Technical Report
DL-TR-2004-002

‘ ~mm€“mﬂmim\“ﬁl \Ilﬂi(i“i\!gﬂmmzﬂl‘
C1008651

ENHANCING THE DATA PORTAL TO A
PRODUCTION LEVEL ENVIRONMENT

G. Drinkwater

19" August 2004

Council for the Central Laboratory of the Research Councils

CCLRC Data Portal Project Enhancing the Data Portal to a production Jevel environment

Abstract: The project aims to provide easy, fransparent access to experimenital, observational,
sirmulation and visualisation data kept on a multitude of systems and sites. Further more it will
provide links to other web/grid services, which will allow the scientists to further use the selected
data, e.g. via data mining, simulations or visualisation. The Data Portal will aim to work as a
broker between the scientists, the facilities, the data and other services. The problem addressed is
that currently the scientific daia is stored distributed across a multitude of sites and systems.
Scientists have only very limited support in accessing, managing and transferring their data or
indeed in identifying new data resources. In a true Grid environment, it is essential to ease many
of these processes and the aim of the Data Portal is to help with automating many of these tasks.

August 2004 Page 2 of 53

CCLRC Data Portal Project

Enhancing the Data Portal to a production level environment

TABLE OF CONTENTS:

1. INTRODUCTION 6
2. CURRENT PROBLEMS WITH VERSION 3.X 7
2.1 Logging 7

2.2 Exception handling 8

3. SOLUTIONS TO SECTION 2 10
3.1 New architecture for Data Portat logging 10

3.2 Exception Handling 15

4. PRODUCTION LEVEL ENHANCEMENTS FOR DEPLOYMENT 17
4.1 Monttoring of users 17

4.2 Monitoring of services 17

43 Clustering of Tomcat instances 19

4.4 Load Balancing of Tomcat nstances 19

4.5 House keeping 20

4.6 Profiling 21

4.7 Stress testing 24

4.8 Portals and other Frameworks 27

5. CODE ENHANCEMENTS OF CODE FOR DEPLOYMENT 28
5.1 Unit Testing 28

5.2 Build.xm! files 30

53 Cog - kit and Axis classloader problems 30

54 Concurrent Versioning System (CVS) 31

5.5 Application design using a Multi-tiered architecture 31

56 Secunty 40

5.7 Optimising Java code 43

5.8 Coding Conventions 46
August 2004 Page 3 of 53

CCLRC Data Portal Project Enhancing the Data Portal to a production level environment

6. DOCUMENTATION ENHANCEMETNS FOR DEPLOYMENT 47
6.1 Javadoc 47
6.2 Configuration 48
6.3 Description 48
7. WHATS NEEDED FOR A DATA PORTAL 49
7.1 Requirements 49

. 8. NEWFEATURES PLANNED 51
9. REFERENCES 52
9.1 References 52
TABLE OF FIGURES:
Figure 1. Code taken from the current Data Portal. ... 8
Figure 2: Corrected code to deal with database conNeCtions............oo.oco oo 9
Figure 3. Proposed Logdj properties file. ... 10
Figure 4: Code obtaining the context path from a servlet to configure Log4j.ccooovvvriiciiicii e 13
Figure 5 : Section from a web.xml file configuring a servlet to load up first...........ccoviin 13
Figure 6: Code from the Log4j server to email Data Portal administrators of problems.................. 14
Figure 7: View of the LogFactor5 GUI showing Log4] messages..........c.c.ourvieceiiiieiecicnen e 15
Figure 8: Try-finally BLOCK. ..o e e e 16
Figure 9: Contents of a Big Brother alert email. ... 18
Figure 10: Big Brother's ROme page. ..o 18

_ Figure 11: A workers2.propteries file, configuration for apache load balancing onto tomcat. 19
Figure 12: Simple Quartz code to set Up twWo JODS. .o 21
Figure 13: Sample profile output from a JVM. ... 21
Figure 14: [Profiler examples of CPU usage on a Data Portal module. ..o 22
Figure 15: Memory heap taken from JProfiler............. 23
Figure 16: JMeter Aggregate Report from a simple Data Portal test...........cocoviiiiiicc 25
Figure 17: JMeter Graph Result from a simple Data Portal test ..., 25
Figure 18: Results show that with more requests the response time decreases (See Figure 16)26
Figure 19: Code allowing the context path from a web services to be found. ... 28
Figure 20: Sample Unit test COAE. ..o 29
Figure 21: Results from figure 17 code’s Unit test. ..., 29
Figure 22: Section from an ant build file. ... 30
Figure 23: [SP expression language to hide the complex java code from the HTML designer. 32
Figure 24: Sample JSP code using JSTL to connect to a database. ... 35
Figure 25: Overview of the JSF architeCture ... 37
Figure 26: Two web service invocations to show the delagation of a proxy credential. 40
Figure 27: Sample code from the Web Service for credential delegation..............ccoocoocoiiniin 41

August 2004 Page 4 of 53

CCLRC Data Portal Project Enhancing the Data Portal to a production level environment

Figure 28: Client code for sending a delegated proxy to a web services. ... 42
Figure 29: Server code for extracting the proxy from a web service invocation. ... 42
Figure 30: Sample web.xml file for the performance tuning for the servlets. ..., 45
Figure 31: Documented comments of java code conforming to Sun Microsystems standards......... 47
Figure 32: HTML page showing the results of java code run though javadoc...........ceie 48

August 2004 Page 5 of 53

CCLRC Data Portal Project Enhancing the Data Portal to a production tevel environment

1. INTRODUCTION

The storage and management of scientific data generated at its facilities is an important
responsibility of CCLRC. The full value of these data resources will only be realised if they are
easily searchable, accessible and reusable. The aim of this project is to develop the means for a
scientist to explore these data resources, discover the data they need and retrieve the relevant
datasets through one interface and independent of the data tocation.

The Data Portal is currently on its third version. The first was a prototype built on J2EE
technolegy, mainly servlets. The code was redesigned from scratch for the next version but still
used J2EE with a Model, View, Controller paradigm (MVC). Java Server Pages (JSP) for the
presenfation, JavaBeans as business logic (Model) and servlets for the Controller. The current
release used the implementation of the previous release but split the Data Portal in to areas of
functionality, each with a web service interface. This allowed the code to be modularised and to
take advantage of web service technology but created many problems, including integration of the
modules, the additional complexity to install and configure all the modules, installation of all the
new sofiware and libraries and the added problem of a UDDI registry server for the lookup of Data
Portal web services.

The solution to the problems that the web services architecture caused and the enhancement of the
Data Portal to a production level piece of software are explained and examined in this paper. It
outlines what are the code and software engineering problems and what improvements are needed.

August 2004 Page 6 of 53

CCLRC Data Portal Project Enhancing the Data Portal to a production level environment

2. CURRENT PROBLEMS WITH VERSION 3.X
2.1 Logging

One problem with Data Portal 3.x is the use of logging. This is because each module was written
independently from other modules with different logging techniques and ways to log errors, thus
creating problems with the Data Portal as different modules report their errors independently and
log similar errors with different importance levels, causing confusion and complications with
debugging.

Logging is currently being used in several different ways. The standardisation of the modules
logging system with clearly defined error messages and logging of these messages is needed. The
current manners of logging within the Data Portal are as follows:

* Logdj. Thisis a module created by Apache within the Jakarta project [1]. It allows logging
at runtime without modifying the application binary. Logging behaviour is controlled by
editing a configuration file, without touching the application binary. The target of the log
output can be a file, an CutputStream, a java.io.Writer, a remote logdj server, a
remote Unix Syslog daemon, a swing GUI, or even a NT Event logger among many other
output targets, which gives the module great flexibility and power with little effect on the
speed.

s System.out.print() statements. Used within some modules. These statements are used for
logging, debugging etc, which cannot be disabled once the system goes live, or in
production.

e exception.printStackTrace() methods. Same effect and problems as the previous method.

Log4j is currently the preferred way of debugging and logging of errors. Logdj gives the
possibility of levels of logging with the ability of some of the levels to be disabled by a change of a
configuration file when the system comes out of debugging.

2.1.1 Logging levels within Log4j
Here are the five logging levels for log4j with a description:

e FATAL. The FATAL level designates very severe error events that will presumably lead
the application to abort

¢ ERROR. The ERROR level designates error events that might stili allow the application to
continue running, other runtime errors or unexpected conditions

¢ WARN. Use of deprecated APIs, poor use of API, Almost errors, other runtime situations
that are undesirable or unexpected, but not necessarily "wrong".

¢ INFO. The INFO level designates informational messages that highlight the progress of the
application at coarse-grained level. Interesting runtime events (startup/shutdown).

¢ DEBUG. The DEBUG Level designates fine-grained informational events that are most
useful to debug an application.

The strict level of debugging can allow different targets of logging. In development, most targets
can be files. In production, FATAL and ERROR messages can be targeted to a server port, this can
allow the server to log the messages to a database, and/or email a member of staff about a

August 2004 Page 7 of 53

CCLRC Data Portal Project Enhancing the Data Portal to a production level environment

problem or to LogFactoryd (section 3.1.3). WARN messages can be logged to files and INFO to
files or a UNIX daemon, or even turned off with a DEBUG level.
2.2 Exception handling

Much of the code within the version of the Data Portal v3.x only catches Exceptions or
Throwables. Some code does not even catch and log errors, and therefore errors from within the
code are never recorded and ultimately never dealt with.

2.2.1 Dealing with Errors
Much of the Data Portal code does not fully deal with errors. Catching errors is not only about
logging the error but also dealing with the problem.

The following code is taken from the current Data Portal:

DbAccess db = new DbAccess()
ResultSet rs =db query("SELECT # from userTable whers userName='"+userld+" ")
if (rs.next()){
return r = db.buildXML{rs),
} else {
77 if user does not have an account in the facility then it returns the privileges of
/7 a denmo usex which is stored in the database as Deno
ResultSet rsl = db.query("SELECT =* from usexrTable vherse userlame='denc’ ") ;
rsl . nert(),
return r = db buildXML{rsl),
H

Figure 1. Code taken from the current Data Portal.

This method creates a connection to a database, and then builds an XML document from the
results. No exceptions are caught, dealt with or logged. Even if the code closed with a
db.shutdown {) method to close the connection and release the ResultSet and Statement
objects for garbage collection any exception from a NullPointerException to a SQLException
would skip the shutdown method and therefore keep a connection open (It is another topic
altogether whether to check for rRuntimeExeptions or to catch them. There is no CPU overhead
for a try block if no exception is thrown but it makes bad coding to always check for
NullPointerExceptions. See
http:/ /java.sun.com/docs/books/ tutorial /essential / exceptions/runtime.html or http://www-
106.ibm.com /developerworks /java/library /]-jtp05254.htm] for a discussion.).

See section 4.6.1 on profiling for further examples from this code.

A try / catch block is needed to catch exceptions. Maybe a NullPointerException means
that the user is not in the database and therefore returns an empty document representing the
outcome. A SQLException would represent an error with the database or the connection. This
error would need to be logged as an ERROR and dealt with accordingly.

Since the two exceptions deal with closing the connection, it is then best to put this in the finally
clause of the try / catch block. This is always executed, whether an exception is thrown or
not. Therefore, the final code might look like figure 2.

NB: Database connections. When closing a Connection, not all database drivers release the
ResultSet and Statement objects, so it is essential before they go out of scope these are closed
and settonull.

August 2004 Page 8 of 53

CCLRC Data Portal Project Enhancing the Data Portal to a production level environment

try{
DbAccess db = new DbhAccess().
ResultSet rs =dbh. cquery{"SELECT * from userTable vhere userName='"+userld+"'");
if (rs.next()){
return r = db.buildi¥HLl{rs):
T else {
/7 it user does not have an account 1n the facility then i1t returns the privileges of
/7 a demo user which is storad in the databass as Demo
ResultSet rsl = db query("SELECT # from userTable wvhere userHame='demc'”);
rsl . next{):
return r = db burldXHML{rsl),

catch(NullPointerException npe){

log. warn("lUser "+userld+" not in privileges tsbhle"):
return "";

H
catch(SQLException se){
log.error("Uable to obtain “+userld+” privileges",se);
return """
h
finally{
tryq
db.shutdown():

catch(Ezception ignore){}

-

Figure 2: Corrected code to deal with database connections.

