such that for k ∈ K sufficiently

large
∣

∣

∣

∣

o(‖sCP

k ‖∞)

∆MH

k (sCP

k )

∣

∣

∣

∣

≤
2κpredzk‖s

CP

k ‖∞
δ∆P

k

(

use (3.45) and definition of ”little-oh”
)

≤
2κpredzk∆

P

k

δ∆P

k

=
2κpred

δ
zk

(

use definition of Cauchy step and simplify
)

(3.46)

and where the subsequence {zk}K converges to zero. It then follows from (3.44) and (3.46)

that

rCP

k = 1 + o(1) for k ∈ K. (3.47)

This is a contradiction since this implies that for k ∈ K sufficiently large the identity

rCP

k > ηS holds, which violates equation (3.38); thus subcase 2 can not occur. Therefore, if

Case 1 occurs, then x∗ is a first-order critical point as shown in subcase 1.

Case 2 : there does not exist a subsequence of {∆P

k} that converges to zero.

Examination of the algorithm shows that this implies the existence of a positive number

δ and of an infinite subsequence KS ⊆ S (recall the definition of S given by (3.34)) such

that

lim
k∈KS

xk−l(k) = x∗, (3.48)

∆P

k ≥ δ > 0 for all k, (3.49)

where for each k ∈ S we define l(k) to be the number of fails that occurred in that

nonmonotone phase before that successful iteration was computed. For consistency, if

iterate k was successful but was not part of a nonmonotone phase, then we define l(k) = 0.

Thus every successful iterate is part of a nonmonotone sequence, but it may have length

zero. Also, for each k ∈ S we define k+(k) ∈ KS to be the smallest number in KS that is

strictly greater than k (see Figure 3.1). Note that this implies

φ(xk+1) ≥ φ
(

xk+(k)−l(k+(k))

)

for all k ∈ S and lim
k∈S

k+(k) =∞. (3.50)
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210 2 986543 10 11 12 13 14 157 20181 221716 19

UUS S SSRUU U USU U SSR S RUU U

l20 = 0l19 = 2

l16 = 1

l11 = 0l10 = 0l9 = 0
l5 = 2

l21 = 0k+

5
= 11

k+

11
= 16k+

10
= 11k+

9
= 11 k+

20
= 22k+

19
= 20 k+

21
= 22

k+

16
= 20

iterate

φ(xk)

S

Figure 3.1: Illustration of the quantities used in Case 2 of Theorem 3.4 assuming that

max fails = 2. The x-axis represents the iterate and the y-axis the value of the merit

function φ for a given iterate. The values S, U, and R below the x-axis denote whether that

iterate belongs to the indexing set S, U , or R (see (3.34)), respectively. Every S is enclosed

in either a (blue) circle or a (red) square—the circle indicates that the corresponding iterate

is in the subsequence KS , while the square indicates that the iterate was not in KS . The

(dark-grey) horizontal solid lines indicate the least value of φ accepted as a successful

iterate up until that point. The length of a (blue) dotted vertical line or a (red) dashed

vertical line located above an iterate k indicates the improvement in the merit function

obtained from the successful step sk−1 as compared to the previous best successful value.

We have used the short-hand notation lk = l(xk) and k+

l = k+(xl).
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For the remainder of this proof, we write ∆MH instead of ∆MH

k and ∆MB instead of

∆MB

k—the “missing” argument is always assumed to be the subscript of the step, i.e.,

∆MB(sj) means ∆MB

j (sj) for any iterate j.

If k ∈ KS and k is classified as a “successful” iteration by Algorithm 2.1, then it follows

from (2.8) that

φ(xk−l(k))− φ(xk+1) ≥ ηS∆MH(sk−l(k)) ≥ ηηS∆MH(sCP

k−l(k)). (3.51)

On the other hand, if k ∈ KS and k is classified as a “successful Cauchy” iteration by

Algorithm 2.1, then we have by construction that

φ(xk−l(k))− φ(xk+1) ≥ ηS∆MH(sCP

k−l(k)). (3.52)

Since η ∈ (0, 1), we conclude that

φ(xk−l(k))− φ(xk+1) ≥ ηηS∆MH(sCP

k−l(k)) for all k ∈ KS . (3.53)

Equation (3.53), Lemmas 3.2 and 3.3, (3.49), and assumption 2 of this theorem imply

φ(xk−l(k))− φ(xk+1) ≥
ηηS

2
∆MB

(

sP

k−l(k)

)

min

(

1,
δ

κpred

,
∆MB

(

sP

k−l(k)

)

(λB
max

+ bH)κ2
pred

)

