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Abstract 5 

Thermal powers from radioactive decays (‘decay heat’) within a proton-driven 6 

neutron-producing tungsten target on the ISIS Spallation Neutron Source have been 7 

measured.  Very good agreement is found with calculations using the Monte Carlo 8 

code MCNPX. 9 

1.  Introduction 10 

In highly irradiated targets on high-power particle accelerators it is often necessary to 11 

know what the thermal power from radioactive decays (‘decay heat’) within the target 12 

is once the particle beam from the accelerator has been switched off.  Usually, decay 13 

heats are calculated by Monte Carlo computer codes such as MCNPX [1], since decay 14 

heats are not always easy to measure.  In principle, decay heat may be measured 15 

absolutely by calorimetry once a target has been removed from its operational 16 

location, but on a working accelerator facility this may not be practical. 17 

In the present publication, two measurements of the decay heat in the tungsten target 18 

in the TS-1 target station on the ISIS Spallation Neutron Source are presented and 19 

compared with Monte Carlo calculations using MCNPX. 20 

2.  The ISIS TS-1 target and decay heat measurements 21 

The ISIS TS-1 target is a twelve-plate tantalum-clad tungsten target, irradiated by a 22 

40-pulses-per-second (pps) 800-MeV ~180-µA proton beam from the ISIS 23 

synchrotron, and cooled by ~500 litres/minute of heavy water.  During irradiation the 24 

thermal power dissipated within the target is ~100 kW, and the target is instrumented 25 

with thermocouples measuring the temperature of each plate.  A schematic diagram of 26 

the target is shown in Fig. 1. 27 

The decay heat measurements were made essentially by switching off both the proton 28 

beam and the flow of cooling water after a long irradiation, and recording the time 29 

profiles of the thermocouple temperatures.  Two such measurements were made, on 30 

30 November 2016 and on 26 March 2018, in both cases at the ends of ~30-day 31 

irradiation campaigns.  The temperature data are shown in Figs. 2a and 2b.  The 32 

vertical range spanned by the data in Fig. 2a is greater than the vertical range in 33 

Fig. 2b because in Fig. 2a the water flow through the target was switched off 34 

36 seconds after the beam was switched off, whereas in Fig. 2b the water flow and 35 

beam were switched off at the same time;  consequently in Fig. 2a there was more 36 

time than in Fig. 2b for the bulk of the target to cool down before temperature rises 37 

due to decay heat in the absence of water flow became evident. 38 
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 39 

Fig. 1.  Schematic diagram of ISIS TS-1 target.  Along the direction of the incident beam 40 
dimensions are as follows:  the thicknesses of tungsten in the target plates are 11.0, 11.0, 12.0, 41 
13.5, 15.0, 18.0, 21.0, 26.0, 34.0, 40.0, 46.0 and 46.0 mm;  each plate has 2.0 mm of tantalum 42 
cladding on each side;  and each plate is separated from its neighbours by 2.0 mm of water.  43 
The pressure vessel fits closely over the structures containing and separating the channels 44 
through which the cooling water flows. 45 

3.  Analysis 46 

The simplest model for each of the target plates is that of an isolated mass 𝑚 with 47 

specific heat 𝑐 heated internally at a rate 𝑄̇ and subject to Newton’s Law of Cooling 48 

whereby heat flows out of the mass at a rate proportional to the difference between 49 

the temperature 𝑇 of the mass and the (constant) temperature 𝑇𝑠 of the surroundings.  50 

In such a case the temperature 𝑇 is described by  51 

𝑇 = 𝑇𝑠 + (𝑄̇/𝛼)(1 − exp(−(𝛼/𝑚𝑐) 𝑡))  where 𝛼 is the constant of proportionality in 52 

the law of cooling, whereupon by fitting the expression  𝑇 = 𝑎 +  𝑏(1 − exp(−𝑡/𝑑))  53 

to the data with 𝑎, 𝑏 and 𝑑 as three free parameters the internal rate of generation of 54 

heat 𝑄̇ may be obtained as 𝑄̇ = 𝑚𝑐 𝑏/𝑑.  However, when such a function is fitted to 55 

the temperature data shown in Fig. 2 it soon becomes evident that whilst a reasonably 56 

good fit may be obtained for the first few tens of seconds after the water flow has 57 

been switched off, the function cannot fit the data at longer times;  and the reason is, 58 

essentially, because there is more than one time constant present in the data. 59 