2.2.1.1 Web service exception handling

Web services exception handling is inadequate. Other remote method invocation architectures, i.e.
Java RMI ensures that the remote method API at compilation time is local to the client code, o that
the Java Virtual Machine can check the error handling for the client code. Web services however,
the exceptions thrown that are known at compile time are axisExceptions {If Axis [2] is been

used) and therefore it is unknown what the exception represents and how to deal with this
problem.

When writing a client to a web service it is therefore impossible to know the difference with the
errors unless it is explicitly known what exceptions are thrown and what they entail. L.g., the Web
Interface checks for a SessionTimedoutException from the SessionManager because the Web
Interface knows this through human knowledge. In a true web service environment, this would be
impossible and the client would not know the difference between a SessionTimedOutException
from a ConnectionRefusedException and therefore has to treat them the same.

August 2004 Page 9 of 53

CCLRC Data Portal Project Enhancing the Data Portal to a production level environment

3. SOLUTIONS TO SECTION 2
3.1 New architecture for Data Portal logging

All Data Portal modules to be re-engineered to standardise the logging levels. Each level used
must conform to a level of seriousness that the error will effectively have on the Data Portal, and
not the seriousness on the module itself. This only with the core Data Portal modules, i.e. not the

XMLWrapper.
3.1.1 Usage and Examples

e FATAL. Only to be used when the error causes the Data Portal stop completely. Examples:

UDDI server down, connection refused to Authentication Module, Session Manager
database goes down. This is usually for the core modules of the Data Portal.

e ERROR. When the error causes something to fail but the Data Portal can still recover the

fault. Example, Data Transfer service down, all other services still work.

« WARN. An error has occurred but this is an expected error. Examples, user’s certificate

expires, wrong password given, session timed out.

¢ INFO. Used with code but not in a catch statement. Simple information, i.e. the DN of user

logging on.

* DEBUG. Used only to debug and test. E.g. checking null pointers, values etc, i.e. the DN of

user logging on.

3.1.2 Logdj properties file

All Data Portal modules to use a global LOG4] logger properties file. This makes all the logging

statements and targets commen. Figure 3 shows a proposed LOG4J properties file:

logidj rootCategDry=debﬁ;jAaggﬁole, server, LEFS

LFS 1s the DailyRollingFileAppender that outputs to a rolling log

file called dataportal log

logdj . appender.LFS. Threshold=debug

logd4j appender 1FS=org apache.logd4j DailyRollingFileAppender

logdj appender.LFS File=dataportal lcg

Users nust also define a Pattern Layout for the log file That is, which pieces of information you

d, p, t, 1. n, n) are documented 1n the Patternlayout class of the Logd4J API.

logdy . appender LFS. layout=org.apache. logdj .Patternlayout

¥ Hext line is editited to fit.

log4) appender LF5 layout ConversionPattern=[sliSs start]¥d{DATE}(s1fSs DATE)Xn~
#%p[sli5s PRIORITY 1%n%x[s1f5s NDC)4nX%t[slf5s THREAD]%n%c(slfSs.CATEGORY]%n™
%1[=lf5s IOCATION*n”n{slfSs. HESSAGE]1%n¥n

console is appender to the catalina out/console

logd; appender conscle Threshold=debug

log47.appender.console=org.apache. logdi.ConsoleAppender

leg4) . appender console layout=org apache logdj.Patternlayout

log4i appender console layout ConversionPatteran=%p «d{dd-MH HH:mm} %<F:%L - %n¥n
log43z . appender.console. InnediateFlush=true

server appender to a socket. This emails about errors and fatala
logd] appender server Threshold=error

logdj . appender.server=org apache.log4j.net . Socketippender

log4] appender.server.RemoteHost=lopcalhost

logdj appender.server . Port=68R8

want logged to the log file and in which order. Information on the various conversion specifiers (1.e.

Figure 3. Proposed Log4j properties file.

August 2004 Page 10 of 53

CCLRC Data Portal Project Enhancing the Data Portal to a production level environment

This file has three different logging outputs:

1.

The first output appends to a DailyRollingFileappender. This will append all log
levels to a file per day in a certain format. This format is a standard for LOG4] that allows
the LogFactor5 application to view the contents.(Section 3.1.3)

The next output logs all levels to the console appender. This is the catalina.out file generate
from Tomcat, allowing for normal debugging and viewing.

The last is a socket appender. The socket append will send ERROR and FATAL messages
to socket that is written by the Data Portal team. This socket can reside on any machine
and could be free to do anything that it is programmed to do. E.g. log the messages to a
database or file on the server, but since the DailyRollingFileAppender achieves this, it
will be suggested that the server logs the errors and emails the errors with a unique id for
the error to a list of administrators, who can go to the LogFactord GUI and locate the error.

3.1.3 LogFactor5 Application

NB: A commercial company gave LogFactor5 to the Apache Jakarta Logdj teamn. The logdj team
liked the application so much that they wrote an open source version very similar to LogFactor5
called Chainsaw. This had all the functionality of LogFactor5 but with additions. At the time ot
writing this paper, Chainsaw version 2 [3] was not released, but all the information and ideas of
LogFactor5 still apply to Chainsaw.

LogFactord is a Swing based GUI that leverages the power of log4j logging framework and
provides developers with a sophisticated, feature-rich, logging interface for managing log

messages.

Benefits:

Quickly isolate problems in applications.

Enable only the categories that you are interested in without affecting other messages.
Filter out priority levels.

Filter out records based on NDC (Nested Diagnostic Context, see below).

Reduce the time required to locate specific messages.

Read in and view log4j log files from either a file or a URL.

Start the LogFactor5 GUI up independent of the main application.

Features:

Real-time category and log level filtering.

Read log files from a file.

Read log files from a URL.

Customizable Log Table view.

Category level tree navigation.

NDC record filtering.

Full text searching on logged messages.

Save configuration and filtering settings for later sessions.
Configure the number of log records to be displayed.
Customizable record colours.

Configurable font face and size.

Customizable Log Table column layout.

August 2004 Page 11 of 53

CCLRC Data Portal Project Enhancing the Data Portal to a production level environment

. Full support for all log4j levels.
. Full support for custom levels.
. Dynamic message counting.

The list of benefits and features is very rich and links in with the socket server/email solution.

LogFactor5 allows a unique NDC (Nested Diagnostic Context) to be attached to every message
sent. This message could contain the user’s session id with a unique id time stamp. This message
is then sent to the log files and to the Socket Server. The Socket Server would filter any Error/Fatal
logdj messages and the unique NDC number sent via email to a list of administrators. The
administrator could then filter the table of errors messages using LogFactor5 and locate the error
that has just occurred with the unique id in the email.

Logdj NDC atfects the NDC of the current thread only, i.e. they are managed on a per thread basis.
Therefore, the rules for writing the NDC into the code are as follows

¢ UseNDC.push(_give unique id here as a string_) ; This method, if no current NDC are on
the thread, creates and puts it on a stack. This needs to be at the start of the code.

¢ UseNDC.pop(); Thisremoves it from the stack. There is no exception thrown for
forgetting to pop the NDC out of the stack but you will end up with the previous id
appended with the current one. This needs to be at the end of the code just before the
NDC.remove(}. This needs to be executed however the flow of the code goes.

e Use NDC.remove () at the end of the thread, i.e. at the end of the]SP or Servlet. This frees
up the memory used for the NDC within the thread. This is needed with large heavy-duty
applications, but with servlets, since another thread will execute the class the previous
thread been executing, (i.e. a servlet) it is not necessary to use this method.

Sections of the code for the server can be seert in figure 6. This class creates a socket and listens for
incoming connections. Ouce a connection is established with the Data Portal’s Logdj server event
logger, the application loops listening for events (ERROR and FATAL) to be sent to the server.
Once the information about the logging event are extracted from the LoggingEvent class that
Logdj sends, the information is sent to a iist of administrators that the server is configured to email.

Logdj is configured with a properties file (in either XML or normal key/value pair). This means
that configuration of Log4j is done on a ClassLoader basis. Since each web application within a
servlet container is loaded via a separate ClassLoader each application has to configure itself to the
global Log4j file. This can be achieved using the load-on-startup element {See figure 5) in the
web.xml file of each application. This ensures that on startup of the servlet container, each
application loads each servlet instance in a certain order and that the servlets that are to be loaded
in order are loaded on startup and not when the servlet is executed via its first http request.
Firstly, a servlet that the application wishes to load first must be slightly modified and its init()
method overridden (See figure 4). This method is executed when the servlet is first loaded into
memory and therefore the properties file is located and the Logj4 is configured for this application
whenever the application is reloaded or installed.

August 2004 Page 12 of 53

CCLRC Data Portal Project Enhancing the Data Portal to a production level environment

ss/set static log for the class
Logger log = Logger getlogger(this getClass() getHams()):

//get context path
pravate String workingDir = null:

%% Initializes the serviet

*

public void init{ServletConfig config) throws ServietException {
s7get and set the uurklng dir
ServietContext sc = conlig. getSarvleLConLext(),
vorkinglir = sc getReailPath(""):
ssset the logdj properties file for the whole wveb application
PropertyConfigurator configure(vorkingDir+File.separator+"VEB-INF"+File.separator+”logd)y properties”).

Figure 4: Code obtaining the context path from a servlet to configure Log4j.

To load the servlet first upon the application being installed or reloaded this code snippet needs to
be added in the web.xml file in cach application. The load-on-startup element’s value one means
that it will be loaded up before any servlets with a higher number in their load-on-startup element.

<7xml version="1.0" encoding="150-8359-1"%=
<yveh-app xmins="http: Mava. sun.comxminsiee" xming xei="hitp: Ao w w3 orgf2001 HAMLSchema-instance”
xsi: schemalocation="titp:/ava . sun.comimins f2ee web-app_2_4 xsd" version="2.4"=

=dizplay-name=¥Vebh Interface</display-name=

alea =i =

=serviet=
2zervlet-names=LoginServietz/serviet-names:=
=display-name=LoginServiet Serviet<idisplay-name=
=servlet-class=

uk.ac.divweb LoginServiet
<fzerviet-class»>

<load-on-startup=1<Aoad-on-startup=
<Izerviet=

Figure 5 : Section from a web.xml file configuring a servlet to load up first.

tryi{
server = nev ServerbSocket(port.max_wait),
log.info("Started server on port “+port),

while(true){
log.info{"Awalting a conhection. "),
socket = server.accept():
log.info{"Connection accepted fraom "+socket . getlnethddress().getHostlane()).

s/soutput = nev UbjectOuiputStrean(socket getOutputStream()):
input = new ObjectlnputStream(socket .getlnputStream(}):

LoggirgEvent event.
/sdo wvhile loop will never gomout of since while 1s just set to true
7/s/only bottom catch can be got to 1f there is a problem above
do{
try{

//get logging event

event = (LogglngEuent)lnput readCbject().

log.info("Logging Event incoming .. . "):

~sget Exception message as a String()

Throvablelnformation throwable = (Throwablelnformat.on)event.
getThrowableInformation().

String[) exception = {"Ho Exception throwvn with this logging event."}:
exception = (throwable != null) ? throwable.getThrowableStrRep() : exception;

August 2004 Page 13 of 53

CCLRC Data Portal Project Enhancing the Data Portal to a production level environment

/7get the level of the logd; event
level _level = svent. getlevel():
String level _level . toString();

props_caonf . load(new FilelnputStream(nev File(prop file name))):
String conflasvel = props_conf . getPropervty("leval", "FATAL"):
boolean email = false:
s7only fatal and error message can get send to smails.
if{conflevel equalslgnoreCase("FATAL")) email =
{level equalslgrnoreCas=s("FATAL"))? true : false:
else if{conflevel equalslgnoreCaze("ERROR" }){
email = (level =squalsIgnoreCase("ERROR") ||level equalslgnoreCase("FATZL")

true ; false;
|
F

log .debug("Logging lewsl 1= "+level+” . Sending emazilfs}: "+email);
s/sget the time of the svent

long time = event.getStartTime():

Date date new Date(time);

s/7get the unigque HDC
String ndc = svent .getHDC():

</gaet the nessage
String message = event . getRenderediesszage():

if{email) sendEnail{ndc.date. level excaption, message)

1

J

catch(NoClassDefFoundError ncdfe)q{
log. fatal(“Unable to run server without Class Def . Shutting down”.ncdfe)
System e=xit(0):

L

4

catch({ClassHotFoundException cnfe){
log fatal{"Unable to run server without Class Def Shutting down'.cnfe):
Systemn.exit(0);

catch(SocketException se){
log.error(se);
v
tryd
log . warn{"Waiting for 2 minutes. then will try to reconnect..."):
input .close():
socket .close():
Thread .sleep{ 120000} ;
.
x
catch(Esception ignore){}
break:

Figure 6: Code from the Logdj server to email Data Portal administrators of problems.