(3.54)

for some positive constant κpred independent of k. If we let k̄ ∈ S and sum over all k ∈ KS

less than k̄, we have

∑

k∈KS ,k≤k̄

ηηS

2
∆MB

(

sP

k−l(k)

)

min

(

1,
δ

κpred

,
∆MB

(

sP

k−l(k)

)

(λB
max

+ bH)κ2
pred

)

≤
∑

k∈KS ,k≤k̄

φ
(

xk−l(k)

)

− φ(xk+1)

(3.55)

≤
∑

k∈S,k≤k̄

φ
(

xk−l(k)

)

− φ(xk+1)

(3.56)

= φ(x0)− φ(xk̄+1) (3.57)

≤ φ
(

x0

)

− φ
(

xk+(k̄)−l(k+(k̄))

)

.

(3.58)

Equation (3.55) follows from (3.54), (3.56) since we are adding more positive terms to the

sum, (3.57) follows from the construction of the algorithm and the fact that k̄ ∈ S by

assumption, and (3.58) follows from (3.50). To help the reader understand, we note that

for the value k̄ = 21 the right-hand-side of (3.55) is equal to the sum of the lengths of the

(blue) dotted lines in Figure 3.1, while the right-hand-side of (3.56) is equal to the sum of

the lengths of the (blue) dotted lines and the (red) dashed lines. If we now let k̄ converge



16 N. I. M. Gould and D. P. Robinson

to infinity in the previous string of inequalities and use (3.50) and (3.48), we may conclude

that

∑

k∈KS

ηηS

2
∆MB

(

sP

k−l(k)

)

min

(

1,
δ

κpred

,
∆MB

(

sP

k−l(k)

)

(λB
max

+ bH)κ2
pred

)

≤ φ(x0)− φ(x∗), (3.59)

which implies

lim
k∈KS

∆MB(sP

k−l(k)) = 0 (3.60)

because the series on the left-hand-side is convergent. Since (3.48) states limk∈KS
xk−l(k) =

x∗ and it follows from (3.9) and (3.60) that

lim
k∈KS

χ
(

xk−l(k), Bk−l(k)

)

= lim
k∈KS

∆MB(sP

k−l(k)) = 0, (3.61)

we conclude from part (iii) of Lemma 3.1 that x∗ is a first-order critical point for problem

(ℓ1-σ).

In both cases we have shown that there exists a limit point x∗ that is a first-order

critical point for problem (ℓ1-σ). We are done since one of these cases must occur. 2

We conclude this section by giving local convergence results for problem (NP). These

results assume that the penalty parameter σ is sufficiently large so that minimizers of the

ℓ1-penalty function correspond to minimizers of problem (NP) (see [5,14] for more details

on exactly how these two problems are related). We note that many authors have provided

frameworks for guaranteeing that this condition holds in practice [1–3,8,10,11,13,15–17].

We use the following definitions related to a solution of problem (NP).

Definition 1 (First-order KKT point) We say that the point (x∗, y∗) is a first-order

KKT point for problem (NP) if

g(x∗)− J(x∗)T y∗ = 0, c(x∗) ≥ 0, y∗ ≥ 0, and c(x∗)· y∗ = 0. (3.62)

Given a first-order KKT point (x∗, y∗), we let A
def
= {i : ci(x

∗) = 0} denote the index set

of constraints active at x∗.

Definition 2 (Second-order sufficient conditions) A point (x∗, y∗) satisfies the second-

order sufficient conditions for problem (NP) if (x∗, y∗) is a first-order KKT point and if

there exists λH
min

> 0 such that sT H(x∗, y∗)s ≥ λH
min

sTs for all s satisfying JA(x∗)s = 0.

Definition 3 (Strict complementarity) We say that strict complementarity holds at a

KKT point (x∗, y∗) for problem (NP) if y∗
A > 0.

Definition 4 (Linear independent constraint qualification) We say that the linear

independent constraint qualification (LICQ) holds at a KKT point (x∗, y∗) for problem (NP)

if the matrix JA(x∗) has full row rank.
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Definition 5 We say that the strong second-order sufficient conditions hold at a point

(x∗, y∗) if it satisfies Definitions 1 – 4.

For our first result we assume that an accelerator step is computed from subproblem

(SEQP) as discussed in [9, Section 2.3.2]. We restate this subproblem for convenience:

(SEQP) minimize
s∈Rn

f̄k + (gk + Hks
P

k)
T s + 1

2
sT Hks

subject to [Jks]A(sP
k)

= 0, ‖s‖2 ≤ ∆A

k ,

where A(sP

k) = {i : [ck +Jks
P

k]i ≤ 0} and f̄k = fk +gT
k sP

k + 1
2
sP

k
T Hks

P

k . Since this subproblem

only defines multipliers for the constraints whose indices are in the set A(sP

k), we form

accelerator multipliers yA

k by ”scattering” the multipliers from subproblem (SEQP) into

the appropriate locations of a zero-vector of length m. The following theorem is the same

as [8, Theorem 4.7].

