Technical Report
DL-TR-99-003.

T

=
=
CLIRC

CLIPS: The CLRC Library of Parallel
Subroutines

RJ Allan and YF Hu

COLRC LIBRARY

July 1999
27 JUL 1999
DARESBURY
LABORATORY

Rt e e i T)

COUNCIL FOR THE CENTRAL LABORATCORY OF THE RESEARCH COUNCILS

© Council for the Central Laboratory of the Research Councils 1999

Enquiries about copyright, reproduction and requests for
additional copies of this report should be addressed to:

The Central Laboratory of the Research Councils
Chadwick Library

Daresbury Laboratory

Daresbury

Warrington

Cheshire

WAL AAD

Tel: 01925 603397 Fax: 01925 603195
E-mail library@dl.ac.uk

ISSN 1362-041X

Neither the Council nor The Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their
reports or in any communication about their tests or investigations.

Parallel Application Software on High Performance Computers.
CLIPS: The CLRC Library of Parallel Subroutines. *

R.J. Allan and Y.F. Hu
Computational Science and Engineering Department,
CLRC Daresbury Laboratory,

Daresbury, Warrington WA4 4AD, UK

Email: r.j.allan@dl.ac.uk or y.f.hu@dl.ac.uk
This report 1s available from http://www.cse.clrc.ac.uk/Activity/CLIPS

July 21, 1999

Abstract

Over the last four years a number of parallel algorithms have been writien at CLRC Daresbury
Laboratory in order to optimise parallel applications in various areas of computational science and
engineering. With a view to making these more widely available and to promote better software re-
usability and modularity a parallel library is being created named CLIPS. This brief report summarises
the Library structure and functionality.

The Library is written mainly in Fortran 90 (with a little C) and uses MPI for communication. It
should therefore be portable to most, if not all, contemporary serial and parallel computing platforms
including clusters of PCs and workstations.

Routines will be added to the Library as required. Support for SMP systems will be added in the
future. There is so far no attempt to address any particular area exhausively. Documentation, example
programs and a test suite are however part of the Library distribution.

Keywords: parallel computing, numerical algorithms, subroutine library, Fortran 90, MPI, linear
algebra, sparse matrices, Fourier transforms.

© Council for the Central Laboratory of the Research Councils 1999. Neither the Council
nor the Laboratory accept any responsibility for loss or damage arising from the use of information
contained in any of their reports or in any communication about their tests or investigations.

“Edition 1: July 1999

CONTENTS .

Contents
1 Introduction 1
2 Other Parallel Numerical Libraries 1
3 Fortran 20 and MPI 1
3.1 Asynchronous Subroutines called from Fortran 90 2
3.2 Some Comments on Optimisation 3
4 Interface Blocks for CLIPS 3
4.1 Example Calling Program o 4
4.2 List of Available Modules)
5 Code of CLIPS Routines 8
6 CLIPS Documentation 7
7 CLIPS Test Examples and Programs 7
8 CLIPS User-callable Routines 7
9 Acknowledgements 7
A Module Precision 9
B Example of Documentation — Parallel CGS 9
Bol SUummaryo e e 9
B.2 Attributes L L e, 9
B.3 How to use the Package 10
B.4 Specification of CLIPS_.CG_INITIALIZE 10
B.4.1 Avgument List oo 10

B.5 Specification of CLIPS.CGSOLVE 11

CONTENTS

i

B.6 Argument List Lo 12
B.6.1 Errorsand Warnings oL 12

B.7 Specification of CLIPS.CGSUMMARIZE 12
B.7.1 Argument List 12

B.8 Specification of CLIPS.CGFINALIZE L?
B.8.1 Argument List i2

B.9 General Informationo 12
B.10 Method 0 oo 13
B.I1 Example L e 13
B.i1.l Example text L e 13
B.11.2 Example Data 13
B.11.3 Example results e 14

C List of Public Routines 14

1 INTRODUCTION 1

1 Introduction

Over the last four years a number of parallel algorithms have been written at CLRC Daresbury
Laboratory in order to optimise parallel applications in a number of areas of computational science
and engineering. With a view to making these more widely available and to promote better software
re-usability and modularity a parallel library is being created named CLIPS.

