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ABSTRACT

We consider conjugate-gradient like methods for solving block symmetric indefinite linear systems

that arise from saddle point problems or, in particular, regularizations thereof. Such methods

require preconditioners that preserve certain sub-blocks from the original systems but allow con-

siderable flexibility for the remaining blocks. We construct fourteen families of implicit factor-

izations that are capable of reproducing the required sub-blocks and (some) of the remainder.

These generalize known implicit factorizations for the unregularized case. Improved eigenvalue

clustering is possible if additionally some of the non-crucial blocks are reproduced. Numeri-

cal experiments confirm that these implicit-factorization preconditioners can be very effective in

practice.
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1 Introduction

Given a symmetric n by n matrix H, a symmetric m by m (m ≤ n) matrix C and a

full-rank m (≤ n) by n matrix A, we are interested in solving structured linear systems of

equations
(

H AT

A −C

) (

x

y

)

= −

(

g

0

)

, (1.1)

by iterative methods, in which preconditioners of the form

MG =

(

G AT

A −C

)

(1.2)

are used to accelerate the iteration for some suitable symmetric G. There is little loss of

generality in assuming the right-hand side of (1.1) has the form given rather than with the

more general
(

H AT

A −C

) (

x̄

ȳ

)

=

(

b

c

)

. (1.3)

For, so long as we have some mechanism for finding an initial (x0, y0) for which Ax0−Cy0 =

c, linearity of (1.1) implies that (x̄, ȳ) = (x0−x, y0−y) solves (1.3) when b = g+Hx0+AT y0.

In particular, since we intend to use the preconditioner (1.2), solving

(

G AT

A −C

) (

x0

y0

)

=

(

0

c

)

or =

(

b

c

)

to find suitable (x0, y0) are distinct possibilities.

When C = 0, (1.2) is commonly known as a constraint preconditioner [35] and in

this case systems of the form (1.1) arise as stationarity (KKT) conditions for equality-

constrained optimization [39, §18.1], in mixed finite-element approximation of elliptic prob-

lems [5], including in particular problems of elasticity [40] and incompressible flow [23], as

well as other areas. In practice C is often positive semi-definite (and frequently diagonal)—

such systems frequently arise in interior-point and regularization methods in optimization,

the simulation of electronic circuits [46] and other related areas. Although such problems

may involve m by n A with m > n, this is not a restriction for in this case we might equally

solve
(

C A

AT −H

) (

y

−x

)

=

(

−c

b

)

,

for which AT has more columns than rows. We place no restrictions on H, although we

recognise that in some applications H may be positive (semi-) definite.

Notation

Let I by the (appropriately-dimensioned) identity matrix. Given a symmetric matrix M

with, respectively, m+, m− and m0 positive, negative and zero eigenvalues, we denote its

inertia by In(M) = (m+, m−, m0).
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2 Suitable iterative methods

While it would be perfectly possible to apply a general preconditioned iterative methods like

GMRES [44] or the symmetric QMR method [25] to (1.1) with the indefinite preconditioner

(1.2), the specific form of (1.2) allows the use of of the more efficient preconditioned

conjugate-gradient (PCG) method [12] instead. We shall focus on this approach in this

paper, and thus need to derive conditions for which PCG is an appropriate method.

Suppose that C is of rank l, and that we find a decomposition

C = EDET , (2.1)

where E is m by l and D is l by l and invertible—either a spectral decomposition or an

LDLT factorization with pivoting are suitable, but the exact form is not relevant. In this

case, on defining additional variables

z = −DET y,

we may rewrite (1.1) as





H 0 AT

0 D−1 ET

A E 0









x

z

y



 =





g

0

0



 . (2.2)

Noting the trailing zero block in the coefficient matrix of (2.2), we see that the required

(x, z) components of the solution lie in the null-space of (A E).