  60 
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 61 

Fig. 2a.  30 November 2016 data.  Target plate temperatures (°C) in the TS-1 target as a 62 
function of time when the proton beam and water flows were switched off;  beam off, 63 
08:30:04;  water off, 08:30:40.  The order of the curves at 08:35 is the same as the list of plate 64 
numbers at the right-hand side. 65 

 66 

Fig. 2b.  26 March 2018 data.  Target plate temperatures (°C) in the TS-1 target as a function 67 
of time when the proton beam and water flows were switched off simultaneously;  beam and 68 
water off at 08:31:28.  The order of the curves at 08:35 is the same as the list of plate numbers 69 
at the right-hand side.  Same horizontal and vertical ranges as Fig. 2a. 70 
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A more realistic model is a ‘two-mass’ model, wherein a target plate at temperature 𝑇1 71 

with mass 𝑚1, specific heat 𝑐1 and internal heat source 𝑄̇ is assumed to lose heat at a 72 

rate 𝛼(𝑇1 − 𝑇2) to a surrounding assembly at temperature 𝑇2 with mass 𝑚2 and 73 

specific heat 𝑐2, and in turn this assembly is assumed to lose heat at a rate 𝛽(𝑇2 − 𝑇𝑠) 74 

to a thermal sink at temperature 𝑇𝑠, as shown diagrammatically in Fig. 3.   75 

 76 

Fig. 3.  Diagrammatic representation of two-mass model.  Mass 𝑚1 represents a target plate, 77 
mass 𝑚2 represents the local surroundings (e.g. pressure vessel and associated flanges and 78 
manifolds), and the thermal sink represents the more distant surroundings. 79 

For mass 𝑚1,  𝑄̇ = 𝑚1𝑐1𝑑𝑇1/𝑑𝑡 + 𝛼(𝑇1 − 𝑇2),  80 

and for mass 𝑚2,  𝛼(𝑇1 − 𝑇2) = 𝑚2𝑐2𝑑𝑇2/𝑑𝑡 + 𝛽(𝑇2 − 𝑇𝑠).   81 

By re-arranging the first equation to give an equation for 𝑇2 and then substituting into 82 

the second equation, the result is 𝑑2𝑇1/𝑑𝑡2 + 𝑎1 𝑑𝑇1/𝑑𝑡 + 𝑎2 𝑇1 = 𝐶  where   83 

𝑎1 = (𝛼𝑚2𝑐2 + (𝛼 + 𝛽)𝑚1𝑐1)/(𝑚1𝑐1𝑚2𝑐2),  𝑎2 = 𝛼𝛽/(𝑚1𝑐1𝑚2𝑐2),   84 

𝐶 = 𝑎2 𝑇𝑠 + 𝑏 𝑄̇,  and  𝑏 = (𝛼 + 𝛽)/(𝑚1𝑐1𝑚2𝑐2).  Using the machinery of the 85 

Laplace transform, the subsidiary equation corresponding to the second-order 86 

differential equation is, since 𝐶 is constant,   87 

(𝑝2 + 𝑎1𝑝 + 𝑎2)𝑇1̅ = 𝐶/𝑝 + 𝑝𝑇1
(0)

+ 𝑇̇1
(0)

+ 𝑎1𝑇1
(0)

  whereupon by re-arranging as  88 

𝑇1̅ = (𝑝2𝑇1
(0)

+ 𝑝(𝑇̇1
(0)

+ 𝑎1𝑇1
(0)