The Library is written mainly in Fortran 90 (with a little C) and uses MPI for communication. It
should be portable to most, if not all, contemporary serial and parallel computers including clusters
of PCs and workstations.

Routines will be added to the Library as required. SMP support using OpenMP directives will he
added in the future. There is so far no attempt to address any particular area exhausively. Documen-
tation, example programs and a test suite are however provided as part of the Library distribution.

In the rest of this report we follow the format of the report by Dongarra and Wagniewski on LA-
PACK 90 [6] with supplementary comments on parallel aspects.

2 Other Parallel Numerical Libraries

Subroutines included in the CLIPS library have been developed only where a clear need was identified.
Several surveys were carried out, of numerical software aiready available [, 2, 3]. They address a
number of areas of relevance to computational science and engineering on high-performance computers.
These reports are separately available from the authors or via the Web page at URL
http://wuw.cse.clre.ac.uk/Activity/HPCI and should be consulted for further information.

3 Fortran 90 and MPI

The current standard for Fortran is ISO/TEC 1539-1991 (in the USA, ANSI X3.198-1992), the so-called
Fortran 90 standard. This has a number of significant advantages over previous dialects of Fortran
and is particularly useful for providing modular software. We recommend the book by Metcalf and
Reid [9] for more information. Some of the important features introduced in this standard include:

e array operalions;
® pointers;
e improved facilities for numerical computations including a set of numerical inquiry functions;

e parameterisation of the intrinsic types to permit processors to support short integers, very large
character sets, more than two precisions for real and complex and packed logicals;

e user-defined derived data types composed of arbitrary data structures and operations upon those
data structures;

3 FORTRAN 90 AND MPI 2

o facilities for defining collections called “modules”, useful for global data definitions and for
procedure libraries. These support a safe method of encapsulating derived data types;

e requirements on a compiler to detect the use of constructs that do not conform to syntax of the
language or are obsolescent;

e a new source form, more appropriate to use at a terminal;
e new controi constructs such as the SELECT CASE construct and a new form of the DO construct:

o the ability to write internal procedures and recursive procedures and to call procedures with
optional and keyword arguments;

e dynamic storage (automatic arrays, allocatable arrays and pointers);

e improvements to the input-output facilities, including handling partial records and a standard-
ised NAMELIST facility;

e many new intrinsic procedures, including those for machine constants.

We have found Fortran 90 particularly useful for our purposes. Nevertleless there are still difficulties,
especially in the area of support for irregular structures and sparse matrices and in binding to other
libraries which were designed for older languages (e.g. C). Some particular difficulties in using makefiles
and devising a sensible build procedure are addressed in the Library specifications [5]. Some problems
encountered with the use of asynchronous message-passing or threads calls are mentioned here and
some comments on optimisation are also noted.

3.1 Asynchronous Subroutines called from Fortran 90

If there is no explicit interface available for a routine that is called from a Fortran 90 program the
compiler may make local copies of the variabtes passed to the routine. The reason is that, especially
with array arguments, the program may be passing assumed-shape arrays (e.g. array sections with
elements in non-contiguous memory storage) to a “foreign-language” routine, such as FORTRANTT
or C, which expects contiguous storage. This will depend on how the arrays were declared in the
calling routine and may also vary from computer to computer. The difficulties we have encountered
arise when an array copy is made and is referred to as the “copy-in/copy-out” problem.

If the copy occurs the following siluation may arise:

1. we call an asynchronous library routine, e.g. MPI_IRECV(...);

2. the compiler makes a local copy of the array into which we wish to receive data;

3. the library routine posts a non-blocking receive for the MPI subsystem to handle and returns
cantrol to the calling program;

4, the compiler copies back the local array into the real array before the MPT subsystem has received
any data;

5. the MPI subsystem signals that the data is ready in an MPIWAIT(...) call, but there is no
mechanism for getting the data back inte the real array.

In fact in the worst situation the MPI subsystem may write data into some area of memory which has
by ther been used for another purpose, and unpredictable errors can occur.

4 INTERFACE BLOCKS FOR CLIPS 3

This is not only a problem with MPI, but with any asynchronous subroutine, mcluding calls to threads
libraries. Fortran 2000 will contain asynchronous i/o subsystem so the probiem may be addressed more
generally by then. Note that IBM systems already accommodate asynchronous i/o, but this is intrinsic
to the compiler whereas library calls are extrinsic. They also provide a VOLATILE attribute which
may be used on variable declarations to tell the compiler that there may be some unknown side effects
when this variable is used.

