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Abstract

Three commonly used high-level programming languages are compared for their use
in numerically intensive computation. A sparse matrix multiply which contains a
typical mix of floating-point arithmetic and indirect addressing has been written in
each language and is run on a variety of machines under several different compilers.
The results show that speed of executed code varies as much from compiler
implementation as from choice of language. C and Fortran90 perform very similarly,
but Java is still too slow to be a serious contender for high performance numerical
programming

1. INTRODUCTION

Programming languages have evolved considerably from the early days of
computing, and programming methodologies have emerged which have their roots in
theoretical computer science (functional programming, object-oriented programming,
etc.). Yet much of the computational science and engineering community remains
wedded to Fortran in one or another of its incarnations. Often this commitment to a
language which first emerged in 1954 is rationalised in one of three ways. The large
corpus of legacy software, particularly in the form of libraries, would need to be re-
developed in a new language. Learning a new language would (at least initially)
entail a loss of productivity. Finally, the maturity of optimising compilers, it is said,
provides such a performance benefit that other languages simply cannot compete.
Proponents of younger languages and methodologies point to ease of development
and more provably correct programs, particularly since data encapsulation should
eliminate many of the unwanted side-effects that Fortran allowed.

This report looks at three languages and assesses their suitability for numerical
computation. The languages are Fortran, C and Java. We shall first discuss the
strengths and weaknesses of each of these languages, then present results of a
comparison of their performance on a typical numerical kernel, a sparse matrix-matrix
multiply.



2. THE LANGUAGES
2.1 Fortran

Fortran was one of the first high-level languages developed, and the programming
model it implicitly contains is shaped by its early target market of mathematicians
and scientists who wished to write programs that looked like the mathematical
formulae they were used to manipulating on paper. Its very name comes from
FORmula TRANslation, and the basic objects of the language, reals, integers, arrays,
etc., are direct counterparts of the variables and constants which appear in any
mathematical model. Fortran has evolved through the standardisation process that
gave us FORTRAN66, FORTRANY77, Fortran90, Fortran95 and the Fortran2003
standard currently in its Committee Draft stage [1]. During this evolution the
language became capable first of expressing algorithms more richly and more simply,
then of extending the objects it handled to more abstract structures and of supporting
to some extent an object oriented programming model.

Because Fortran programmers manipulate ‘real life” mathematical objects, there is
often a mismatch between such objects and their representation on the computer
which can lead to inefficiency and errors. For example, a series of large numbers, both
positive and negative, can be added together mathematically and give an answer
which is much smaller than the individual terms. When implemented in the finite
arithmetic of a computer, the result of such an addition can depend dramatically on
the order in which the terms are added. Such truncation errors can, in the worst cases,
dominate the performance of a program and give incorrect results. Similarly if a large
array is accessed in a manner which causes large strides through the memory onto
which it is mapped, so much time can be spent bringing portions of memory into and
out of the active virtual memory that the efficiency of the calculation can be adversely
affected. Modern compilers have sophisticated algorithms which can recognise many
of the more obvious problems and optimise the program produced so that it is no
longer a line-by-line direct translation of what the programmer wrote. Techniques
which exploit particular features of the cpu hardware are also available such as loop
unrolling on pipelined architectures. The maturity of Fortran, its relatively simple and
safe datatypes and the importance of efficiency mean that these optimisation
techniques are considerably advanced in Fortran compilers.

22 C

C was developed in the early 1970s, largely as a systems’ programming language for
Unix [2]. While it shares some of the basic objects of Fortran and is still a procedural
language, it is much “closer to the machine” in that its datatypes and model of
programming map more directly onto the logical representation of data in memory.
In particular the use of pointers and pointer arithmetic allow much more hands-on
manipulation of the low-level representation of program objects. This gives it more
power, but also can prevent several of the important optimisations available to
Fortran compilers as assumptions about what object is being referenced cannot be
guaranteed in C. On the other hand, a good C programmer can produce hand



optimised code which is comparable with machine optimised Fortran. The price paid
for this is often in readability and maintainability of code. However, for the core
routines in computational software which are not likely to change much or need to be
read there is an argument for using C. The argument runs that one can achieve
assembler-like performance while maintaining portability.