LogFactorb has other benefits. It displays loggers in a hierarchical tree-like fashion. Loggers are
identified with dot-separated names similar to Java package and class names. The name
components are mapped to the levels in the hierarchy in LogFactory5. For example, the logger
name org.apache.applications.log4j.InitUsing Log4]Properties is displayed in figure
7. This allows the view of all the error levels from with in the Data Portal, filters view certain
levels, i.e. FATAL and ERROR. It allows a view of all the errors from each module in turn, because
of the package name. This tree like structure allows errors to be viewed, not only from the Data
Portal to the module level, but further to the class level. It would be possible to view all the
FATAL errors from within one class within a module from any time scale, allowing monitoring of
persistent failure points etc.

August 2004 Page 14 of 53

CCLRC Data Portal Project Enhancing the Data Portal to a production level environment

5] LagFactors -- Homer Simpson (rial Number: FE130302-13ef

file [tlrl Lon Level kﬂew Conﬁuuie Help
Font: IDlanr; ”1" ¥ ClearLny Table
o5 Calagodins A Priority Calsgory hessans Location
OW ® r |,5|:'5\;ID_e'r.'a|'.':|:.:es:u'n[r;5|ngmunlr-l.':.a;\|'.s,|'u'_1.':|'-;.z|'e;u,,me:fc-,‘rrr,"haf |.E':f..;a'r:mes.‘lr'.ltu._,
- ‘ T o
§ v nglielault DEOUG E"ammﬁu|nlulSIIlJT\.IUHHNEMDHH‘IUEI‘:\:iI!IIU “letlu mvm mxamples.lmtu._.
W ¥omtUsingDeadl | T
B % mitu Dt l._: AR »‘amn[eblmll ‘-"mg\lulhpleﬂmm»nm rs.dnikl., ».an Lam B, tna(f‘plﬁ“;l\“ll”
vi ¥ nitUsingDefawn 3L Y SR
@ ¥ snnlesn| | JYRRN 'ehamp[eslmlusmg?lulhpleqppender‘ il ;Mmm |'0:L|d EN&I(‘[J]H‘_-II |tU
. A o ~ N — ,J__ i
Vi ¥ hnitUsi it 2] | \
% inkUSingMURI Rl ZYVWARM :ehctlﬂpfe;\lillll-;ﬁll‘l[j"'.llJ”II)|En§]|]‘°IIL|-’f" nily.. L0 0h|hdt='eﬂ exan'ples.IrltU
o _ |
w:‘-rm L sramples. nitUsingilutlipleAp pandsrsmili). T:ul(YOUIS 5., \L\alr«mna lth
i_ |
, ERROR sramplesinitUsimgdlullipleappendaraimlid.. Oear Baby, W .. eraraples Imtlh
ERRDOR ‘npleslthsmgMulhp eAppenders lmlLi“ IDear Bahf LU examples InittJ. .|
B ‘ — - |
H {‘ex?mple, n|tb8|ngmthmPnppendPrs iy, im Hutz, arey Marﬂ;)lpq InitLs ‘
% R T . - e s — |+
. IMace —Tha Jul 26 TSiClial BT 201 (95@184—&8-‘!80:)

{alegory name: ¥
examales. InitUs acklkipaapaencess In IUzingNult aleAapanders i

l
|
i
|

LCatonorys exanples. InitUsingtlul tiplehpponders. InicUsing{uleipledrpen
Haees
NEREETIY Daay Eaby, elcows To Duepsvrlle. Populazion: you.

Lacacion: exauples. InitWzingulcipledppenders. InitUsingtuleapledpper. |
Hders.wain InielsingdulcipleAppende s, 1ava: 122}

H ALY

§ Feapes gul of

Figure 7: View of the LogFactor5 GUI showing L.og4j messages.

3.2 Exception Handling
3.2.1 Techniques
3.2.1.1 Private methods

Private methods should not log errors. This would lead to a single error being logged twice or
more, A private method should, if needed, catch the exception to clean up and deal with the error.
E.g. database and file connections. The code in the class that calls this private method should log
the error.

With web services, the main web service method should log the error in most cases, if the error is
not recoverable. The exception should be thrown upwards in the method call trace and not logged
by the private methods so the same error is not logged more than twice.

The exceptions thrown should also be more helpful. A NullpPointerException from a UDDI
lookup for a URL should be checked for it's value. A NullPointerException then should be
checked and an exception thrown with a message, i.e. new NullPointerException ("Utl for
"+facilityName +" cannot be "+facilityUrl) would help in the debugging instead of a
NullPointerException() with no message.

August 2004 Page 15 of 53

CCLRC Data Portal Project Enhancing the Data Portal to a production level environment

3.2.1.2 Try-Finally clauses.

When catching multiple exceptions the code that needs to be executed whatever execution flow
can use the try-finally clause.

try{
ssblock of code with multiple exit points
T

finally<
7sBlock of code that is always executed when the try block is exited
//no matter how the try block is exited. even if a exception i1g thrown

—

Figure 8: Try-finally block.

This is particularly useful when a database connection has been created within the try block. If
the code needed to be caught by multiple catches then instead of shutting down the connection in
the try and all of the catch blocks it is desirable to place it into the finally clause.

3.2.1.3 What to catch

Exception or Throwable classes are mostly caught within the Data Portal application. Throwable
classes should never be caught because this contains Error classes which are thrown when a
dynamic linking failure or some other "hard” failure in the virtual machine occurs, the virtual
machine throws an Error. Catching Exceptions is not a problem if the code checks for null
pointers (i.e. most RuntimeExceptions associated with the code) and the error handling is to be
the same for all errors. However, different errors sometimes need to be treated differently,
connections closed, different responses, return values etc.

For example, the Shopping Cart web service retrieves the users contents with a session id that has
been given. The web services checks exceptions for a SessionTimedOutException thrown from
the SessionManager. This is a checked exception that needs to be treated differently from a
soLException. A checked exception is a exception that a try-catch must either be nested around
the call to the method that throws the exception or the method must explicitly indicate with
throws that it can generate this exception.

3.214 Dealing with errors

Refer to section 2.2.1

August 2004 Page 16 of 53

CCLRC Data Portal Project Enhancing the Data Portal to a production level environment

4, PRODUCTION LEVEL ENHANCEMENTS FOR DEPLOYMENT
4.1 Monitoring of users

Monitoring of users by direct logging of all web service invocations within the Data Portal. Since
web services are slower and more memory intensive than normal J2EE applications a better
solution would be to use a API based interface, like Quartz [4]. Quartz provides multi-threading
capabilities and other benefits, see section 4.5.2.

This API would create a new thread to log the invocation by passing the session id (sid). The sid
would be sent at the start of every web service call with the time, method called etc to a database
to be logged against a user within the database. A thread is more desirable than static method call
because of better exception handling and possible blocking / timeout issues with the database
connection, and hence would not affect the Data Portal’s logging or performance. Since this
logging would create large volumes of connection calls, a connection pool is advantageous, which
the servlet container like Tomcat would monitor.

Possibility of creating a GUI to view sessions and services used by the users. This would allow the
administrators of the application to view/create usage charts and to see which users are logging
on to the Data Portal and which web services they are using.

The architecture of the database schema needs to be investigated.

4.2 Monitoring of services

Introduction of a monitoring service to the Data Portal. There is a monitoring tool called Big
Brother [5]. [t is free under academic use. The tool uses a client and server approach. Another
similar tool is Nagios [6], it is an open source host, service and network monitoring program.

These monitoring tools are designed to inform the administrator of network problems before
clients, end-users or managers do. The monitoring daemon intermittent checks on hosts and
services you specify using external "plugins” which return status information. When problems are
encountered, the daemon can send notifications out to administrative contacts in a variety of
different ways {email, instant message, SMS, etc.). Current status information, historical logs, and
reports can all be accessed via a web browser. This will allow administrators to locate and fix
problems before users to the Data Portal encounter them.

4,2,1 Big Brother

The server is installed on a Linux machine and interfaces to an Apache web server, which displays
the status information of machine. The client is run on each computer that needs to be monitored.
The server every 5 minutes contacts the clients through a single port 1948 and requests information
about the machine. This can be to monitor CPU and memory usage, http connections, DNS, FTP,
POP3, databases etc. Once a service falls under a certain level, (disk over 95%, http connection
lost) an email is sent to a list of administrators.

Cne of these clients could sit on our Data Portal node and monitor the tomcat server, database and
UDDI server for lost of connections. Groups can be collated and therefore a Data Portal group
could be established to monitor all the Data Portal services, which reside on different machines.

Figure 10 below shows a screen shot of the Big Brother web front end that is monitoring esc and
esc5 on our sub net. The server contacts the clients on the two machines, which executes a number
of shell scripts on each machine. Standard scripts are available for http, databases, memory, ldap

August 2004 Page 17 of 53

€6 Jo g1 @8e $00T 1IsN8ny

‘abed auioy s.Jayjoig Big 01 einbig

s I;quu! |E'3I0'| %___J_ o __ I Il . _ o __l:____ _GUrOd —:gi

aliyo aeEsEUn C: Jodal ol Ao LD NUS]E &

3nroe'|pr§asa
Nt oR'|Prasa

*

£00Z LW £1:06:¢ 81 AON anL = O

o

| ©iepdn 3se| 5 Jayo.uq Eiel
[=} ; s e
«§| qe:mo:@ | & a @ E |- ® o ’ @ 1 _,\5 " jg ||T Buiesna]ejmoq|;alg 05y

« S>1L5!1H oo [a jqqpin oeiprase:dny [ssappy |
T)"3 I% a & ‘E‘ f;? epan > sowoned [E q:magig’-. | o @ f?‘ - = a vpeg-—{; _[
r - - deH spoL sawoned moih W3 ad |
RO B S wiaI] o 1 ADN 3N ® SNJe3S - 4543049 fig : uaa b I

:l!ELUG yale Jayjolg fig e Jo sjuaion 16 anbig

i Twag ~daay - -3yn-oe- [P 23 /WAy /qq/in-oe- (P 23/ /:d31Yy :23& 3I=8aTd

UOFADSUUDD ON - 0006 :HN-2B- TP -28=2/,/:d11Yy pa2as

D00 :spuon=g

Hng X=sSMmOoaAd PTonE 1pPed-X

TwaY /ax=223 2dAL-au=z3uo0d

22070 !UOCTAD2UUODD

zogg UabhusT-ausIUcCH

s2148g s=20unyH-1d3noavw
HW9UELFOXC-2EU-CObDT, 1HeLT

IHD 9B IZETT £002 ~A0ON 0T "UOH (PETITPOH-215v7]
T ¢ ¥/dHd (XTUun) Lz-eg-Tr/2uodedy a13aa3g
1HD TIS:9F:0T €002 AOCN 2T ‘20l :2avg

MO 002 T°T/dLLH

MO A[AITIZ - JSHncoetTpTosa//idaay uasabs

£007 LHD TS :9F:0DT BT ACKH 2Nl P21 diag"dn' 28 TR o853 [oT0co1Fw]

OIDETIZS0E6T0O0S ~ d33Y "N "22°" TP 2983 [OTOLITHY — d2i :1aa3lfomg

"6 931y Ul JEULIO) 31} UI [[RUID
R BIA P2)ORILI0D 218 SIOJRISILIIUIPE UMOP S90S 9D1AISS B J] %O ST 90TAIDS 21]] JL1} SUBIW 11921T) D]

JUSUIUOITAUS [9A2] uononpoid e 03 [B)10] 8le(] 3y} udueLuyg 1afor] te110J ered DVIDD

CCLRC Data Portal Project Enhancing the Data PPortal to a production level environment

4.3 Clustering of Tomcat instances

Tomcat 5, the new release of Tomcat implements Servlet 2.4 and favaServer Pages 2.0
specifications from Sun. One of the newest enhancements is session replication. This allows
clusters of Tomcat instances to replicate their session data. Therefore, if a tomcat instance fails the
other tomcat instance can take over the session request to process it as normal. This clustering of
tomcat servlet containers allows the Data Portal service to be more reliable and therefore more
accessibie to the users.