3.2 Some Comments on Optimisation

A further effect of the copy-in/copy-out problem is that it may lead to inefficient code. If an extra copy
occurs at subroutine boundary, more time will be taken and if it is a call to an optimised numerical
library, e.g. the Basic Linear Algebra Subprograms {(BLAS), there will be little benefit from using
them. To avoid this problem explicit Fortran 90 interfaces must be made available by the library
writers, as was done for LAPACK 90 [6] and in CLIPS.

It is very disappointing that this has not been done for MPI, even in the new MPI-2. There are a
number of basic and complex issues, outwith the remit of this report, which have nol been addressed.
[n the meantime there are comments by John Reid in the MPI-2 documentation [12].

In these cases it is necessary to move the copy-in/copy-out problem as far out of the centre of the
code as possible. This can be achieved for practical purposes by declaring the offending arrays with
fixed-size dimensions in the lower-level routines. The principle is illustrated by the following sketch:

SUBROUTINE subl{nn,mm,x)
REAL(KIND8), DIMENSION{nn:mm), INTENT(INOUT) :: x

CALL blas{nn*mm,x)

END SUBROUTINE subl

Whilst this does not guarantee that there is no copy, indeed even FORTRANT7 compilers were per-
mitted to make one, it is likely to move the copy to the boundary of subl rather than the blas

routine.

4 Interface Blocks for CLIPS

The CLIPS library is generally provided in compiled form via a randomised library file 1libclips.a
which contains the code objects for a particular architecture. However the full source code and build

4 INTERFACE BLOCKS FOR CLIPS

[
_——

procedures are available by arrangement, in particular for collaboration to extend the coilection.

IU is also necessary to provide a set of interface blocks in order for the Fortran 90 compiler to validate
subroutine calls and optimise the passing of data structures on the subroutine boundaries. There is no
cross-architecture standard for the way this is to be done. Platforms may expect files with extensions
.mod, .kmo etc. (produced by compiling a prior module in the dependancy tree) or may simply parse
the relevant source files again when a USE statement is encountered. This is discussed further in the
CLIPS library specification and full text of the interfaces for each public routine is also given [3].

4.1 Example Calling Program

PROGRAM test
USE clips_cgs
USE clips_precision
USE read_arg_mod
! the matrix and right-hand-side.
INTEGER(int4) :: nz
INTEGER(int4) :: =n
INTEGER(int4), pointer :: irn(:)
INTEGER(int4), pointer :: jen(:)
REAL(real8), pointer :; val(:)
REAL(real8), pointer :: rhs(:)
I initial guess and the sclution
REAL (real8), pointer, dimension (:) :: x
! input file name
CHARACTER {(len=60):: infile
! input unit and whether it is a single file or
! in nproc files
INTEGER(int4) :: input_unit
LOGICAL single_file
| working int
INTEGER (int4) :: i
I erroxr flag from cg
INTEGER (int4) :: iflag
! whether the inpout is in binary or ascii
LOGICAL binary
! mpi related
INTEGER NUM_PES,me
binary=.false.
! rell in MPI
CALL MPI_INIT(dierr)
CALL MPI_COMM_RANK (MPI_COMM_WORLD,ME,ierr)
CALL WPI_COMM_SIZE(MPI_COMM_WORLD,NUM_PES,ierr)
! read in the argument (single or multiple files)
CALL read_arg(input_unit,single_file,binary)
! read in the matrix and right hand side
IF (binary)THEN
READ(input_unit) n,nz
ALLOCATE(irn(nz), jen(nz),val(nz),rhs(n))
READ(input_unit) irn
READ (input_unit) jen

4 INTERFACE BLOCKS FOR CLIPS

READ(input_unit) val
READ(input_unit) rhs
ELSE
READ(input_unit,*) n,nz
ALLOCATE(irn(nz),jen(nz),val{nz),rhs(n))
DO i=1, n=z
READ(input_unit,*) irn{i),jen(i),val(i)
END do
DO i=1,n
READ{(input_unit,#*) rhs(i)
END do
END if
! initial guess
ALLOCATE(x(size(rhs)))
CALL clips_cg_intialize(n,nz,irn,jcn,val,rhs,single_file)
! solve the system 10 times!
Do i=1, 1
CALL random_number{x)
CALL clips_cg_solve(x,iflag)
IF (me==0) then