) + 𝐶)/(𝑝(𝑝2 + 𝑎1𝑝 + 𝑎2)) to give the Laplace 89 

transform  𝑇1̅ = 𝑇1̅(𝑝) = ∫ exp(−𝑝𝑡)𝑇1(𝑡)𝑑𝑡
∞

0
  of the temperature 𝑇1(𝑡), re-writing 90 

in terms of partial fractions, completing the square in the quadratic term in the 91 

denominator, and then using the shifting theorem and the inverse transforms of the 92 

cosh and sinh functions, or by simply looking up a table of inverse transforms 93 

(e.g. [2]), the solution is  94 

𝑇1 = 𝐶/𝑎298 

+ (𝑇1
(0)

− 𝐶/𝑎2 + (𝑇̇1
(0)

+ (𝑎1/2)(𝑇1
(0)

− 𝐶/𝑎2))/𝑎12)exp((−(𝑎1/2) + 𝑎12)𝑡)/299 

+ (𝑇1
(0)

− 𝐶/𝑎2 − (𝑇̇1
(0)

+ (𝑎1/2)(𝑇1
(0)

− 𝐶/𝑎2))/𝑎12)exp((−(𝑎1/2) − 𝑎12)𝑡)/2 100 

where 𝑎12 = √(𝑎1
2/4) − 𝑎2, and 𝑇1

(0)
 and 𝑇̇1

(0)
 are the initial value of 𝑇1 and the 95 

initial value of the rate of change of 𝑇1 respectively.  Two time constants  96 

1/((𝑎1/2) − 𝑎12) and 1/((𝑎1/2) + 𝑎12) are now evident. 97 

  101 
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However, it is obvious that in reality the target plates are not thermally isolated, and 102 

so the simple two-mass model described above was extended to take into account heat 103 

flow between plates as shown in Fig. 4. 104 

 105 

Fig. 4.  Extension of the two-mass model to take into account heat transfer between plates. 106 

This extended two-mass model is described by the following set of 𝑛 + 1 equations 107 

for 𝑛 plates: 108 

𝑄̇1 = 𝑚1𝑐1𝑇̇1 + 𝛽1,2(𝑇1 − 𝑇2) + 𝛼1(𝑇1 − 𝑇𝑣) 109 

𝛽1,2(𝑇1 − 𝑇2) + 𝑄̇2 = 𝑚2𝑐2𝑇̇2 + 𝛽2,3(𝑇2 − 𝑇3) + 𝛼2(𝑇2 − 𝑇𝑣) 110 

⋮ 111 

𝛽𝑖−1,𝑖(𝑇𝑖−1 − 𝑇𝑖) + 𝑄̇𝑖 = 𝑚𝑖𝑐𝑖𝑇̇𝑖 + 𝛽𝑖,𝑖+1(𝑇𝑖 − 𝑇𝑖+1) + 𝛼𝑖(𝑇𝑖 − 𝑇𝑣) 112 

⋮ 113 

𝛽𝑛−2,𝑛−1(𝑇𝑛−2 − 𝑇𝑛−1) + 𝑄̇𝑛−1114 

= 𝑚𝑛−1𝑐𝑛−1𝑇̇𝑛−1 + 𝛽𝑛−1,𝑛(𝑇𝑛−1 − 𝑇𝑛) + 𝛼𝑛−1(𝑇𝑛−1 − 𝑇𝑣) 115 

𝛽𝑛−1,𝑛(𝑇𝑛−1 − 𝑇𝑛) + 𝑄̇𝑛 = 𝑚𝑛𝑐𝑛𝑇̇𝑛 + 𝛼𝑛(𝑇𝑛 − 𝑇𝑣) 116 

 117 

∑ 𝛼𝑖(𝑇𝑖 − 𝑇𝑣)