4.4 Load Balancing of Tomcat instances

Tomcat can be used as a back end server behind a single Apache Web Server. This web server acts
as a load balancer for the multiple instances of tomcat (a cluster using session replication). If an
instance fails, the session information is sent to another instance within the cluster. Because they
share the session information with more tomcat instances, the user would then carry on as normal
with an improved response time.

The load balancer checks the tomcats periodically to see which of the instances are available for a
job (receive a page request}, and checks how many of the instance is has received from the load
balancer. If an instance goes down the load balancer (Ib) will delegate the request to the rest of the
cluster until the tomcat is up again and ready to receive requests. At this point it will enter the
cluster again, show itself to the Ib, and receive requests.

With clustering, it is possible to work on upgrading the Data Portal code or bug fixes without
stopping the service. One tomcat is taken out of the cluster and upgraded. Then after that the
other (depends if there are 2 tomcats) is taken down and the first re-established to the clusters.
This has been demonstrated with the development Data Portal blade server. It was simple to
configure and works well. This also removes the port number when logging on to the Data Portal,
as they would go through the normal port 80 in which browsers do automatically. Figure 11
shows a simple worker2.properties file for Apache for load balancing with 50/50 without session
replication.

Il logger apache2]
level =DERBUG

[shm]
file=c:“Program Files“Apache Group Apache2Z-~log=s~jkZ . shn

Exemple socket channel, override port and host.
[channel .sockat "gjd37vig.dl. . ac uk:8009]
tomcatId=tomcatl

group=lb 1

#define the worker

faiplld -gid37vig dl.ac uk- -8009]
channel=channel socket:gjd37vig.d)l . as.uk:B8009
lb _factor=1

¥ Example socket channel, overxride port and haost.
[channel socket :gjd37vig.dl.ac.uk:%003]
tomcatId=tomcat?2

group=1lb_1

¥define the worker

[aipl3 g3d37vig.dl ac.uk 9009]
channel=channel .saocket gjd37vig.dl. ac . uk- 9009
l1b_factor=1

[lb:1b_1]
¥info=Default load balancer
#debug=0

worker=ajpl3 gjd37vig.dl ac.uk:8009
worker=ajpl3 gjd37vig.dl ac uk 900%

[uri: =]
group=1lb:1lb_1

Figure 11: A workers2.propteries file, configuration for apache load balancing onto tomcat.

August 2004 Page 19 of 53

CCLRC Data Portal Project Enhancing the Data Portal to a production level environment

The tomcatld corresponds to the jvmRoute attribute of the Engine element in the tomcats
server.xml file. (NB: it is also possible to take away the tomcatld from is file (worker2 properties)
and apache will just alternate and not load balance 50/50).

4.5 House keeping

4.5.1 Cron jobs

4.5.1.1 Databases

Modules like the session manager create large amounts of data within their databases. Most of the
data is removed when a users logs off the Data Portal. However, when a user does not log off the
Data Portal and their session times out the data within the database is retained. Depending on the
amount of users and the frequency of their usage, this information could become very large.

A cron job (or something similar) to periodically check the databases should clear the database of
any wnecessary data.

4.5.1.2 File Systems

Similar to section 4.5.1.1. File systems contained user workspace to be cleared from the entire Data
Portal. E.g. results.xml files etc.

4513 Log files

Tomcat log files in a production environment can get very large. Jobs should be set up to weekly
compress the catalina.out file and access file and replace them.

4.5.1.4 Weekly/Monthly/Daily records

Investigate into the possibility of producing weekly, monthly reports of the usage, down time etc
of the Data Portal through the session manager info and the access log files.

Le. the weekly log file should be created and compressed for storage to save on space on the file
system log directory.

These tasks could be created and executed with Quartz. See section 4.5.2.

4,52 Quartz

Quartz is a job scheduling system that can be integrated with, or used along side virtually any
J2EE or J2SE application. Quartz can be used to create simple or complex schedules for executing
tens, hundreds, or even tens-of-thousands of jobs; jobs whose tasks are defined as standard Java
components or E]Bs.

Sample uses of job scheduling with Quartz:

* Driving Workflow: As a new order is initially placed, schedule a Job to fire in exactly 2
hours, that will check the status of that order, and trigger a warning notification if an order
confirmation message has not yet been received for the order, as well as changing the
order’s status to ‘awaiting intervention’.

* System Maintenance: Schedule a job to dump the contents of a database into an XML file
every business day (all weekdays except holidays) at 11:30 PM.

August 2004 Page 20 of 53

CCLRC Data Portal Project Enhancing the Data Portal to a production level environment

This can be used instead of a cron job for more complex tasks that do not depend on the Data
Portal, i.e. Tasks to clean up the File System from timed out sessions, explained before, whenever
the Data Portal has zero sessions. Tomcat can listen for sessions and counts them when sessions
are created and destroyed.

Quartz is java based and would be easily implemented in the Data Portal. The coding is every
simple, the following two examples give an indication of the simplicity.

SchedulerFactory schedFact = nev org guartz inpl.StdSchadulerFactory().
Scheduler sched = schedFact getSchaduler(),
schad start();

JobDetai1l jobDetail = new JobDetairl ("nyJob”, sched.DEFAULT_GRQUP, JobClass.class):
JobDsta1l jobDetail2 = new Jobletail(":xyJob2”, sched DEFAULT_GROUP, Another.class).

long endTime = System.currentTimedrllis() + 6000000L,

SimpleTrigger strigger = nev SimpleTriygger("mytrigger”. sched.DEFAULT_GROUP, new Date().new Date(endTime}.
SanpleTrigger REPEAT_INDEFINITELY, 600L%100L),

CronTrigger trigger = new CronTrigger('myTrigger'. "mnyGroup".“mnyJob2”.| "myGroup”.'0 * 12 ? x YED*"):

sched.schedulelob{jobDetarl. trigger).
sched.schedulaeJoh(jobDetail?, trigger?).

Figure 12: Simple Quartz code to set up two jobs.

The first job schedule is a simple trigger. The trigger fires on the exactly specified intervals. Here
it fires every hour from now for 6 hours. The second one is more like a cron job schedule, a job-
firing schedule that recurs based or calendar-like notions. Here it fires off every Wednesday at 12
pm. The scheduler executes a class that is defined in the job detail. This class has to implement
Job and therefore must have a method execute, which is the method that is executed.

4.6 Profiling

Java JVM come with a option of prafiling the application that the JVM is running with a argument
-Xint -Xrunjprofiler:port=8849 or -Xrunhprof etc. This has the effect of printing out information
about the heap, classes, and instances etc of the application. For example

Object allocated from:

java.util TimeZoneData.<clinit>{{}V}
TimeZone.java line 1222
java.util TimeZone.getTimeZone | (Ljava/lang/String;)
Ljava/util/TimeZone;)
TimezZone.java line {compiled method)
java.,util . TimeZone.getDefault (
{(YLjava/util/TimeZone; }
TimeZone.java line {(compiled method)
java.text,.SimpleDateFormat.initialize(
(Ljava/util/Locale; }V)
SimpleDateFormat.java line (compiled method)

Or

CPU TIME {(ms) BEGIN {(total = 1108Q)
Mon Mar 29 16:40:59 2004
rank self accum count trace method

1 13.81% 13.81% 1 437 sun/
awt/X11lGraphicsEnvironment.initDisplay

2 2.35% 16.16% 4 456 java/
lang/ClassLoader$NativeLibrary. load

3 0.99% 17.15% 46 401 java/

lang/ClassbLoader. findBootstrapClass

Figure 13: Sample profile output from a JVM.

August 2004 Page 21 of 53

CCLRC Data Portal Project Enhancing the Data Portal to a production level environment

This information is very difficult to understand. Applications can read these outputs and display
themn in a GUI, i.e. LogFactor5 reads the output from Tomcat.

JProfiler from ej-technologies’ [7] is one good product on the market which is cheap ($199 for one
license). It helps find performance bottlenecks, pin down memory leaks and resolve threading
issues, which once rectified makes the application faster, more reliable and robust.

The code in section 2.2.1 was run through JProfiler.

4.6.1 CPU usage

The following shows the CPU usage of the ACM module (a Data Portal module) calling the
method to get the user’s access rights as a string,.

Fi- gy 100.0% - 1009 ms - 4 inv, uk.ac.clrc.dataportal. acm. AcWS. getAccessInXMLSting
@ xy 50,3% - 508 ms - 4 inv, Uk.ac.clrc.dataportal. acm. DbAccess. <init>
i 42.6% - 430 ms - 4 inv. java.sql.DriverManager.getConnection
s 5.9% - 59 ms - 4 inv. java.lang.Class.forName
~vi 0.9% - 9 ms - 4 inv, java.util.Properties.load
ooy 0.7% - 6ms - 4inv. uk.ac.crc.dataportal. acm, Db&ccess. getPropertiesFile
i 0.1% - L ms - 4 inv, java.io.FileInputStream. <init >
v 0.0% - 0 ms - 24 inv. java.uti.Properties.getProperty
~3 0.0% - O ms - 28 inv. java.lang.StringBuffer.append
v 0,0% - 0 ms - 4inv, java,util.Properties. <init>
vy 0.0% - O ms - 4 inv. java.lang. StringBuffer.toString
~i 0.0% - 0ms - 4 inv. java.Jang. StringBuffer. <init >
- x3 0.0% - 0 ms - 4 inv, java.lang.Object. <init>
& gy 42.1% - 424 ms - 4 inv. uk.ac.clrc.dataportal. acm. DbAccess. buildxL
‘Z;- {‘j, 3.2% - 32 ms - 8 inv. uk.ac.crc.dataportal.acm.Obaccess.query
v 0.0% - 0ms - 8 inv. java.sgl.ResultSet.next
~2+ 0.0% - 0ms - 12 inv. java.lang.StringBuffer.append
wi 0.0% - 0 ms - 4inv. java.lang.StringBuffer. <init >
-~ 0.0% - 0ms - 4 inv. java.lang.StringBuffer taString

Figure 14: JProfiler examples of CPU usage on a Data Portal module.

The results show that getting the connection and results set took 50% and building the XML from
the results set took 42.1% of the time. Drilling down into the classes and methods it is possible to
identify bottlenecks and performance issues. For example, the creation of the DbAccess class (init
method) can be broken down, and majority of the CPU time is taken up by the getConnection
method to the database. Since this is expected with database connections, there is little code
enhancements that would speed it up. Nevertheless, if this time is too much, it is possible to
improve the performance, e.g. use connection pooling etc.

4.6.2 Memory usage

With JProfiler it is possible to view the instances of classes, sizes etc. Again, the code profiled and
a heap snap shot and the information inspected. The diagram in figure 15 identifies an instance
within the java heap, which is of the class DbAccess. The arrows to the right identify the
outgoing references that the instance holds directly. Normally, each instance should have a root to
the Garbage Collection {(GC). This root identifies to the JVM which instances are ready for garbage
collection, these have no strong or weak references to them.

August 2004 Page 22 of 53

CCLRC Data Portal Project Enhancing the Data Portal to a production level environment

JProfiler can then look into the class instance and find out the size of the DbAccess class and all
the sizes of the information referenced by the Dbaccess. The total size of the Dbaccess and all
the sub information is 150kb. This information can be used to locate memory leaks within a java
application. Since this instance of DbAccess has 1o root to the JVM that it is running under and
no other references from DbAccess has any roots to the JVM means that this is ready for GC. The
GC runs normally under a lower thread priority and therefore a class instance that is ready for GC
has to wait until memory is needed or the application has no other higher priority threads to

execute.
/—> org.postgresgl. PG_Stream
java.lang.String
/‘ jdbe postgrasgl:fescdimg.di.ac...”
lIl
/.'I java.lang.String
?1' "dpuser”
/ |
[
/II |II
] i .
Ilr / » ja\,a".lang.Stnng
/II .II l.'ll‘ s
iy
1 v
!
H' / / va lanaStri
i "idb stgrosql-fescdmg dl ac .
. java.lang.String II'I.""' 7 c:postgresqlifescdmg.dlac...
T "BADC" 3 /’
u él"l"‘ /
uk.ac.clre.dataportal acin .Db.2ceess
e 4 > java.lang.String
- e "7.20000000A000A0A"

Al arg postgresql jdbe2.Connection

org .postgresql_core. Enceding

java.lang .String
"Postgre3aL 7.2.1 on i888-po-li.."