WRITE(*,*) I‘loc>p===::",:i_
WRITECH, %) "x(1)=",x(1)," x(n)=",x(n)
END IF
END DO
! clean up

CALL clips_cg_finaiize()
I print timing info.
CALL clips_cg_summarize()
! exit MPI
CALL MPI_BARRIER(MPI_COMM_WORLD,ierr)
CALL MPI_FINALIZE{ierr)
END program test

4.2 List of Available Modules

CLIPS_BFG.mod ~ 1-sided block-factored Jacobi eigensolver;

CLIPS_CGS.mod ~ stabilised conjugate-gradient solver with ILU preconditioning;
CLIPS FFT.mod ~ fast Fourier transforms on 3D data in a block-cyclic distribution;

CLIPS PCRS.mod — controlled random search optimisation;
CLIPS_ERR.mod — internal error-handling routines;
CLIPS_PRECISION.mod — internal definition of precisions;
CLIPS RAN.mod — portable random number generator;
CLIPS_TIMER.mod - portable elapsed-time routine;
CLIPS_PROFILER.mod — simple MPI profiling routines;
MPI.mod — Fortran 90 interface to platform-specific MPL

<t

5 CODE OF CLIPS ROUTINES 6

5 Code of CLIPS Routines

The layout of code in the CLIPS library routines, both public and private, follows the layout given
for the LAPACK 90 library [6]. They are divided into the following parts:

o lieading of the routine

— SUBROUTINE or FUNCTION statement
— USE statements

CLIPS_.PRECISION module
% modules from CLIPS_OTHERS if needed, e.g. timers, CLIPS_ERROR
specific CLIPS modules for operations required

IMPLICIT NONE statement

— argument specifications

e argument descriptions (comments)
e local variable declarations
e executable statements

~ local variable initialisations
— testing the arguments
— work space allocation if needed

— write warning messages if needed (by invoking CLIPS_.ERROR handler). Note this may
abort the code and return an error flag.

~ duplicate MPT communicator ro initialise a new context
— code text and calling private routines and other public CLIPS routines

—~ work space de-allocation if needed

e routine END statement

Note that in the current version of the Library some, or all of these steps may be carried out in one
routine. There is however provision for dividing the procedure into three steps as follows:

1. CLIPS_name INITIALIZE
2. CLIPS_name or CLIPS_name SQLVE
3. CLIPS name FINALIZE

This adopts a similar procedure to that used in the MPI standard. It enables CLIPS name to be called
multiple times foc each initialisation therefore reducing overheads. In some cases a supplementary
CLIPS_name _SUMMARIZE is provided to return run-time information to the user. These routines will
generally be provided in a module MODULE CLIPS name.mod. The use of these was illustrated in the
ahove example.

6 CLIPS DOCUMENTATION 7

6 CLIPS Documentation

Full documentation of all the CLIPS public library routines and module interfaces is available [5]. This
will be updated as new routines are added. Bach set of routines comprising a module is described in
a stand-alone chapter. This reflects the structure of the Library in which only a subset of routines
need be included for a specific purpose. Further information and a copy of the Library specifications
is available from the authors.

7 CLIPS Test Examples and Programs

In addition to the Library modules and routines we have written a test suite and example programs for
CLIPS. The test suite is used to test the functionality of the routines as described in the documentation
and is only available to developers. The example programs however are intended to illustrate how to
use individual routines and provide a spol check that things are working. The code shown in 4.1 is
taken from the example code suite to illustrate the CGS routines.

8 CLIPS User-callable Routines

Appendix C provides a short description of routines currently in the CLIPS library. The call of the
routine and a brief statement of purpose are given. ¥For example the call to clips cg_solve:

SUBRODUTINE clips_cg_solve(x,iflag)
REAL(REAL8), DIMENSION(:), TARGET, INTENT(INOUT) :: x
INTEGER(INT4), INTENT{(OUT) :: iflag

Subroutine clips_cg_solve carries out the parallel BICGSTAB algorithm with ILU preconditioner.
The related routine clips_cg_initialize must have been called to set up essential information about
the sparse matrix to be solved.