Theorem 3.5 (SEQP local convergence result) Let (x∗, y∗) be a minimizer for prob-

lem (NP) that satisfies the strong second-order sufficient conditions as given by Definition 5.

Let the assumptions of Theorem 3.4 hold and suppose that σ > ‖y∗‖∞, the accelerator step

is computed from subproblem (SEQP) with the choice Hk ≡ H(xk, y
F

k), and max fails ≥ 1

in Algorithm 2.1. It follows that there exists an open neighborhood of (x∗, y∗) such that if

the accelerator step is computed for every iteration once the first successful iterate of Al-

gorithm 2.1 is contained in this neighborhood then the sequences of iterates {xk} and {yk}

generated by Algorithm 2.1 converge to x∗ and y∗ at a Q-superlinear and R-superlinear rate,

respectively. Moreover, if H(x, y) is Lipschitz continuous in a neighborhood of (x∗, y∗), then

they convergence at a Q-quadratic and R-quadratic rate, respectively.

Proof. The only reason why the proof of [8, Theorem 4.7] would not carry-over is because

of the modification to how the predictor step is computed. However, the only property

required is that the predictor trust-region constraint ultimately is inactive following a

successful step. Since we have removed the trust-region constraint altogether, the result is

immediate. 2

Finally, we consider the rate of convergence of Algorithm 2.1 when the accelerator step

is computed from subproblem (SIQP-E) as described in [9, Section 2.3.1]. We restate this

subproblem for convenience:

(SIQP-E) minimize
s∈Rn

f̄k + (gk + Hks
CP

k )T s + 1
2
sT Hks + σ‖[ck + Jk(s

CP

k + s)]−Vk
‖1

subject to [ck + Jk(s
CP

k + s)]Sk
≥ 0,

(gk + Hks
CP

k + σJT
k zk)

T s ≤ 0, ‖s‖∞ ≤ ∆A

k ,

where

[zk]i =

{

−1 if i ∈ Vk ,

0 if i ∈ Sk ,
(3.63)

Vk = {i : [ck + Jks
CP

k ]i < 0}, Sk = {i : [ck + Jks
CP

k ]i ≥ 0}, f̄k = fk + gT
k sCP

k + 1
2
sCP

k
T Hks

CP

k ,

and (gk + Hks
CP

k + σkJ
T
k zk)

T s ≤ 0 is the so-called “descent-constraint”.
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Theorem 3.6 (SIQP-E local convergence result) Let (x∗, y∗) be a minimizer for prob-

lem (NP) that satisfies the strong second-order sufficient conditions as given by Definition 5.

Let the assumptions of Theorem 3.4 hold and assume that σ > ‖y∗‖∞, the accelerator step

is computed from subproblem (SIQP-E) with the choice Hk ≡ H(xk, y
F

k), and max fails ≥ 1

in Algorithm 2.1. It follows that there exists an open neighborhood of (x∗, y∗) such that if

the accelerator step is a solution of minimal-norm and is computed for every iteration once

the first successful iterate of Algorithm 2.1 enters the open neighborhood, then the sequences

of iterates {xk} and {yk} converge to x∗ and y∗ at a Q-superlinear and R-superlinear rate,

respectively. Moreover, if H(x, y) is Lipschitz continuous in a neighborhood of (x∗, y∗),

then they converge at a Q-quadratic and R-quadratic rate, respectively.

Proof. Follows exactly as in [8, Theorem 4.9]. 2

4 Conclusions and future work

In [8, 9] we introduced S2QP—a second derivative trust-region SQP method for solving

nonlinear nonconvex optimization problems. This method utilizes a so-called predictor

step for proving both global and fast local convergence. Computation of this step involves

solving a strictly convex quadratic program with a trust-region constraint. This is not ideal

since the trust-region constraint i) may occasionally degrade the quality of the predictor

step; ii) may diminish its ability to identify an optimal active set; and iii) prevents re-use

of the same predictor step during a sequence of unsuccessful iterates. In this paper we have

removed the trust-region constraint and proved that the resulting algorithm is still globally

convergent, while maintaining local superlinear convergence. We consider Lemma 3.5 to

be additional evidence that removing the trust-region constraint is the “right” thing to do

since the result follows naturally; this is in contrast to the analogous result [8, Theorem 4.7]

for which special consideration of the trust-region constraint was required.
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