Figure 15: Memory heap taken from JProfiler.

Below there is an example of an obvious java memory leak, but highlights the steps to track down
the leak:

Servlet A instantiates a static Hashtable in it's constructor. Servlet A then proceeds to add
classes to that Hashtable without removing anything at the end of the request. Next request
comes in and because the servlet is pocled between requests, the static Hashtable is the same one
from the first request and still has all the content stored in it. Servlet A adds even more classes
while servicing this request, but still has not removed any of the old classes by the end of
processing. This servlet repeats this until the JVM is full and there is no more memory for

anything else.

August 2004 Page 23 of 53

CCLRC Data Portal Project Enhancing the Data Portal to a production level environment

In this example, on profiling profiled this application of a heap snap shot, it would reveal that
Servlet A has a very large memory heap, inspecting more, the static HashTable would be the
culprit. Next, apply to look into the class and the HashTable to find that the HashTable has a
root to the JVM that runs the Servlet container and therefore will never be GC wntil the container is
shut down.

Here are some articles explaining java memory leaks.

http://www-106.ibm.com/developerworks/java/library/j-leaks/

http://www.adtmag.com/Jjava/articleold.asp?id=165

htep://sys-con.com/story/?storyid=44716&DE=1

4.7 Stress testing

Once profiling of the code has been optimised and investigated it is now possible to start to load
test functional behaviour and measure performance (stress testing). This can be done using a
performance testing application. A good free one is JMeter (8] from Apache, it is a 100% Java
desktop application used to test performance both on static and dynamic resources (files, Servlets,
Perl scripts, Java Objects, Data Bases and Queries, FTP Servers and more). It can be used to
simulate a heavy load on a server, network or object to test its strength or to analyze overall
performance under different load conditions. JMeter can generate graphical analysis of
performances or to test the server/script/object behaviour under heavy concurrent load.

Apache JMeter features include:

+ Can load and performance test HTTP and FTTI servers as well as arbitrary database
queries (via JDBC)
» Complete portability and 100% Java purity .
¢ Full Swing and lightweight component support (precompiled JAR uses packages
javax.swing.*).
» Full multithreading framework allows concurrent sampling by many threads and
simultaneous sampling of different functions by seperate thread groups.
o Careful GUI design allows faster operation and more precise timings.
o Caching and offline analysis/replaying of test results.
« Highly Extensible:
o Pluggable Samplers allow unlimited testing capabilities.
o Several load statistics may be choosen with pluggable timers.
o Data analysis and visualization plugins allow great extendibility as well as
personalization.
o Functions (which include fJavaScript) can be used to provide dynamic input
to a test
o Scriptable Samplers (BeanShell is supported in version 1.9.2 and above)

4.7.1 Testing Data Portal Web Interface

A simple test was performed on the Data Portal, 200 users concurrently opened the front page to
the Data Portal and the timing and performance parameters were measured. To test the Data
Portal properly, there needs to be a comprehensive Test Plan created. Since the Data Portal needs

August 2004 Page 24 of 53

CCLRC Data Portal Project

Enhancing the Data Portal to a production level environment

to be logged on to test the pages like the Shopping Cart, there needs to be an initial logging on to
the Portal before the test can be initiated. This can be achieved using JMeter.

Figure 16 shows an Aggregate Report from 200 concurrent HTTP requests for the Login page of
the Data Portal. The average time for the request was 4 milliseconds, with no errors and the
throughput rate of over 100 requests per second.

l gpians (D downloadsy jakarta-jmeter-2.0.1°plans’ plans) - Apache JMeter e 5 |D[1|
: !_’i!e Edit Run Onptions Help
@ B TestPlen
@ 177 Thread Group Aggregate Report
4_;5 HTTP Request Defaults Naine: [Aggregate Repor
48 HYTP Cookle Manager Write All Datato aFile——— — - —_ - -
47 HTTP Request
'E; Graph Resuts Filename r | l Browse... J |_i Log Errors Only
=] dgorecae Ryt g URL | count | Average Min Max Error% Rate
ifg| WorkBench :|HTTP Request 200, 4 0 40/0.00% 102.8/s8¢
£| TOTAL J 200 I o 40/0.00% 102.9/5ec
Figure 16: JMeter Aggregate Report from a simple Data Portal test.
I ch'.ms {0:\downloads' jakarta-jmeter-2.0.1\plans\plans) - Apache IMeter ; N [=]]
| file Edit Run Options Help
|~ T MLerE A = e o G il r
i{|® 1 TestPlan) .
?; > Thread Grow Graph Results
48 HTTP Request Defaus Nasms: [Graph Results |
i HTTP Caokie Manager it AH Data to a Fie e e
7 HTTP Request
] Graph Resuls Filenaine ‘ l | Browse...J [T Log Errors Only
|~+] Aggregate Report =
(F ngench ? Graphs io Bisplay v Data [Average [Vl Median [Deviation [¢ Throughput
90 m=
,,‘«..-""”
o " -~
'_"I- ’F"-ﬂ""’/
e
.'-'I"r_
e, T i e = raia
oms (41 [[»
il Noof Samples 200 Latest Sample 0 Average 4
i Dewiation 7 Throughput 57 76.0166/minute Median 0
Figure 17: JMeter Graph Resuit from a simple Data Portal test
August 2004 Page 25 of 53

CCLRC Data Portal Project Enhancing the Data Portal to a production level environment

Figure 17 shows the graph of the same test and simple results as before. Again, the average was 4
milliseconds and the same throughput rate per minute, instead of per second. Since Java is a
multi-threaded programming language, it is not surprising to see that the average response time
decreases as the amount of request increases. :

_ plans (D' downloads’ jakarta-jmeter-2.0.1 plans\plans) - Apache JMete -0l x|
File Edit Run Options Help
@ 3 Test Pisn] . .
@ 7 Toread Group Aggregate Report
Aj HTTP Request Defaults Name: IAggregate Repot J
Hig HTTP Cookie Managsr : Write All Data to & Fife —_— - k —
/7 HTTP Request : r .
] Aggregate Report li!-a_:;‘;i.-w r | Browse... ! ,:J Log Errors Orlly
WorkEench : URL | Counl Average | Min | Max | Enor% Rate
- [HTTP Reguest 500! 7| 0 T 40'0.00% 188.4/seC
£ TOTAL | 500/ 2| 0 40:0.00% 188.4/se¢

Figure 18: Results show that with more requests the response time decreases (See Figure 16)

A similar test to figure 16 was performed, see figure 18. However, this time 500 pages were
requested concurrently. The results show that the average response time had halved to 2
milliseconds and the throughput rate had gone up from 103 to 188 per second. This is typical for a
multi-threaded java application. These applications are normally extremely scaleable compared to
CGI or other web based applications. The overhead of spawning a thread onto a servlet class is
insignificant to the process of originally creating and loading the servlet into memory. Hence,
once the class is loaded into memory, to a certain point, adding concurrent threads (i.e. users) does
not effect the response time or error rate.

4.7.2 Testing Web Services

JMeter has the capability to test Web Services as well as the java objects, HTTP requests, FTP
Servers etc. It is as simple as testing a HTTP response as theoretically a Web Service invocation
can be a HTTP request (it can also be a SMTP request).

Again, after unit testing the Web Service functionality for correct results, and then profiling the
code for bottlenecks, pin down memory leaks and resolve threading issues to increase the speed of
the invocation, it would be advisable to load test functional behaviour and measure performance
of the web service. Using [Meter or another profiling application, to simulate a heavy load on the
server to test its strength or to analyze overall performance under different load types allows a
view of the web services speed under different load types and its scalability. The speed represents
the time it is able to respond to a request and scalability measures how many simultaneous
requests a web service application can process before its speed deteriorates to an unacceptable
level.

Profiling and Stress Testing might seem a little blurred, and in some ways, this is true. Some
developers would skip profiling and review their code without granular performance data,
looking for obvious inefficiencies. Profiling however, helps to save developers time by showing
them exactly where the greatest performance gains can be realised, and changing their code before

August 2004 Page 26 of 53

CCLRC Data Portal Project Enhancing the Data Portal to a production level environment

they hit performance and scalability problems future down the development line, when they have
to try to spot the inefficiencies within the code and then redevelop it.

4.8 Portals and other Frameworks

Research the possibility of other portals and frameworks. For example OpenCMS, Sakai Portal.

August 2004 Page 27 of 53

CCLRC Data Portal Project Enhancing the Data Portal to a production level environment

5 CODE ENHANCEMENTS OF CODE FOR DEPLOYMENT
5.1 Unit Testing

Each web service and helper classes within each module of the Data Portal should be unit tested,
preferably using JUnit [9]. Each module’s package hierarchy should contain a folder unittest. This
should contain a class file for each class that is being tested, with different tests depending on
which methods are being tested.

Achieving this is simple, by using some code within the web service. The code within a method
would return the directory from where to find the properties file. See figure 19.

private static String path ="path to your properties file”.

public static String getfontextPath(){
String propertiesFilelane:
Hessagefontext messageContext = MessageContext getCurrentContext();
1f (messageContext != null) {
77 Get the servlet request
HttpServietRequest request = (HtipServletRequest)nessageContext getProperty(HTTPConstants.
MC_HTTP_SERVLETREQUEST) .

77 Strip off the veb service name off the end of the path

77 and append our properties file path

propertiesFilettame = request getPathTranslated() substring(0, request getPathTranslated(}.
lastIndexQf{File separator)}.

path = propertiesFileNanz + File.separator + "UEB-INF" + File separator;

i
i

return path,

Figure 19: Code allowing the context path from a web services to be found.

The code above sets a path to your properties file’s directory. If the code is running as a web
service, the messageContext will not be null and the real file location for the properties file
directory will be returned. If the code is been unit tested, the messageContext will be null and the
path returned would be the hard coded one your originally put in. The static path means that any
other web service using this after the first initial web service invocation keeps the path. Only the
first web service has a messageContext. Therefore, any other code using this method will not have
aMessageContext but the path has already been set.

Unit testing code makes the code mores productive and stable. This is because:

» it greatly increases confidence in the correctness of your code

« it often improves the design of the class you are testing - since you spend much more time
thinking about how an object is actually used, instead of its implementation, defects in its
interface become more obvious

« failure of a test is glaringly obvious

+ the positive feedback provided by successful tests produces unmistakably warm, fuzzy
feelings even in the embittered heart of an experienced programmer

August 2004 Page 28 of 53

CCLRC Data Portal Project Enhancing the Data Portal to a production level environment

public class TestConverter eztends TestCaszs{

public TestConvertsr(String thaHamns) {
super (thellane) ;

public static Test suitel) {

return new TestSuite(TestConverter class).
B
public void testJDOMtoDOM() throws Ezception {
Docunent[] doos = nev Docunent[2];

docs{0] = new Document(new Elemsnt("combinsdl”)).
docs[0] .getRootElenznt () . addContent (new Element (| ‘newvelemnentl”)}

):
¢

"nevelen=nit2")):

sodocs[1] = new Document (new Elemnent(“combinsed2”)
#sdocs[1l] getRootElement () . addContent {(new Elemsnt

org . w3c . don . Docunent docconvertaed = Converter . JDOHtoDOM(docs(0]).
Saver saveidocconverted, "znl"+Fi1le separator+ tolOM wnl”);
assertHotHull({ "Vhet doss ths new doc look like” . docconverted)

assertEquals(“How many elenents nan=sd nevelesnsntl, should bs 171, docconverted
getElementsByTagHane | "nevslenentl”) getlength(i)

Figure 20: Sample Unit test code,
5.1.1 Examples of a unit test code.