An initial guess of the solution may be provided in x. On exit x contains the solution of the linear
system to the required precision,

The error flag iflag returned from clips_cg_solve is 0 for a successful solve or 1 if we have exceeded
the maximum number of iterations.

9 Acknowledgements

The preparation of this report, and the work reported, was funded by EPSRC partly through a grant
GR/1€82635 to the CLRC HPCI Centre at Daresbury Laboratory aud partly through its Service Level
Agreement with the CSE Department.

REFERENCES 8

References

[1] R.J. Allan and 1.J. Bush Parallel Diogonalisation Routines Edition 1 (CLRC Daresbury Labo-
ratory, 1996)

(2] R.J. Allan and 1.J. Bush Serial and Purallel FFT Routines Edition 1 (CLRC Daresbury Labo-
ratory, 1996)

(3] R.J. Allan, Y.F. Hu and P. Lockey Survey of Paraliel Numerical Anolysis Software Edition 2,
Technical Report DLT-99-01 (CLRC Daresbury Laboratory, April 1999)

(4] R.J. Allan, J. Heggarty, M.C. Goodman and R.R. Ward Survey of Parallel Performance Tools
and Debuggers {(CLRC Daresbury Laboratory, 1999)

(5] R.J. Allan, Y.F. Hu, 1.J. Bush and A.G. Sundecland CLIPS: CLRC Library of Parallel Subrou-
tines. User Manual and Specifications (CLRC Daresbury Laboratory, 1999)

[6] J. Dongarra and J. Wasniewski High Performance Linear Algebra Package - LAPACK90 UNI-C
Report UNIC-98-01 {Danish Computing Centre for Research and Education, Technical Univer-
sity of Denmark, 1998)

(7] R.J. Littlefield and K.J. Maschhoff fnvestigating the Performance of Parallel Eigensolvers for
large Processor Counts Theor. Chim. Acta 84 (1993) 457-73

[8] G. Marsaglia, A. Zaman and W.W. Tsang 4 Universal Random Number Generator Statistics
and Probability Letters 8 (1990) 35-39

[9] M. Metcalf and J. Reid Fortran 90 Explained (Oxford University Press, 1990)
[10] Fortran 90 standard ISO/IEC 1539-1991 and ANSI X3.198-1992

(11] MPI: A message-passing Interface Standard MPI Forum, (June 1995)

A. Skjellum, N.E. Doss and P. V, Bangalote Writing libraries in MPI in “Proceedings of the
Scalable Parallel Libraries conference” A. Skjellumm and D.S. Reese {eds.) (IEEE Computer
Society Press, 1993). Available by anonymous ftp from
ftp://aurora.cs.msstate. edu/pub/reports/SPLCI3

[12} MPI-2: Extensions to the Message-Passing Interface MPI Forum (July, 1997)
E. Minty MPI-2: Extending the Message-Passing Interface v1.0 {EPCC, 1998). Available from
URL http://www.epcc.ed.ac.uk/epcc-tec/documents

[13] NetLib On-line repository of numerical algorithms and other high-performance computing soft-
ware at URL http://www.netlib org

A MODULE PRECISION

A Module Precision

MODULE c¢lips_precision
! definition ¢f basic precisiocns

! INTEGER-Kinds
INTEGER, PARAMETER ::
INTEGER, PARAMETER ::
INTEGER, PARAMETER ::
INTEGER, PARAMETER ::
! logical kinds
INTEGER, PARAMETER ::
INTEGER, PARAMETER :.
t real kinds
INTEGER, PARAMETER ::
INTEGER, PARAMETER ::
INTEGER, PARAMETER ::
INTEGER, PARAMETER ::
INTEGER, PARAMETER ::
INTEGER, PARAMETER ::
! complex kinds
INTEGER, PARAMETER ::
INTEGER, PARAMETER ::
INTEGER, PARAMETER ::
INTEGER, PARAMETER ::
INTEGER, PARAMETER ::
INTEGER, PARAMETER ::

END MODULE clips_precision

INT1
INT2
INT4
INTS

BYTE
WORD

SINGLE =
REAL4 =
DOUBLE =
REALB =

1i

it

QUAD =

flecat

SELECTED_INT_KIND{(2)
SELECTED_INT_KIND(4)
SELECTED_INT _KIND(9)
SELECTED_INT_KIND(18)

INT2
KIND(.FALSE.)