Many modern libraries of software are written in C and provide an interface to other
languages such as Fortran (a language binding or Application Programming Interface
(API)). For those that deal with system functionality (such as I/O, inter-process
communication, user interfaces, graphics, etc.) this is clearly sensible, and C’s close to
machine nature is a clear advantage. Numerical libraries have been slower to migrate
to C and it is not clear that such a migration is advantageous.

C achieved standardisation in 1989, but six years earlier C had been extended to C++
by the addition of ideas from object oriented programming. This language has been
gaining popularity as a workhorse general-purpose programming language, mainly
driven by computer scientists attracted by its programming model and by the
commercial world who view it as providing more easily maintainable software than
earlier languages. In recent years numerical libraries have been developed in C++
incorporating published class libraries for customisation [3].

2.3 Java

The new kid on the block, Java looks very similar to C and C++, and incorporates
much of C++’s OO programming model [4]. It distinguishes itself from its
predecessors in two major respects: the definition in the original language of a large
range of class libraries, particularly for user interface activities (window management,
mouse interaction, menus, etc.) and in being platform independent. This
independence is achieved since Java code is either interpreted at run-time (as with
BASIC) or it is compiled into machine code for a virtual machine, the Java Virtual
Machine (JVM). This compiled code can then be run on any platform, the local JVM
making the final translation to native machine instructions.

3. THE APPLICATION

As an example of a scientific application kernel we consider a sparse matrix-matrix
multiply. Although many scientific codes solve problems represented by full matrices,
the sparse multiply does contain a mixture of indirect addressing and floating point
operations which is typical of even full matrix codes.

A sparse matrix is one where a significant number of entries in each row or column
are identically zero. Such matrices arise naturally in finite difference and finite
element discretisations of partial differential equations as well as in tight-binding
Hamiltonians of large systems and in many optimisation problems (and, of course,
the identity matrix is trivially sparse). With such a large number of zeroes it would
clearly be pointless and wasteful to store all entries of the matrix, so schemes which
use indirect addressing are employed [5]. For example, one could store the non-zero
(real) entries in one array and the two integer indices, i and j, in another. This makes



the multiplication of two sparse matrices more complex than that of two full ones. For
full matrices the following pseudo-code is sufficient:

integer n, i, j, k
real matrix A(n:n), B(nm), C(r:n)

fori=l ton
forj=1ton
C(,j)=0.0
fork=1ton
C(I,)) = CL,j) + AlLk) * Blk))
next k
nextj
next i

For sparse matrices this could become:

integer rank, n, i,j, k, I, m
real sparse_matrix A(n), B(n), C(n)
integer sparse_index IA(n,2), IB(n,2), IC(n,2)
m=1
for i=1 to rank
for j=1 to rank
C(m) = 0.0
fork=Iton
if (IA(k,1) == I} then
forl=1ton
if (ib(},1) ==ITA(k,1) and IB(l,2) == ) then
C(m) = C(m) + A(k) * B(1)
IC(m,1) =1
IC(m,2) =]
next ]
m=m+1
end if
next k
next
next 1

This is by no means the most efficient algorithm, but it is typical of the extra
complication sparse computations entail. In the test codes the storage system used is
two integer arrays, IA and JA, and one real array, A, as above, but LA(i) contains the
starting indices of row iin JA and A, while JA(IA(i):IA(i+1)-1) contains the column
indices of the entries and A(IA®):IA(i+1)-1) their value. This leads to indirect
addressing of JA. Issues which affect the performance are how well the compiler can
optimise this indirect addressing and how well memory can be used to minimise
paging as well as how the compiler or the language can perform floating point
calculations.



4, RESULTS

In order to compare the three languages under consideration we took programs
written to perform a sparse matrix-matrix multiply using the same underlying
algorithm in each language and ran them on a variety of matrices and on a variety of
computers. The time taken for each was recorded and normalised by the cycle time of
the processor. (Another possible normalisation would have been to use the SpecFP
rating of the processor, but this would have been in part to beg the question we were
interested in.)