Unit test code is very simple. Create a class that extends TestCase, creale a constructor with a
super method and a static method suite which returns a TestSuite. Then create methods that
test functionality of the methods that is being unit tested. At the end of the methods run assertions
on the results. Figure 20 shows an example of a unit test. The test method is testJDOMEoODOM.
The code is run and executes the methods within the class. In figure 20, it is testing that the
converted document is not null and that the number of elements named newelementl is one.

The output is similar to figure 21. It runs through each of the methods and reports if the assertions
are true or false. The two assertions in the method testJDOMEtoODOM in class TestConverter
give two OK valued tests taking 5.238 seconds to complete the method.

C:\Documents and Settings\gjd3?\My Documents\huilds\xml—dl\unitTests)d:\j2sdk1.4
-1_85\bin\java TestSaver ‘

Time: @.251
OK (1 tests)

C:\Documents and Settings\gjd3?\My Documents\builds\xml-dl\unitTests>d:\j2sdkl.4
-1_85\binzjava TestConverter

OK (2 tests)

C:\Documents and Settings\gjd3? My Documents:\builds \xml-dlN\unitTests>d:\j2sdki.4
.1_05\binNjava TestJDOMBuilder

Time: 1.172
OK (1 tests)

Figure 21: Results from figure 17 code’s unit test.

August 2004 Page 29 of 53

CCLRC Data Portal Project Enhancing the Data Portal to a production level environment

5.2 Build.xml files
5.2.1 Problems

Currently most modules use their own jar files places in the WEB-INF/lib directory. For small
applications, this is OK, but for large applications like the Data Portal, this can lead to extensive
repetition of jar files throughout the application.

Large jar files like the axis . jar are over 1.1 megabyte each. With approximately 20 modules for
an instance of the Data Portal, there is a approximately 20 megabytes of repetition adding to the
size of the Data Portal. The normal download of Axis (files needed for using SOAP and web
services) are axis.jar, saaj.jar, logdj.jar, commons loggging/discovery.jar
and jaxrpc.jar total nearly 1.5 megabytes therefore the Data Portal is creating a 30 megabytes
of extra space which is unnecessary.

5.2.2 Solution

The build.xml file has been modified to solve this problem. A new ‘common’ folder is added to the
Data Portal, which contains all the common jar files developers use. Any jar files that are specific
to a module should stay within the WEB-INF/lib folder, these are normally versioned jar files and
therefore the module needs a specific version of the jar for it to function. Any other jars should be
referenced within the build.xml file. Figure 22 shows a snippet from the new build.xml file. This
task copies in the jar files the module needs from the common folder before it compiles the code
and creates it classpath instance. This section needs to be edited to add the jar files for the module.

=target name= prepare "=
o Craat S neaed -2
<mkdir dlr "${bulld home}"b
amkdir dir="${build home PWNVEB-INF"A
<mkdir dir="${build home }WWEB-INF iclasses"ss
=mkdir dir= "${bulld home}N\.lEEl {NFmb"b
=l copay =h hamea A 2 2 e -2
0y todlr "${bund home}J‘WEB INFmb" flle "${comm0n Ilb}lams |ar"Jb
=gy todir="${build home }WWEB-INFAiD" file="${common lib Jaxrpc jar's=
=copy todir="%{build home }IWNEB-INF " file="${comman lib }fsaaj jar'f-
<Capy tod;r-‘${busld home}JWEB INF.ﬂIb file="${common lib }togdj-1.2 8 jar's=
al- E el apchnEtion --=
«copy todlr— '${bu1|d home} »

filezet dir="§{weh home}'i>

<fcopys

<farget>

Figure 22: Section from an ant build file.

5.3 Cog - kit and Axis classloader problems
531 Problem
http://bugzilla.globus.org/bugzilla/show _bug.cgi?id=1242

The problem is that Globus Cog Kit [10] calls ClassCastExceptions when two applications
load the same jce-jdk* jar file. This is a problem because different web applications could be using
ditferent versions of the cog kit.

This means that after the second module loads the Globus Cog Kit after the first the module, it
cannot work and throws this exception indicating that the web service has failed.

August 2004 Page 30 of 53

CCLRC Data Portal Project Enhancing the Data Portal to a production level envirorunent

5.3.2 Solution

Tomcat deploys two class loaders, a Standard class loader and a WebClassLoader. The standard
loads the $TOMCAT_HOME/server/lib etc classes and the WebApp loads the classes in the WEB-
INF/lib.

When the first application loads the Globus APIs, it will verify the certificate signaturc that signed
the jar file. To do this the GSI library gets the signature algorithun implementation using the
Security class/global HashTable. The Signature implementation class checks if the key passed
into its engineInitverify () method is of the method is of the right type. Since the Signature
implementation class was loaded using the WebappsClassLoader it loads the key type class it
refers to using the same loader as the Signature implementation. However, the key type class
passed into the engineInitVerify () method is loaded using the StandardClassLoader.
Therefore, the type verification fails (since its fully qualified name and its defining class loader
identify a class in Java).

The key problem in this case is that one application has its own copy of the classes loaded by one
class loader and it obtains a reference (indirectly) to the same class loaded by a ditferent class
loader. That happens because of the global HashTable. Therefore, all security providers should
be loaded from one class loader. However, because axis is the class that loads the Globus classes,
any class within axis loaded by the WwebappsClassLoader that needs a class that in now from the
StandardClassLoader (i.e. Globus) will have the same problem.

Therefore, all Axis and Globus jar files needs to be located in the common/lib directorv of tomcat.
Tomcat states that no application jar file is to be placed in the common directory but in the shared
directory but if tomcat is instanced by using the same tomcat_base, the second instance cannot see
the jar file within the shared directory and therefore needs to be put in the common.

5.4 Concurrent Versioning System (CVS)

Each module must be tagged during the development cycle with a version. All tagged modules
are managed using the CVS system.

A proposed addition to the build.xml file for a CVS checkout of a version of the module. The task
should checkout the cvs and copy and compile the code and copy to build directory. This should
not interfere with tomcat. Since tomcat is clustered, the new update can be done without stopping
or interfering with the Data Portal.

5.5 Application design using a Multi-tiered architecture
5.5.1 Presentation Tier
5.5.1.1 Web Interface

Recently JSP 2.0 and Servlet 2.4 specs have been released by Sun, which has been implemented by
Apache with Tomcat 5. In addition, Java Standard Tag Libraries 1.1 [11] and Apache Supported
Tag Libraries [12] have been released. JSP 2.0 includes JSTL, which provides a set of four standard
tag libraries (core, internationalization/format, XML, and SQL) and supports Expression Language
[13] (EL). A primary design goal for [STL/Supported Tag Libraries and the EL was to simplify
Webpage development and implementation, by separating of business logic from presentation.

5.5.1.2 Separation of business logic and presentation

The separation of business logic and presentation gives Web development the ability to remove
nearly all Java code from within a JSP. This helps with modularisation of the code increasing

August 2004 Page 31 of 53

CCLRC Data Portal Project Enhancing the Data Portal to a production level environment

reusability, stops the repetition of code within different JSPs and helps to separate presentation
from business logic.

On any web/ enterprise project, multiple role and responsibilities will exist. E.g. a HTML designer
and a software engineer. On small scale projects the role might be the same person, but on larger
projects where these are to be filled my multiple individuals, who might not have overlapping
skills, are less productive if made too dependant on the workflow of each other.

The separation means that development of the Java code and HTML code can be truly separate
and therefore easier to work with and develop. Any combination of the roles and development
means that the client layer becomes fatter and moves away from the original concepts of the web
or client-server architecture.

Figure 23 shows a simple }SP. The page is valid XML, it contacts a database, applies and select
statement and displays the results in a table. In this envirenment, a HTML developer is concealed
from the complex java and concentrates on the HTML design and the software designer
developers only with java, creating better code.

=% @ taglib uri="Http: java sun.comjstifcore_r" prefix="c" %>
=2%(@ tagib uri="ritp: Mava sun.comstissgl_nt" prefix="sg\" %>
=sq sstbataSource var="database" driver="org postgrescl Driver” url="dbc:postgresql (=*#** dl.ac uk: 5432444 user="**" pazsword=""""* /=

<aqi query var="users” dataSource="${dxtabase}’>
select username, facity from ugertabls
syl gquerys=

=htmi=
<hsac=
atile=JSP 2.0 - Basic Operations<atie=
ahead-
<hady>»
<table>
<c:forEach var="row" tema="§{users rows s
<tr=
<tct=F{row username j<id>
<Ack=${row facilty o=
<Ar=
<Jc forEach»
=ftabie>
<fody=
<frtenl»

Figure 23: JSP expression language to hide the complex java code from the HTML designer.

5.5.1.2.1 Expression Language

A primary feature of JSP technology version 2.0 is its support for an expression language (EL}. An
expression language makes it possible to access application data stored in JavaBeans, Session, Page
components. For example, the JSP expression language allows a page author to access a bean using
simple syntax such as $ {name} for a simple variable or ${name. foo.bar} for a nested property.

The JSP expression language defines a set of implicit objects. For example, printing out the
Boolean value of a user’s session attribute ‘isLoggedIn”:

${session. isLoggedIn}

August 2004 Page 32 of 53

CCLRC Data Portal Project Enhancing the Data Portal to a production level environment

Whereas with]S 1.2 the code would took like:

<% boolean isLoggedIn = (bolean)session.getAttibute("isLoggedIn");
out.prinln(isLogginIn); %>

Here are some example EL Expressions

Expression - - Result - -

${1 < (4/2)} true]
${’hip’ gt ‘'hit’} false o
${3 div 4} _ 0.75

True if the request parameter named ada is null
or an empty string

S{''empty param.add})

${header["host"]} The Host

${departments [deptName]} The value of the entry named deptName in the
departments map

${sessionScope.cart.numberOfItems) The value of the numberof Ttems property of the
session-scoped attribute named cart

5.5.1.2.2 Standard Tag Libraries

The JavaServer Pages Standard Tag Library (JSTL) encapsulates, as simple tags, core functionality
common to many JSP applications. For example, simplifies coding when iterating over lists using
a scriptlet or different iteration tags from numerous vendors, JSTL defines a standard tag that
works the same everywhere. This standardization provides a single tag and use it on multiple J5P
containers. Also, when tags are standard, containers can recognize them and optimize their
implementations.

JSTL has support for common, structural tasks such as iteration and conditionals, tags for
manipulating XML documents, internationalization and locale-sensitive formatting tags, and SQL
tags. It also introduces a new expression language to simplify page development, and it provides
an AP for developers to simplify the configuration of JSTL tags and the development of custom
tags that conform to JSTL conventions.

55.1.2.2.1 Core tag library

Here are some examples of the core [STL, which covers flow control, exception handling etc which
is vital to all other Tag Libraries.

5.5.1.2.2.1.1 Displaying/setting values and exception handling

The core library’s most basic tag is the c:out tag, which displays an EL expression’s value in a
page. An example expression that uses ¢ : out might look like this:

We have <c:out value="${applicationScope.product.inventoryCount}*
egscapeXml="true" default="0" /> of thoseitems in stock.

In the above, the value attribute is the expression that is send to the page output. It also showns
the optional escapeXml attribute, which specifies whether XML characters (<, >, &, and .) should

August 2004 Page 33 of 53

CCLRC Data Portal Project Enhancing the Data Portal to a production level environment

convert to corresponding character entity codes (so they show up as those characters in an HTML
page), and the default attribute, which is used if the EL can't evaluate the value or the value
evaluates to nulk.

Note that when EL support is fully implemented in JSP 2.0, there won't be any need to use the
¢ :out action; just embed JSP expressions directly in the page.

Another commonly used core action is ¢ : set, which sets a variable in a page. Use c:set in two
ways. The first way sets the variable defined in the var attribute to the value defined in the value
attribute, as shown below:

<c:set var="customerID" value="S$param:customerNumber' scope="session" />

The optional scope attribute above specifies that it wishes to set the variable customerlID in the
session scope; if scope is not specified, it defaults to page scope.