Let the columns of the matrix

N =

(

N1

N2

)

form a basis for this null space. Then

(

x

z

)

=

(

N1

N2

)

w (2.3)

for some w, and (2.2) implies

HNw = NT
1 g. (2.4)

where

HN
def
= NT

1 HN1 + NT
2 D−1N2. (2.5)

Since we would like to apply PCG to solve (2.4), our fundamental assumption is then that

A1 the matrix HN is positive definite.

Fortunately assumption A1 is often easy to verify. For we have
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Theorem 2.1. Suppose that the coefficient matrix MH of (1.1) is non-singular and has

mH− negative eigenvalues and that C has c− negative ones, then A1 holds if and only if

mH− + c− = m. (2.6)

Proof. It is well known [30, Thm. 2.1] that under assumption A1 the coefficient matrix

EH of (2.2) has inertia (n + l, m, 0). The result then follows directly from Sylvester’s

law of inertia, since then In(EH) = In(D−1) + In(MH) and D−1 has as many negative

eigenvalues as C has. 2

Under assumption A1, we may apply the PCG method to find w, and hence recover (x, z)

from (2.3). Notice that such an approach does not determine y, and additional calculations

may need to be performed to recover it if it is required.

More importantly, it has been shown [8, 11, 32, 42] that rather than computing the

iterates explicitly within the null-space via (2.3), it is possible to perform the iteration in

the original (x, z) space so long as the preconditioner is chosen carefully. Specifically, let

G be any symmetric matrix for which

A2 the matrix

GN
def
= NT

1 GN1 + NT
2 D−1N2 (2.7)

is positive definite,

which we can check using Theorem 2.1. Then the appropriate projected preconditioned

conjugate-gradient (PPCG) algorithm is as follows [32]:

Projected Preconditioned Conjugate Gradients (variant 1):

Given x = 0, z = 0 and h = 0, solve





G 0 AT

0 D−1 ET

A E 0









r

d

u



 =





g

h

0



 , (2.8)

and set (p, v) = −(r, d) and σ = gTr + hT d.

Iterate until convergence:
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Form Hp and D−1v

Set α = σ/(pT Hp + vTD−1v).

Update x ← x + αp,

z ← z + αv,

g ← g + αHp

and h ← h + αD−1v.

Solve





G 0 AT

0 D−1 ET

A E 0









r

d

u



 =





g

h

0



 .

Set σnew = gT r + hT d

and β = σnew/σ.

Update σ ← σnew,

p ← −r + βp

and v ← −d + βv.

The scalar σ gives an appropriate optimality measure [32], and a realistic termination rule

is to stop when σ is small relative to its original value.

While this method is acceptable when a decomposition (2.1) of C is known, it is prefer-

able to be able to work directly with C. To this end, suppose that at each iteration

h = −ET a, v = −DET q and d = −DET t

for unknown vectors a, q and t—this is clearly the case at the start of the algorithm. Then,

letting w = Ca, it is straightforward to show that t = u + a, and that we can replace our

previous algorithm with the following equivalent one:

Projected Preconditioned Conjugate Gradients (variant 2):

Given x = 0, and a = w = 0, solve

(

G AT

A −C

) (

r

u

)

=

(

g

w

)

,

and set p = −r, q = −u and σ = gTr.

Iterate until convergence:
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Form Hp and Cq

Set α = σ/(pT Hp + qT Cq).

Update x ← x + αp,

a ← a + αq,

g ← g + αHp

and w ← w + αCq.

Solve

(

G AT

A −C

) (

r

u

)

=

(

g

w

)

.

Set t = a + u

σnew = gTr + tT w

β = σnew/σ.

Update σ ← σnew,

p ← −r + βp

and q ← −t + βq.

Notice now that z no longer appears, and that the preconditioning is carried out using the

matrix MG mentioned in the introduction. Also note that although this variant involves

two more vectors than its predecessor, t is simply used as temporary storage and may be

omitted if necessary, while w may also be replaced by Ca if storage is tight.

When C = 0, this is essentially the algorithm given by [32], but for this case the updates

for v and w are unnecessary and may be discarded. At the other extreme, when C is non

singular the algorithm is precisely that proposed by [31, Alg. 2.3], and is equivalent to

applying PCG to the system

(H + AT C−1A)x = g

using a preconditioner of the form G + AT C−1A.