The sparse kernels form the JASPA suite [6]. The matrices were taken from the Matrix
Market collection (http://math.nist.gov//MatrixMarket) and comprise a wide-
ranging sample of sparse matrices from computational science applications as
detailed in Table 1.

Matnx nayle - - ;_Dlsc1plme S _,
 Af23560 | CFD- aerofoil %
Bcsstk30 . Structural EngneerlnL ]
' E40r0000 S 5 CFD - driven cavity |
 Fidap011 | FiniteElement |
Fidpmll | Finite Element ]
 Memplus ] Electromc circuit de31gn ]
FQC2534__7 | Quantum Chemistry
- 53dkt3m?2 | Structural Mechamc:s— cyhndrlcal shells |

‘ Table 1: Test matrlces from MatrlxMarket B

These matrices were squared using the sparse multiply kernels. The raw and
normalised speeds are given in Tables 2 and 3. Several conclusions can be drawn
immediately from these tables. For example, it is clear that the detailed structure of
the matrix (the sparsity pattern) has a considerable influence on the speed of this
operation which can vary by a factor of up to 3.58 (Lahey Fujitsu Fortran90 on a
pentium PC). The compiler also has an influence on the speed as shown by the Xeon
workstation where we had three Fortran compilers available: the Lahey Fujitsu 95,
Intel’s 95 and the Pacific-Sierra compiler which translates a subset of Fortran90 to
FORTRAN77 using VAST90 and then uses g77 to compile this. (We also had available
the NAG {90 compiler, but this was unable to link the program we were using due to
its non-standard use of getarg.) The maximum ratio of speed from the Pacific-Sierra
code to that from Lahey-Fujitsu was 2.18 (af23560). However, it can also be seen from
Figure 1 that for the most part the relative speeds for the various matrices are
independent of language and machine. The minor exceptions are the memplus and
qc2534 matrices which have anomalously slow and fast performances in some Fortran
experiments.

Two points can be drawn from this. Firstly that the differences we see between
languages are similar in magnitude to the differences between different



implementations of the same language. Secondly that nevertheless we can use the
consistency of the relative speeds to draw (albeit with some caveats) some conclusions
about the performance of the languages.
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Figure 1: Normalised speeds for sparse matrix multiply in various languages on
various machines.

Looking at table 3 and at Figure 1 it is clear that in the main Fortran90 is faster than C
(though not by much and this is very dependent upon the compiler) and that Java is
quite considerably slower. It is interesting to consider the Java results on the Pentium
PC and on the Origin300. The Origin did not have a Java compiler available, so we
used the compiled (JVM) code produced by the compiler on the PC. The speeds
relative to processor rate are virtually identical, which may simply be a function of the
Java Virtual Machine or it may mean that there is still scope for tuning the runtime
translation from JVM to native instructions to make better use of the processor
architecture. If the latter is the case then we may see the speed of Java code increase in
the next few years as more Java implementations come onto the market, targeted at
specific machines.
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There are no speeds given for Java on the two Compagq chips. This is because although
there was a Java compiler on both these machines, the runtime environment was
lacking and the compiled code failed to run, issuing the error message: Unable to
initialise threads: cannot find class java/lang/Thread. Attempts to circumvent this
problem, for example through the use of compiler flags to use either native or green
threads or through environment variables to hint where the class might be found
were to no avail.

To analyse the data further we have taken several approaches which aim to measure
the performance of a language across a range of problems. The simplest method is to
average the normalised times for each language over the set of matrices and
computers. In this case Fortran90 is the fastest with an average of 0.0772, then comes
C with 0.0742 and Java is less than half as fast with 0.0306.