5.5.1.22.1.2 Exception Handling

JSTL has made exception handling a bit easier. In typical JSP pages, there are two approaches for
handling exceptions: try/catch blocks in scriptlet code embedded directly in the page or with a
JSP errorPage directive that provides a nice catch-all way to handle any possible exception on a
page. JSTL offers a good alternative with the ¢: catch action, which provides an effective way to
handle exceptions with a bit more granularity without embedding Java code in your pages. A
c:catch action might look like this:

<c:catch>

<!-- some set of nested -JSTL tags below which would be hit on an
exception-->

</c:catch>

The ¢ : catch action has an optional attribute, a variable that references a thrown exception.

[t is not common to use the ¢ : remove tag. This tag has attributes for a variable name and a scope,
and removes the specified variable from the specified scope.

55.1.2.2.1.3 Flow control

The c:if action handles simple conditional tests. The Boolean expression’s value in the test
attribute is evaluated; if true, the body’s contents are evaluated. In the action below, it shows the
optional var attribute that stores the test results for later use in the page (or elsewhere, if the other
optional scope attribute is specified):

<c:1f test="${status.totalVisits == 1000000}" wvar="visits">
You are the millionth wvisitor te our site! Congratulations!
</c:if>

JSTL also supports for switching logic with c:cheoose, c:when, and c¢:otherwise. A set of
c:when actions may be included within a choose tag; if any of the expressions in the ¢:when
blocks evaluate to true, the following tests in the c¢:choose action are not evaluated. If none of

August 2004 Page 34 of 53

CCLRC Data Portal Project Enhancing the Data Portal to a production level environment

the tests in the ¢:when blocks evaluate to true, ¢:otherwise action’s contents, if present, are
evaluated.

551222 5QL Tag Library

SQL Tag Library allows easy database integration. In this snippet from figure 24, it sets up a
connection to a database, applies a select statement and iterates through the results building a
table.

=<%-- open a database connection --3%6=
<30l connection id="conn1"=
<zglurl=jdbemysyl Mocalhostaest=isolurl>
<sqldriversorg.git.mm.mysgl Driver=fsal diivers
=fsgl:.connection=

=%-- Open a detabase query --%=
<tahle=
«3ql: statement id="stint1" conn="conn1">
zzqlquerys=
select id, name, description from test_books order by 1
afsqlguery s
2%-- loop through the rows of yaur guery --3%=
<sgfl resultSet id="raet2">
=ti=
d==zgl:getCalumn postion="1"f~=fd=
<de=sqlgetColumn pasition="2"f=<fd>
<til=<3qglgetColumn position="3"f=
<zl wagMull=[no description]=/zol wastulls <=
=hr>
<fsglresultSet=
<fzglstatement=
=hable=

=%-- close & database connection --%>»
<zl closeConnection conn="caonn1 "=

Figure 24: Sample JSP code using JSTL to connect to a database.

5.5.1.2.3 Apache Tag Libraries

These are Supported Taglibs from Apache such as IO, Regexp, Session etc. This allows a JSP
developer to have repeated java code hidden from them completely, sometimes trivial and
sometimes very difficult. These Supported Tag libraries are officially supported at Jakarta Taglibs.
It is important to note that the functionality covered by some of these tag libraries may coincide
with standardization efforts in the Java Community Process (JCP), both presently and in the
future. Here are just a few examples.

551.2.3.1 Dates

Normally, to out printing a date use: <% = new Date()%> giving the output "Thu Dec 15
17:12:53 GMT 2003". This is an undesirable way to show a date. Using taglibs this would be:

<dt:format pattern="MM/dd/yyyy HH:mm">
<dt:currentTime/>

August 2004 Page 35 of 53

CCLRC Data Portal Project Enhancing the Data Portal to a production level environment

</dt:format>

giving the output 12/15/03 13:05.
A more complex example, this outputs the same information as above but in Chicago’s time zone.

<dt:timeZone id="tz">America/Chicago</dt:timeZone>

The current time in America/Chicago is:

<dt: format timeZone="tz!" pattern="MM/dd/vyvyyy hh:mm">
<dt:currentTime/>
</dt:format>

551.23.2 XML/ XSL

Xml can be very tricky to style within a JSP. Taglibs allow a stylesheet transformation to be as
simple as.

<xtags:style xml="foo.xml" xsl="bar.xsl" />

A more complicated styelsheet transformation would be to transform an XML document but only
show the 2™ to 5" elements.

<xXtags:style xml="foo.xml" xsl="bar.xsl>
<Xtags:param name="min" value="2"/>
<xtags:param name="max" wvalue="5"/>

</xtags:style>

5.5.1.3 Java Server Faces

Java Server Faces [14] is another technology that is coming out of Sun’s [SR process. JavaServer
Faces technology simplifies building user interfaces for JavaServer applications. Developers of
various skill levels can quickly build web applications by: assembling reusable Ul components in a
page; connecting these components to an application data source; and wiring client-generated
events to server-side event handlers. With the power of JavaServer Faces technology, these web
applications handle all of the complexity of managing the user interface on the server, allowing the
application developer to focus on application code. The complexity of Java Script and validation
and workflow is removed from the client to the server.

JavaServer Faces technology includes:

o Asetof APls for: representing Ul components and managing their state, handling events
and input validation, defining page navigation, and supporting internationalization and
accessibility.

« AJavaServer Pages (JSP) custom tag library for expressing a JavaServer Faces interface
within a JSP page.

August 2004 Page 36 of 53

CCLRC Data Portal Project

Client devites

Lo Senver

Servlet container

JavaServer Faces application

)
:/ ! lavaServer Faces iy N
i ' framnework "p"llc'.“mn i
i ' : 4 : i logic |
: I‘.-1m'<u;‘> gc:;\:‘latwn {1 {(event listenaers) |
{) ¢ > HTML Ivﬂ_) =i —
_— ' Integration with - Data
ey model abjocts 7 sare
Stateful UL 4 ==
omponent model | Nodel
F Processing of LSRR bl
bt N o Bveins (::1.\fnt'—s‘. Iﬁ(_]i‘f) i onlaines
e .
Extensible-type b, £JB
COnversion system
EIB

Farm handling and
validation

S

P Other rescurces {graphics,

SR XML, templates, and so on} style sheets, anti so on)

Figure 25: Overview of the JSF architecture

55.1.3.1 Key benefits

It is a framework for building Web-based user interfaces in Java. Like Swing, it provides a set of
standard widgets (buttons, hyperlinks, checkboxes, and so on); a model for creatirlg custom
widgets; a way to process client-generated events (such as changing the value of a text box or
clicking on a button) on the server; and excellent tool support.

Since Web-based applications, unlike their Swing cousins, must often appease multiple clients
(desktop browsers, phones, and PDAs), JSF has a powerful architecture for displaying components
in different ways. It also has extensible facilities for validating input (the length of a field to the
format of a field, for example) and converting objects to and from strings for display. In addition,
Faces can automatically keep your user interface components in sync with your business (or model)
objects. The figure 25 shows the architecture of the system.

5.5.1.3.2 Future directions

The Data Portal must keep abreast of future technologies and applications, one such technology is
the new Portlet specification by Sun [15] and the implementation of a Portlet application Sakai [16].
Sakai is a framework that builds on the recently ratified JSR 168 portlet standard and the open
service interface (OKI) definitions to create a services-based, enterprise portal for tool delivery.

Making the Data Portal pluggable into a Portlet framework application like Sakai would be
benificial for the Data Portal and other services / portals that integrate with each other. The Web
Interface is the only section of the Data Portal that needs to be remodelled to allow portlet AP and
applications to be able to contact and use the Data Portal.

August 2004 Page 37 of 53

CCLRC Data Portal Project Enhancing the Data Portal to a production level environment

5.5.1.4 Presentation tier and JavaServer Faces

The presentation tier collects user input, presents data, controls page navigation, and delegates
user input to the business-logic tier. The presentation tier can also validate user input and
maintain the application’s session state.

JSF fits well with the MVC-based presentation-tier architecture. It offers a clean separation
between behaviour and presentation. It leverages familiar Ul-component and Web-tier concepts
without limiting the application to a particular scripting technology or mark-up language.

JSF backing beans are the model layer. They also contain actions, which are an extension of the
controller layer and delegate the user request to the business-logic tier. Please note, from the
perspective of the overall application architecture, the business-logic tier can also be referred to as
the model layer. JSP pages with JSF custom tags are the view layer. The Faces Servlet provides the
controller’s functionality. '

5.5.2 Business-logic and the Spring framework

Business objects and business services exist in the business-logic tier. A business object contains
not only the data, but also the logic associated with that specific object.

Business services interact with business objects and provide higher-level business logic. A formal
business interface layer should be defined, which contains the service interfaces that the client uses
directly. Spring Framework [17], implements the business-logic tier.

Spring is based on the concept of inversion of control (IOC} or Dependency Injection. This concept
means that you do not create your objects, you describe how they should be created. You do not
directly connect your components and services together in code, you describe which services are
needed by which components, and the container is responsil-le for hooking it all together. Because
Spring links objects together instead of the objects linking themselves together, it is categorized as
a ‘dependency injection’ or ‘inversion of control” framework.

Spring’s object linking is defined in XML files, thus during runtime different components can be
plugged-in, or for different application configurations. This is particularly useful for applications
that do unit testing or applications that deploy different contigurations for different customers.

A Spring/Hibernate combination is a nice alternative to EJBs. With a large complex, distributed,
clustered applications that have massive through put then EJBs is the solution, but with
applications that do not need this then the Spring/Hibernate combination gives you most of the
features of EJBs but without the complexity, for example declarative transaction management,

pooling, security, resource lookups etc. This combination can be described as a lightweight
version of E[Bs.

5.5.3 Integration tier and Hibernate

Proposed to use an ORM (Object Relational mapping) when using java with relational databases
with complex schemas or when need the application to be multiplatform with different databases.
The Session Manager and Shopping Cart are examples of modules that could benefit from using
this. With a good ORM, it is possible to define the way to map classes to tables once - which
property maps to which column, which class to which table, etc. After this, it becomes much easier
to communicate with databases. This is similar to an EJB entity bean, where a class maps on to a
row in a table, and the class variables maps to a column.

August 2004 Page 38 0of 53

CCLRC Data PPortal Project Enhancing the Data Portal to a production level environment

With a good ORM, plain java objects can be used in the application to tell the ORM to persist them:

orm, save (myObject) ;

This will automatically generate all the SQL needed to store the object. An ORM allows loading of
objects just as easily:

myObject = orm.load(MyCbject.class, objectId);

A good ORM will feature a query language too:

List myObjects = orm.find(
“FROM MyObject ocbject WHERE object.property = 5");

This will probably translate to an SQL query using multiple joins, which would be much more
complicated tc write. An ORM will also automatically populate the returned objects with their
data, and even their associations (if necessary).

One such implementation for ORM is Hibernate [18], it is an open source ORM framework that
relieves the need to use the [DBC APL. Hibernate supports all major SQL database management
systems and is one of the most mature and most complete open source object-relational mapper
out there. The Hibernate Query Language, designed as a minimal object-oriented extension to
SQL, provides an elegant bridge between the object and relational worlds. Hibernate offers
facilities for data retrieval and update, transaction management, database connection pooling,
programmatic and declarative queries, and declarative entity relationship management.

Hibernate is also less invasive than other ORM frameworks. Reflection and runtime bytecode
generation are used, and SQL generation occurs at system startup. It allows us to develop
persistent objects following common Java idiom—including association, inheritance,
polymorphism, composition, and the Java Collections Framework.

Vendor-transparency is just one advantage of using Hibernate. Another big advantage is that
Hibernate abstracts JDBC code from the business objects, Hibernate does it in the background.
Instead leaving the developer to concentrate on building business objects. [n addition, business
objects are mapped to the db schema using XML configuration fites so changing the table structure
may require nothing more than modifying the XML file. Depending on the changes you make to
the table, changes may have to be made to the business object, but that cannot be helped that no
matter what persistence mechanism is used.

For example, a new column is added into your table:
A)JDBC

* Add the new field into the business object

* Modify the JDBC method that performs the "select” in order to include the new column

* Modify the JDBC method that performs the "insert” in order to add a new value into the
new column.