𝑛

𝑖=1

= 𝑚𝑣𝑐𝑣𝑇̇𝑣 + 𝛾(𝑇𝑣 − 𝑇0) 118 

where the 𝛼’s represent thermal conductances between the plates and the pressure 119 

vessel, the 𝛽’s represent thermal conductances between pairs of plates, 𝛾 represents 120 

the thermal conductance between the pressure vessel and the surroundings or thermal 121 

sink 𝑠, and subscripts 𝑖 and 𝑣 refer to plate number and pressure vessel respectively.  122 

The solutions of this set of 𝑛 + 1 coupled first-order linear differential equations can 123 

now be fitted to the plate temperature data as functions of time with the aim of 124 

extracting parameters of the fit, especially the decay heats 𝑄̇𝑖. 125 

  126 
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The set of 𝑛 + 1 differential equations was solved by DC04 from the Harwell 127 

Subroutine Library (HSL) [3].  But as a check, the equations for a 10-plate test case 128 

were also solved by the method of Laplace transforms — taking the transforms of the 129 

set of 𝑛 + 1 equations above, solving for the resultant temperature transforms 𝑇𝑖̅’s and 130 

𝑇𝑣̅ using the HSL linear algebra routine ME05, and then numerically evaluating the 131 

inverse transform 𝑇𝑖(𝑡) = ∫ exp(𝑝𝑡)
𝛾+𝑖∞

𝛾−𝑖∞
𝑇𝑖̅(𝑝)𝑑𝑝 / 2𝜋𝑖.  A comparison of the two 132 

methods of solution for the 10-plate test case is shown in Fig. 5;  the agreement is 133 

excellent, although a little numerical noise from the inverse Laplace transform is 134 

evident. 135 

      136 

Fig. 5.  Time development of plate temperatures by direct solution of coupled differential 137 
equations (left-hand side) and by Laplace transforms (right-hand side) (for which 𝛾 and ‘∞’ 138 
in the equation for the inverse transform were taken as 0.01 and 400 respectively).  For both, 139 
the order of curves from top to bottom is plate 1, plate 2, plate 3, ... , plate 10, vessel.  The 140 
parameters assumed were:  𝑚’s and 𝑐’s as in Table 1, 𝛽 = 5 W °C–1 for all plates, 141 

𝛾 = 50 W °C–1, 𝑚𝑣 = 50000 g, 𝑇𝑣
(0)

= 20°C, 𝑇𝑠 = 20°C, 𝑇(0) = 30°C for all plates, 𝛼 = 11, 142 

12, 13, …, 20 W °C–1 for plates 1–10, and 𝑄̇ = 162, 154, 145, 137, 134, 135, 124, 102, 82, 143 

and 62 W for plates 1–10 (these 𝑄̇’s were taken from preliminary Monte Carlo calculations).  144 
Some of the curves initially dip downwards because the internal heat is insufficient to prevent 145 
an initial cooling from the starting temperature. 146 

Solutions to the set of 𝑛 + 1 coupled first-order linear differential equations solved 147 

using DC04 were fitted to the target plate temperature data using the HSL 148 

minimisation routine VA04;  plate numbers 11 and 12 were excluded because it was 149 

reasonably clear from Fig. 2 that decay heat within these two plates is insignificant.  It 150 

was assumed that all the 𝛽’s had the same value.  Parameters fitted were 𝛽, 𝛾, 𝑚𝑣, 151 

𝑇𝑣
(0)

, 𝑇𝑠, 𝑇1
(0)

, 𝑇2
(0)

, … , 𝑇10
(0)

, 𝛼1, 𝛼2, … , 𝛼10, 𝑄̇1, 𝑄̇2, … , 𝑄̇10, a total of 152 

35 parameters, and the function minimised was  ∑ (𝑇𝑗,𝑖
data − 𝑇𝑗,𝑖

fit)2
𝑗,𝑖 /𝛿𝑇𝑗,𝑖

2   where the 153 

sum is taken over temperature datum points 𝑗 for plate numbers 𝑖 and 𝛿𝑇𝑗,𝑖 was taken 154 

as 0.1°C for all 𝑗 and 𝑖 since the temperature data were recorded with a resolution of 155 