SELECTED_REAL_KIND(p=4)
SELECTED_REAL_KIND(p=4)
SELECTED_REAL_KIND{p=14)
SELECTED_REAL_KIND{&,70)
SELECTED_REAL_KIND(p=18)
SELECTED_REAL_KIND(6, 70)

CMPLX16 = SINGLE
COMPLEX8 = REAL4

CMPLX32 =

DOUBLE

COMPLEX16 = REALS
CHPLX64 = QUAD

1mag

MODULE clips_precision

KIND((1.0_float, 1.0_fleat))

B Example of Documentation — Parallel CGS

B.1 Summary

A Fortran 90 module which implements a sparse ILU preconditioner used with BICGSTAB for solving
non-symmetric linear systems in parallel.

B.2 Attributes

Version: 1.0

Public calls: clips_cg_initialize, clips_cg_solve, clips_cg.finalize, clips cg.summarize

Public modules: clips_cgs

Other modules required: mpi, clips_timer

Date: 1998

Origin: Y.F. Hu, CLRC Dalesbury Laboratory

Language: Fortran 90 and C

Conditions on external use: Standard, see separate chapter.

B EXAMPLE OE DOCUMENTATION - PARALLEL CGS 10

B.3 How to use the Package

This package is used through MODULE clips_cgs.
See specifications for further details,

The module uses the MODULE clips_timer for internal timing purposes. This is described in a separate
chapter.

B.4 Specification of CLIPS_.CG_INITIALIZE

There are a number of control parameters which control the use of the preconditioner, the tolerance
and maximum number of iterations. See the section on Arguments.

Subroutine clips_cg_initialize:

a) copies and converts the input sparse matrix-related things into internal format;

b) work out the scheduling and hales;

c) carries out an incomplete factorisation of fill-in zero by default (can be turned off);
d) set up control parameters for cg_solve.

This routine needs only be called once if the user has multiple right hand side to solve with the same
matrix. The routine allocates working storage, therefore when the matrix is no lenger needed this
routine should be followed by a call to clips_cg finalize.

SUBROUTINE clips_cg_intialize(comm,nn,nz,irn,jcn,val,rhs, &
& single_file,my_nstart,my_level,my_nprecon,my_tol,my_maxit)
INTEGER :: comm
INTEGER(int4) :: nn,nz
INTEGER{int4), pointer :: irn(:}
INTEGER(int4), pointer :: jen(:)
REAL(real8), pointer :: wal(:)
REAL(real8), pointer :: rhs(:)
LOGICAL :: single_file
| ¢ptional control parameters

INTEGER, INTENT(IN), OPTIONAL ::
INTEGER, INTENT(IN), OPTIONAL ::
INTEGER, INTENT{IN), OPTIONAL ::
INTEGER, INTENT(IN), OPTIONAL ::

my_nstart
my_level
my_nprecon
my_maxit

REAL(real8), INTENT(IN}, OPTIONAL :: my_tol

B.4.1 Argument List

INTEGER, INTENT(IN) :: comm
Ou entry: the communicator for MPL.

INTEGER(int4), INTENT(IN) :: nn,nz

On entry: number of non-zeros and size of matrix (if single_file = .false. this is the local number of

B EXAMPLE OF DOCUMENTATION - PARALLEL CGS 11

non-zeros and size, otherwise it is the global matrix).

INTEGER(int4), POINTER :: irn{(:)
On entry: the array of non-zero row indices,

INTEGER(int4), POINTER :: jen(:)
On entry: the array of non-zero column indices.

REAL(real®), POINTER :: wval(:)
On entry: the array of non-zero matrix entries. Val(i), together with irn(i), jecn(i), gives the i-th
non-zero maérix element.

REAL (real8), POINTER :: rhs(:)
rhs(j) is the j-th element of the right-hand-side vector of the linear system.