August 2004 Page 39 of 53

CCLRC Data Portal Project Enhancing the Data Portal to a production level environment

* Modify the JDBC method that performs the "update” in order to update an existing value in
your new column

B) Hibernate

» Add the new field into the business object
» Modify the Hibernate XML mapping file to include the new column

5.6 Security
5.6.1 SessionID

The session id is passed as plain text within the Data Portal {(unless it is communicating via SSL).
Even though each web service resides on a single machine and therefcre eliminating any snooping
of the web service packets and the session id and theoretically, spoofing a user’s session, it would
be recommended that the session id is passed encrypted in the future when the Data Portal
becomes more heterogeneous.

Java Web Service Developers Pack 1.4 [19] has now a full implementation of XML Encryption and
XML Signature specification by OASIS. Released in July 2004. The sensitive information that the
Data Portal web services pass around must all be sent encrypted either using Java Web Service
Developers Pack 1.4 or another implementation of XML Encryption and XML Signature.

5.6.1.1 Certificate delegation

The delegation of the user’s certificate is best done using GSI delegation. The Data Portal team
have developed code that achieved this via web services. This should be added to each web
service module that requires a user proxy certificate.

Client . Server

1) Data Portal session id and
user public key (certificate)

2) Signing request

3) User proxy certificate
And session id

Figure 26: Two web service invocations to show the delagation of a proxy credential.

August 2004 Page 40 of 53

CCLRC Data Portal Project Lnhancing the Data Portal to a production level environment

public byte(] signRequest (bytel! =503, Scring sess20nid) thwows Exception(
logyger . .info{"Signingbacas requesc. . ")
[XSDACercificace XEQO9Cert = CertlUcal. loadCertificate (new ByteRrrayInputStream{ =509 1)),

I RO

HeyPair keyPair = CertlUtil.generateKeyPairx("RSA", 51z)

ooyt ppasd @nca X DU = DRoDOTY
EouncylastleCertProcessingFaccory certFactory = BouwncygCastlaCercProcessingFactory.getlefault ()

byte (] signingReguest = carcFactory.crxeateCertificateReguest (X509Cert, kayPair)
logger_ dinfo ("Creaved signing resquest. ")

CertlcilBean bearn = new CexrtUtilBean();

bean setCext (X50%Cert) ;

bean.getKeyPlair (keyPair)

map.put (sessi1onid , bean):;

return siomaingReguest;

Figure 27: Sample code from the Web Service for credential delegation

The code in figure 27 requires two web service invocations. The first requesting a signing request
for the delegation by sending a session id and the delegated certificate of the user which generates
and sends back the signing request. The second invocation creates a delegated certificate from the
signing request and seads this back to the web service. This web service then creates a delegated
credential from the delegated certificate therefore has a delegated credential for the user without
having to move a private key. This process should either be invoked over SSL or the information
sent encrypted using XML Encryption.

56.1.1.1 Globus httpg"

This protocol is used with Globus Tool Kit 3 [20]. The protocol allows secure transfer of a user’s
certificate over the network. The client code is below is similar to the code used in normal axis
invocations but notice the URL. It is using httpg protocol over 8443, which is encrypted, and it sets
certain properties, e.g. the user’s credentials. The problem with this protocol is that the web
service itself needs a grid map file to map a user to a local user on the server machine, if the user’s
credential’s DN is not present in the grid map file the web service invocation will fail.

August 2004 Page 41 of 53

CCLRC Data Portal Project Enhancing the Data Portal to a production level environment

SimpleProvider provider = new SimpleProvider():
SimpleTargetedChain ¢ = null,

c = new SimpleTargetedChaininew GSIHTTPSender()):
praovider deployTransport("httpg". c):

c = new SimpleTargetedChain(new HTTFSendsax()):
provider deployTranzport{"http", <)

new Service(provider):
(Call) service.createCall();

Service service =
Call call =
77 agt users globus credentials

call setProperty(GSIHTTPTransport .GSI_CREDEHTIALS, ocred);

gsets authorization type
call. setProperty(GSIHTTPTranzsport . GSI_AUTHORIZATION,
Selfduthorization getlnstance()):

/4 gets gzl mode
call setProperty(GSIHTTETransport .GS1_HMODE,
GSIHTTETransport . GSI_HMODE_LIMITED_DELEG) :

call . setTargetEndpointAddress(neew URL{("hitpg /- localhost. 8443 /axis/services Test")).
call setOperationName{new QName{"method", '"serviceMethod")):

call . addParamnster("argl". XMLType.XSD _STRING, ParamsterMode.IN):

call sstReturnType(XMLTyps . XSD_STRING):

String ret = (String) call invoke(new Object[] { textToSend }).
System.out . println{"Service response - ' + ret}):
} catch (Exception 2) {

g.printStackTrace();
+

Figure 28: Client code for sending a delegated proxy to a web services.

MessageContext ctx HessageContext . getCurrentContext ()
setUpEnvi{ctx);
G55Credential cred = (GSSCredentiallctx.getProperty(GSIConstants . GSI_CREDENTIALS) t

Figure 29: Server code for extracting the proxy from a web service invocation.

Where setUpEnv{ctx) is a simple method set up the properties so it is read to extract the
credential..

Since the Data Portal’s access is limited only by the configuration of the MyProxy server that the
Data Portal trusts, it is not feasible to have a large and constantly changing and updating grid map
file. The core Data Portal modules should only use the certificate delegation that the Data Portal
team has developed. Any certificate delegation to outside services, i.e. XMLWrapper should use
httpg protocol

The code for the client and server sections for the web service delegating credentials should be
created and maintained as an API to allow the functionality of this concept to be applied without
the knowledge of the delegation process, i.e. the signing request and credential delegation steps.

A more detailed research into globus httpg and certificate delegation needs to be undertaken to
fully understand the security implications and how to delegate certificates via web services.

August 2004 Page 42 of 53

CCLRC Data Portal Project Enhancing the Data Portal to a production level environment

5.7 Optimising Java code

Once the unit testing, profiling and stress testing has identified areas for improvement, the code
needs to be speeded up and enhanced.

There are normally four categories for optimising techniques:
¢ J25E Optimisations
s J2EE Optimisations
* Resource Pooling
» Servlet Container Configuration

It is worth noting that certain code maintainability techniques can slow down J2EE applications,
i.e. Tag Libraries can often slow down JSP pages. Therefore, any concessions in terms of code
maintainability must be necessary by measuring the performance gains against the
maintainability.

5.7.1 J2SE Optimisations

Techniques for optimizing Java 2 Standard Edition features are covered all over the internet.
Search on "java performance” on www.google.com. Simple java mistakes can easily hinder the
performance of an application. Large iterations that create new String or other objects inside the
iteration or large amounts of String concatenations can take up or/and increase the heap
memory for the application at a surprisingly fast rate. Any concatenations of Strings should be
implemented with StringBuffer.append() methods.

An easy way for simple optimisation is to replace the JVM or to stress test your application with
different JVMs. IBM JVM [21] is a popular one.

Use HotSpot profiling optimiser use JAVA_OPTS="-server", this is customized for long running
server applications. Sun’s Java 1.4 improves performance for servlet containers by approximately
35%. It is also possible to tune the JVM Garbage collection. Tomcat will freeze processing of all
requests while the JVM is performing GC, on a poorly tuned JVM this can last 10’s of seconds.
Most GC’s should take < 1 second and never exceed 10 seconds.

Make sure the java process always keeps the memory it uses resident in physical memory and not
swapped out to virtual memory. JVM garbage collection performance [22] [23] can degrade
significantly if the JVM stack gets swapped out to disk as virtual memory.

5.7.2 J2EE Optimisations
Here are a few examples for simple but effective ways to increase performance for J2EE

applications.

e Factor out constant computations from loops. In case of Servlets, push one time
computations into the init () method. Also use the servlet init{} method to cache static
data, and release them in the destroy {} method.

e Flush the data in sections so that the user can see partial pages more quickly.

August 2004 - Page43o0f 53

CCLRC Data Portal Project Enhancing the Data Portal to a produclion level environment

public final class Cembiner
extends java lang Object

This combmes unl docnmments together. Talces the document element from each one and adds them all together under the root elernent
gwen Each document must be off the JDOM type, but can use the Converter class to cenvert a DOM document The results can be
aiven back as either JDOM or DOM

Version:
11
Author;
Glen Drinkwater

Constructor Summary

Cambiner ()

Method Summary

Easas ergowie.dom Decument |49 d (okg. jdom. Docunent [] does, java.lang.String rootElewment)
| Combines an array of JDOM docwmnents and returns as a w3c DOM document with root element
| @ven.
zracic oxg.wic.dem.Document hujild{org. jdom,. Docwment docl, org.jdomw.Document doc2, org.jdom.Document doc3,
org. jdomw.Document doc4, ocg.jdom.Document docS, org.jdom.Document docé,

Jjava. lang.Scring rootElenment)

Deprecated. Deprecated in 1.4.1. Use build{Document[] .. or buld(Filef] ..

Figure 32: HTML page showing the results of java code run though javadoc

6.2 Contiguration
6.2.1 Databases

If the module requires and database for it functionality, scripts should be provided to build the
tables in the database. These configuration scripts should be available for most of the common
databases e.g., MySQL, HypersonicSQL PostgreSQL.

6.2.2 Configuration Files

These files contain the information that the module needs to function. E.g. URL for the Lockup
Module, Public Private keys etc. The file should explain what each property is and what it is
needed for with and example configuration file.

6.2.3 Configuration Help

In addition to the configuration file, there must be a help file, either pdf or HTML. This explains
the process of installing the module, where the files are and what they do and other important
information, i.e. the WSDL file for the web service.

6.3 Description

Maybe the same as 6.2.3, but a file needs to be present with a description of the web services that
are available from this module. How are the web services called, example code to invoke the,
what functionality does it provide and other services it interacts with etc.

August 2004 Page 48 of 53

CCLRC Data Portal Project Enhancing the Data Portal to a production level environment

7. WHATS NEEDED FOR A DATA PORTAL

7.1 Requirements

7.1.1 Operating System

The Data Portal can run under any operating system that fully supports java (JSDK 1.3} which at
the moment is Linux (Red Hat 7+ and SuSE 8+), Solaris SPARC (7+), Solaris x86 (7+), Mac OS
(10.2.64) and Windows (98+).

7.1.1.1 Future Data Portal Versions

The next version of the Data Portal will need to support JSDK 1.4. This is the sarne list of operating
systems as section 7.1.1.

7.1.2 Servlet container.

The Data Portal requires a servlet container that supports JSP 1.2 and Servlet 2.3 specification from
Sun. Many containers support this including Jetty, Tomcat, WebSphere, WebLogic, Oracle and
Sun One Application server.

7.1.2.1 Future Data Portal Versions

The next releases of the Data Portal will require JSP 2 and Serviet 2.4 specification. For example
Tomcat 5 and Sun One Application server.

7.1.3 Databases

PostgreSQL [25] is the choice of the Data Portal at the moment. The requirements of the Data
Portal are that it supports BLOBs and has a]DBC driver available.

Hypersonic SQL has been successfully tested with the Data Portal. The only problem with
Hypersonic is that the JDBC API for the database does not support moving backwards within the
result set. This is simple to rectify. Hypersonic also has been successfully tested with the Data
Portal as well as the UDDI registry.

7.1.4 UDDI

Any UDDI that conforms to UDDI4] [26]. Currently the Data Portal uses WASP UDDI 4.5 from
Systinet, which conforms to UDDI v2. Others include Novels UDDI and JUDDI [27] by Apache.

Apache jUDDI has been released early this year and is built and tested on Tomcat, jUDDI can be
used with most databases and works with UDDI4].

7.1.5 Web Services

Apache Axis version 1.0+.

7.1.6 Java Cogkit
Java Cog Kit version 1.1+ with Bouncy Castle JCE provider jce-jdk-117 jar installed and configured.

7.1.7 Apache Ant

The Data Portal does not necessary need ant to compile the source code but it is highly
recommended that Apache Ant [28] 1.5.x be used.

August 2004 Page 49 of 53

© Council for the Central Laboratory of the Research Councils

Enquiries about copyright, reproduction and requests for additional copies of this
report should be addressed to:

Library and Information Services
CCLRC Daresbury Laboratory
Daresbury Warrington
Cheshire WA4 4AD

UK

Tel: +44 (0)1925 603397

Fax: +44 (0)1925 603777

Email: library@dl.ac.uk

ISSN 1362-0207

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their
reports or in any communication about their tests or investigations.