Which of the two variants is prefereable depends on whether we have a decomposition

(2.1) and whether l is small relative to m: the vectors h and v in the first variant are of

length l, while the corresponding a and q in the second are of length m. Notice also that

although the preconditioning steps in the first variant require that we solve





G 0 AT

0 D−1 ET

A E 0









r

d

u



 =





g

h

0



 , (2.9)

this is entirely equivalent to solving

(

G AT

A −C

) (

r

u

)

=

(

g

w

)

,
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where w = −EDh, and recovering

d = D(h− ET v).

Thus our remaining task is to consider how to build suitable and effective precondition-

ers of the form (1.2). We recall that it is the distribution of the generalized eigenvalues λ

for which

HN v̄ = λGN v̄ (2.10)

that determines the convergence of the preceding PPCG algorithms, and thus we will be

particularly interested in preconditioners which cluster these eigenvalues. In particular, if

we can efficiently compute GN so that there are few distinct eigenvalues λ in (2.10), then

PPCG convergence (termination) will be rapid.

3 Eigenvalue considerations

We first consider the spectral implications of preconditioning (1.1) by (1.2).

Theorem 3.1. [17, Thm. 3.1] or, in special circumstances, [3, 43]. Suppose that MH is

the coefficient matrix of (1.1). Then M−1
G MH has m unit eigenvalues, and the remaining

n eigenvalues satisfy

(H − λG)v = (λ− 1)AT w where Av − Cw = 0.

If C is invertible, the non-unit eigenvalues satisfy

(H + AT C−1A)v = λ(G + AT C−1A)v. (3.1)

In order to improve upon this result, we first consider the special case in which C = 0.

3.1 The case C = 0

In the extreme case where C = 0, we have previously obtained [18] a number of significantly

better results, which we now summarise. Suppose that

KH =

(

H AT

A 0

)

and KG =

(

G AT

A 0

)

.

The requirement A2 and Theorem 2.1 imply that

In(KG) = (n, m, 0). (3.2)

This leads to
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Theorem 3.2. [35, Thm. 2.1] or, for diagonal G, [36, Thm. 3.3]. Suppose that N is any

(n by n−m) basis matrix for the null-space of A. Then K−1
G KH has 2m unit eigenvalues,

and the remaining n−m eigenvalues are those of the generalized eigenproblem

NT HNv = λNT GNv. (3.3)

The eigenvalues of (3.3) are real since (3.2) is equivalent to N T GN being positive definite

[7, 30].

Although we are not expecting or requiring that G (or H) be positive definite, it is

well-known that this is often not a significant handicap.

Theorem 3.3. [1, Cor. 12.9, or 14, for example]. The inertial requirement (3.2) holds for

a given G if and only if there exists a positive semi-definite matrix ∆̄ such that G+AT ∆A

is positive definite for all ∆ for which ∆− ∆̄ is positive semi-definite.

Since any preconditioning system
(

G AT

A 0

) (

u

v

)

=

(

r

s

)

(3.4)

may equivalently be written as
(

G + AT ∆A AT

A 0

) (

u

w

)

=

(

r

s

)

(3.5)

where w = v −∆Au, there is little to be lost (save sparsity in G) in using (3.5), with its

positive-definite leading block, rather than (3.4) [18, 29, 34, 36]. Notice that perturbations

of the form G+AT∆A do not change the eigenvalue distribution alluded to in Theorem 3.2,

since if H(∆H) = H + AT ∆HA and G(∆G) = G + AT ∆GA, for (possibly different) ∆H

and ∆G,

NT H(∆H)N = NT HNv = λNT GNv = λNT G(∆G)Nv.

and thus the generalized eigenproblem (3.3), and hence eigenvalues of K−1
G(∆G)KH(∆H), are

unaltered.