LOGICAL, INTENT(IN} :: singlefile
On entry: whether the inputing matrix is a single input matrix or distributed matrices

INTEGER, INTENT(IN), OPTIONAL :: my_nstart

On entry: starting option. By default my_nstart = 0.

o If nstart=0, cold start, scheduling and ILU factorisation {when nprecon=1) will be performed,

o If nstart=1, warm start, that assume that the sparse structures are unchanged, scheduling will not
be calculated again, but 11U factorisation will be recalculated;

o If nstart>=1, hot start, then LU factorisation and scheduling is assumed to be known and will not
be recalculated

INTEGER, INTENT(IN), optional :: my_level
On entry: print level: should be 0 or 1, default 1

INTEGER, INTENT{IN), OPTIGNAL :: my.nprecon
On entry: whether ILU preconditioner should be used. 0 for not using ILU and 1 for use ILU
preconditioner. Default is 1.

INTEGER, INTENT(IN), OPTIONAL :: mymaxit
On entry: maximum number of iterations allowed. Default 10000

REAL(real8), INTENT(IN), OPTIONAL :: my_tol
On entry: tolerance to be achieved. Defined to be level that the relative preconditioned residual has
to go down to. Default 1.0d-10

B.5 Specification of CLIPS_CG_SOLVE

Subroutine clips_cg_solve carties out the parallel BICGSTAB algorithm with ILU preconditioner.

SUBROUTINE clips_cg_solve(x,iflag)
REAL(real8), TARGET :: x(:)
INTEGER, INTENT(OUT) :: iflag

B EXAMPLE OF DOCUMENTATION - PARALLEL CGS 12

B.6 Argument List

REAL(real8), TARGET :: x(:)

On entry: initial guess of the solution. On exit: The solution of the linear system. The size of this
vector is the size of the whole matrix if the input is the whele matrix, otherwise

INTEGER, INTENT(OUT) :: iflag
On exit: error flag from cg: 0 for successful solve, 1 for exceeding maximum iterations.

B.6.1 Errors and Warnings

cg-solve returns with an error flag iflag, see the section on arguments.

B.7 Specification of CLIPS CG SUMMARIZE
Subroutine clips_cg_summarize prints out timing informations to the screen.

SUBROUTINE clips_cg_summarize()

B.7.1 Argument List

There are o arguments.

B.8 Specification of CLIPS_.CG_FINALIZE

Subroutine clips_cg_finalize deallocates spaces allocated for preconditioner and scheduling of com-
munication.

SUBROUTINE clips_cg_finalize()

B.8.1 Argument List

There are no arguments.

B.9 General Information

Workspace:

Use of common:

Other routines called directly:
Notes:

B EXAMPLE OF DOCUMENTATION — PARALLEL CGS 13

B.10 Method

See specifications.

B.11 Example
B.11.1 Example text

The program comes with test matrices: matrix_ascii and matrix_ascii_1, matrix_ascii_2, matrix_ascii_3,
matrix_ascii_4d. They can be used to test the subroutines in single-file mode and in distributed file
mode. The example code text was given in 4.1 above.

B.11.2 Example Data

As an illustration, consider solving a2 4 x 4 linear system

9 -1 2 0 4
0 4 5 1| |10
0 1 8 0| 19
0 1 0 8 9

The matrix is stored in asingle file “matrixsimple_ascii” (see directory “matrices/matrix_simple.ascii”)
as

[RES
<
1 N
= .
<
<

o s W RN N R e = 1
O RN W W N W
CO = O = o= 01 W
coocoo0oo OO,

O WO =
LIS o]
[a T« 20

le]

The first row means that the system is of order 4, with 10 non zeros. The next 10 rows gives the
individual elements of the matrix. The last four rows give the right hand side.

Solving this system on four processors can be done as follows:

C LIST OF PUBLIC ROUTINES 14

mpirun -np 4 <name_of_test_program> <the _matrix_file> single .
Alternatively you can distribute the matrix into four horizontally-sliced matrices and do
mpirun -np 4 <name_of_test._program> <the_matrix_file> multiple .