0.1°C.  The temperature data for all ten plates were fitted simultaneously, although for 156 

a given 𝑖 the only 𝑇(0), 𝛼 and 𝑄̇ parameters allowed to vary were 𝑇𝑖
(0)

, 𝛼𝑖 and 𝑄̇𝑖.  157 

Fixed parameters are given in Table 1.  Since the Monte Carlo calculations described 158 

in Sect. 4 showed that during the 10 minutes immediately after irradiation ceased the 159 
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decay heat varied by less than 20%, it was assumed that over the 10-minute fitting 160 

interval the decay heat was constant.  Results for 𝑄̇tot = ∑ 𝑄̇𝑖𝑖  after several iterations 161 

of VA04 are given in Table 2, and the uncertainties were obtained by repeatedly 162 

perturbing all the data points by normally distributed random numbers (from the HSL 163 

routine FA05) matched to the uncertainties in the data points and refitting, and then 164 

taking the standard deviations of the resultant sets of ‘perturbed’ values of 𝑄̇tot.  The 165 

greater uncertainty in 𝑄̇tot for the 26 Mar. 2018 data is essentially because the 166 

(vertical) temperature range spanned by these data is less than it is for the 167 

30 Nov. 2016 data.  A typical fit is shown in Fig. 6. 168 

Whilst the number of parameters involved in each of the two fits, 35, is undoubtedly 169 

an unusually large number, it should be remembered that the temperature curve for 170 

plate 𝑖 is fitted only by the three parameters 𝑇𝑖
(0)

, 𝛼𝑖 and 𝑄̇𝑖 and by a tenth-share in the 171 

five parameters 𝛽, 𝛾, 𝑚𝑣, 𝑇𝑣
(0)

 and 𝑇𝑠, and so effectively each of the ten temperature 172 

curves is fitted by only ‘3½’ parameters, a much more modest number. 173 

 𝑚, g 𝑐, J g–1 °C–1 

Plate 1 3350 0.1366 

Plate 2 3350 0.1366 

Plate 3 3570 0.1365 

Plate 4 3900 0.1364 

Plate 5 4240 0.1363 

Plate 6 4900 0.1362 

Plate 7 5570 0.1360 

Plate 8 6680 0.1359 

Plate 9 8450 0.1358 

Plate 10 9780 0.1357 

Vessel  0.5 

Table 1.  Values of fixed parameters used in fitting the target plate temperature data.  Specific 174 
heats 𝑐 vary very slightly with plate numbers because 𝑐W is slightly smaller than 𝑐Ta and the 175 
tungsten plates become thicker towards the back of the target whereas the thickness of 176 
tantalum cladding remains the same.  The pressure vessel is stainless steel, hence the different 177 
specific heat. 178 
  179 
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Date 𝜀rms, °C  𝑄̇tot = ∑ 𝑄̇𝑖𝑖  , watts 

  Measured Calculated 

30 Nov. 2016 0.122 1220 ± 90 1130±230 

26 Mar. 2018 0.117 1350 ± 240 1320±260 

Table 2.  Decay heats deduced from the two sets of target plate temperature measurements.  180 
𝜀rms is the root-mean-square value of the average deviations between fit and data.  The 181 
calculated values are from the Monte Carlo computer code MCNPX, and are discussed in 182 
Sect. 4.  Averaged-over-ten-plates values of the correlation coefficients amongst the fitted 183 

𝑇(0), 𝛼 and 𝑄̇ parameters were, for the 30 Nov. 2016 data, 0.48, –0.40 and –0.63, and, for the 184 

26 Mar. 2018 data, 0.94, –0.07 and –0.08 for 𝑄̇-𝛼, 𝑄̇-𝑇(0) and 𝛼-𝑇(0) respectively;  the signs 185 
of these correlation coefficients are as expected, since, for example, for a given temperature, a 186 

higher value of 𝑄̇𝑖 can be partly compensated for by a higher value of 𝛼𝑖.  Note that the 187 
uncertainties on the calculated decay heats are likely to be almost entirely systematic, and are 188 
therefore highly correlated. 189 