Another measure is to take the speeds for each matrix on each machine and to assign
three points to the fastest code, two to the middle and one point to the slowest code.
In this case the total number of points is Fortran90: 110, C: 88 and Java: 42. The
difference between this measure and the simple average is that the relative difference
between Fortran90 and C in the two measures shows the fact that Fortran90 is faster
than C in many more cases, although the factor by which it is faster may not be that
large. It may also be the case that the previous result for C can be skewed by a few
very fast results.

Finally we introduce a measure which attempts to indicate the value of each language
as a general-purpose tool [7]. Consider the set of timings (normalised by both size of
problem and processor clock rate) for each matrix i and language j {x/}. Let x/, be
the value of the shortest time for a given language. Then define P/(x) as the fraction
of matrices for which the speed in language j is within a factor o of the fastest (i.e. for
which x{ <ox’.). P/(&t) runs from 0 to 1 as & runs from 1 to infinity. The faster

P/(o) rises, the more generally useful the language, since this means that for a given
acceptable time more matrices will be multiplied within that time. Of course, this says
nothing about whether or not a different language might perform faster. If all
experiments in language A ran at the same speed, but this speed was 10 times slower
than the slowest experiments in language B (whose spread of speeds was perhaps
10%), then one might still conclude that B was more useful than A. In figure 2 we
show P’(a) as defined above.

11



Figure 2. Performance Criterion (against fastest per
language)
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When languages are compared within themselves it is clear that Java and C are the
most consistent, with Java having the edge over C at low and high a. To an extent this
reflects the uniformity of compilers — all the Java code is compiled with a Sun or Sun-
derived compiler and only the virtual machines are tailored to the individual
architectures. Similarly the poor behaviour of Fortran at the high o end is an artefact
of the relatively poor performance of the Lahey-Fujitsu compiler.

Comparing against the overall fastest execution speed, on the other hand, shows
clearly how slow (roughly a factor of three) Java is. Figure 3 shows P («), where the

definition of P (0.) uses the shortest normalised time over both experiments and
languages. Again C performs slightly better than Fortran in the mid-range and it
would be hard to make a clear recommendation that one language is clearly better
than the other on the basis of these results.

Since Fortran90 has a number of new language features that are used by this code, it is
worth estimating the effect using these has on the performance of the Fortran90 code.
The two main features used are derived types (akin to structs in C) and pointer
indirection. Indeed in Fortran 90 and 95 the use of derived types of any complexity
almost invariably forces the use of pointers since elements of a derived type cannot be
ALLOCATABLE - this is remedied in Fortran2003. We have produced fwo
alternative versions of the Fortran implementation of the sparse matrix multiply. In

12



Figure 3. Performance Criterion (against overall fastest)
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the first we expand the sparse matrix derived type into its components and pass those
explicitly. Thus one argument of type sparse matrix to a subprogram unit is replaced
by two integers, two integer pointer arrays, one real pointer array and a logical. In
Figure 4 this is referred fo as F90 (no derived types). In the second variant we make
the pointer arrays static and large enough to hold the largest matrix in our test set.
This is referred to as F77 in Figure 4, although strictly speaking there are still a few
F90 remnants in the code such as the use of KIND= and INTERFACE. However, the
passage of arguments and use of memory follows the Fortran77 model.

Figure 4 shows that there is a performance gain from using derived types
(presumably achieved by reducing the overheads in calling subprograms) of between
7% and 20%. Fortran77, on the other hand, also represents a performance gain in most
cases, sometimes of as much as 25%, though it can also lead to loss of performance
(17% in the worst case). This loss is likely to be due to the way in which the matrix fits
within the statically declared memory leading to increased paging.

It would be informative to perform a similar experiment with migrating the C code to
C++.

13



Figure 4. Effects of F90 language features
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5. SUMMARY

The results given above suggest that (at least for the limited range of problems
considered) Java has still a long way to go before it can be considered a serious
contender for numerically intensive computing. On the other hand, the performance
of C and Fortran90 is now so close as to make any distinction between the languages
on performance grounds specious. Programumers will, and indeed, should, use the
language they are most comfortable with to develop their code. To this end the
emerging Fortran2003 standard which deals, inter alia, with the interoperation of C
and Fortran is a welcome advance.
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