For example the slice of matrix on processor 2 will be the second row of the matrix together with the
second right-hand-side of the matrix, thus the matrix file is:

13
124.0
1 35.0
141.0
10.0

B.11.3 Example results

The system is solved in four iterations and the solution is returned in z. The output to the screen is:

resQ = 3.575 relat. resC = 1.000

ir = 1 res = 0.3170 relat. res = 0,8867E-01
ir = 2?2 res = 0.1964 relat. res = 0.5495E-01
ir = 3 res = 0.4647E-16 relat. res = 0.1300E-16

final residual is 4.647407769350522E~017
x(1} = 1.000000000000C0 x(n) = 1.00000000000000

C List of Public Routines

Driver Routines for Stabilised Conjugate Gradient with ILU Pre-conditioning

SUBROUTINE clips_cg_intialize(comm,nn,nz,irn,jcn,val,rhs, &
& single_file,my_nstart,my_level,my_nprecon,my_tol, &
& my_maxit)

[nitialises the CG solver system as follows:

a) copies and converts the input sparse matrix-related things into internal format;

b} work out the scheduling and halos;

¢} carries out an incomplete factorization of fill-in zero by default (can be turned off);
d) set up control pararmeters for clips_cg_solve.

C LIST OF PUBLIC ROUTINES 15

SUBROUTINE clips_cg_solve(x,iflag)

solves the system using the paraliel BICGSTAB algorithm.
SUBROUTINE clips_cg_summarize()

prints out timing informations to the s‘creen.
SUBROUTINE clips_cg_finalize()

deallocates spaces allocated for preconditioner and scheduling of communication.

Block-cyclic multi-dimensional FFT

SUBROUTINE clips_fft_initialize(n_dims, lengths, proc_grid, &
& block, communicator, context, error)

initialises things like the communication pattern and data for the FFT.
SUBROUTINE clips_fft(a, work, context, direction)

carries out the parallel nD FET computation within the given context and in a defired direction
(forward or backward).

SUBROUTINE clips_fft_summarize(processor, context)
produces information relevant to a given processor for FFTs to be carried out within a given context.
SUBROUTIWE clips_fft_finalize()

releases storage associated with stored FET information.

Optimisation
SUBROUTINE clips_pcrs_initialize()

initialises parallel Controlled Random Search optimisation module.

C LIST OF PUBLIC ROUTINES 16

SUBROUTINE clips_pcrs_solve(context, mypid, num_pes, my_func, &
& my_box, n, nratio, maxfun, tol, num_offspring, &
& print_level, method, restart_flag, hotstart_flag)

carries out parallel Controlled Random Search optimisation.
SUBROUTINE clips_pcrs_summarize()

summarises performance of parallel Controlled Random Search optimisation mocule.
Dense Iterative Eigensolvers
SUBROUTINE clips_jacobi(n, ncols, ldg, G, ldv, V, initialize, &

& tolerance, nprocs, map, rank, rank_array, glebal_sum, &
& iterations)

This routine solves the eigenvalue problem GV=VE for real symmetric G. The algorithm used is
very closely based on that descibed by Littlefield et al. [7].

Error Handling Routine

SUBROUTINE clips_error(status,calling_routine,message, &
% called_routine)

The package will stop when clips_error is called with a positive status value. It then calls MPT_abort
to close down the application and tidy any outstanding parallel communications. If status has a
negative value a warning message only is printed and the exectution allowed to continue. If status==0
no action is taken and control returned directly to the calling program.

Random Number Generator
SUBROUTINE clips_ran_initialize{i,j,k,1)

initialises the random number generator using four arbitrary integer seeds.
FUNCTION clips_ran()

returns a random number in the range [0,1}). See Marsaglia et al. [8].

Elapsed Time Routine

FUNCTION clips_time()

C LIST OF PUBLIC ROUTINES 17

returns a double-precision value of seconds since an arbitrary epoch.

MPI Profiler
SUBROUTINE clips_profile_initialize()

Initialises the profiling system using the MPI Profiling Interlace, see separate report [4]. Resets all
internal counters.

SUBROUTINE clips_profile_on{)
switches on statistics collecting.
SUBRQUTNE c¢lips_profile_off()
switches off statistics collecting,
SUBRQUTINE clips_profile_time()
saves a value from clips.time() in an internal variable.
SUBROUTINE clips.profile_collect(i,count,type)
updates statistics for each instrumented event.
SUBROUTINE clips_profile_summarize()

prints out average/max statistics for all events.