 190 

Fig. 6.  Fit to data, plate 1, 30 Nov. 2016.  The root-mean-square deviation  191 
between the fit and the data is 0.12°C. 192 

4.  Comparison with Monte Carlo calculations 193 

Calculations were carried out using the MCNPX Monte Carlo code [1] in association 194 

with the CINDER’90 transmutation code [4].  A very detailed model of the ISIS TS-1 195 

target-reflector-and-moderators (TRAM) assembly was used (see Section 2 in 196 

reference [5])  The model had been built using CombLayer [6], a set of C++ programs 197 

which requires the user to effectively write the model geometry into the C++ 198 

construction system;  this C++ code is then compiled into the final program which, 199 

after running, produces the MCNPX input file.  Detailed irradiation histories (proton 200 
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energies1 and beam currents as functions of time since the target was first irradiated in 201 

March 2015) were used for the calculations;  the total integrated proton beam currents 202 

were 1040 and 1779 milliamp-hours for the 30 Nov. 2016 and 26 Mar. 2018 203 

measurements respectively. 204 

Table 2 also gives the calculated decay heats 𝑄̇ = ∑ 𝐴𝑘𝑞𝑘𝑘  (where 𝐴𝑘 is the activity 205 

of radionuclide 𝑘 and 𝑞𝑘 is its mean decay energy) calculated using 206 

MCNPX/CINDER’90 (no further MCNPX calculations were made after the 207 

CINDER’90 calculations), and it can be seen that the calculated values agree very 208 

well with the measured values.  The 20% uncertainties given for the Monte Carlo 209 

results are plausible estimates of the uncertainties in the modelling and the nuclear 210 

data. 211 

It is obvious that the decay heats do not scale with integrated beam current;  this is 212 

simply because much of the decay heat is due to 182Ta produced by neutron capture on 213 

the tantalum cladding around the tungsten in the target, and the half-life of 182Ta, 214 

115 days, is much less than the overall irradiation times.  Table 3 lists the 215 

radionuclides that contribute 1% or more to the calculated decay heat immediately 216 

after irradiation ceases, and it is clear that 182Ta dominates the list. 217 

Radionuclide Half-life % contribution to overall 

decay heat at 𝑡cool = 0 

Predominantly 

produced in 
182Ta 115 d 45.80 Ta 
187W 23.7 h 4.81 W 
168Lu 5.50 m 2.66 W 

183mW 5.20 s 2.10 W 
166Lu 2.65 m 1.80 W 
176Ta 8.08 h 1.77 W 

166Tm 7.70 h 1.58 W 
170Lu 48.1 h 1.52 W 
163Lu 3.97 m 1.12 W 
171Hf 12.1 h 1.00 W 

Table 3.  Radionuclides in the irradiated target ordered by contribution (≥1%) to overall decay 218 
heat immediately after irradiation ceases (from the MCNPX/CINDER’90 calculations for 219 
26 Mar. 2018).  Also given are the parts of the target (i.e. the tungsten ‘cores’ of the plates, or 220 
the tantalum cladding) within which the radionuclides are predominantly produced. 221 

5.  Conclusion 222 

Thermal powers from radioactive decays (‘decay heat’) in an ISIS tungsten target 223 

have been measured by fitting a coupled two-mass model to observed temperature 224 

dependences of the target plate temperatures when both the proton beam and the 225 

cooling water flow are switched off.  Decay heats deduced from the measurements 226 

agree well with decay heat calculations using the Monte Carlo computer code 227 

MCNPX. 228 

                                                 
1 During some of the time that the target was being irradiated the synchrotron was running at 700 MeV 

(rather than its usual 800 MeV) in order to reduce strain on elderly lattice dipoles. 
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