In order to improve upon Theorem 3.2, now suppose that we may partition the columns

of A so that

A = (A1 A2),

and so that its leading m by m sub-matrix

A3 A1 is nonsingular;

in practice, this may involve column permutations, but without loss of generality we simply

assume here that any required permutations have already been carried out. Given A3, we

shall be particularly concerned with the reduced-space basis matrix

N =

(

R

I

)

, where R = −A−1
1 A2. (3.6)
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Such basis matrices play vital roles in simplex (pivoting)-type methods for linear program-

ming [2,24], and more generally in active-set methods for nonlinear optimization [27,37,38].

Suppose that we partition G and H so that

G =

(

G11 GT
21

G21 G22

)

and H =

(

H11 HT
21

H21 H22

)

, (3.7)

where G11 and H11 are (respectively) the leading m by m sub-matrices of G and H. Then

(3.6) and (3.7) give

NT GN = G22 + RT GT
21 + G21R + RT G11R

and NT HN = H22 + RT HT
21 + H21R + RT H11R

In order to improve the eigenvalue distribution resulting from our attempts to precondition

KH by KG, we consider the consequences of picking G to reproduce certain portions of H.

First, consider the case where

G22 = H22, but G11 = 0 and G21 = 0. (3.8)

Theorem 3.4. [18, Thm. 2.3] Suppose that G and H are as in (3.7) and that (3.8) and

A3 hold. Suppose furthermore that H22 is positive definite, and let

ρ
def
= min

[

rank(A2), rank(H21)
]

+ min
[

rank(A2), rank(H21) + min[ rank(A2), rank(H11) ]
]

.

Then K−1
G KH has at most

rank(RT HT
21 + H21R + RT H11R) + 1 ≤ min(ρ, n−m) + 1 ≤ min(2m, n−m) + 1

distinct eigenvalues.

As we have seen from Theorem 3.3, the restriction that H22 be positive definite is not

as severe as it might first seem, particularly if we can entertain the possibility of using the

positive-definite matrix H22 + AT
2 ∆A2 instead.

The eigenvalue situation may be improved if we consider the case where

G22 = H22 and G11 = H11 but G21 = 0. (3.9)

Theorem 3.5. [18, Thm. 2.4] Suppose that G and H are as in (3.7) and that (3.9) and

A3 hold. Suppose furthermore that H22 + RT HT
11R is positive definite, and that

ν
def
= 2 min

[

rank(A2), rank(H21)
]

.

Then K−1
G KH has at most

rank(RT HT
21 + H21R) + 1 ≤ ν + 1 ≤ min(2m, n−m) + 1

distinct eigenvalues.
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The same is true when

G22 = H22 and G21 = H21 but G11 = 0. (3.10)

Theorem 3.6. [18, Thm. 2.5] Suppose that G and H are as in (3.7) and that (3.10) and

A3 hold. Suppose furthermore that H22 + RT HT
21 + H21R is positive definite, and that

µ
def
= min

[

rank(A2), rank(H11)
]

.

Then K−1
G KH has at most

rank(RT H11R) + 1 ≤ µ + 1 ≤ min(m, n−m) + 1

distinct eigenvalues.

3.2 General C

Having obtained tighter results for the case C = 0 than simply implied by Theorem 3.1, we

now show how these results may be applied to the general case. Suppose that we denote

the coefficient matrices of the systems (2.2) and (2.9) by

K̄H
def
=





H 0 AT

0 D−1 ET

A E 0



 and K̄G
def
=





G 0 AT

0 D−1 ET

A E 0





respectively. Recalling the definitions (2.5) and (2.7) of HN ad GN , the following result is

a direct consequence of Theorem 3.2.

Corollary 3.7. Suppose that N is any (n by n + l−m) basis matrix for the null-space of

(A E). Then K̄−1
G K̄H has 2m unit eigenvalues, and the remaining n + l −m eigenvalues

are those of the generalized eigenproblem (2.10).

We may improve on Corollary 3.7 by applying Theorems 3.4–3.6 in our more general

setting. To do so, let

R̄ = −A−1
1 (A2 E),

and note that

K̄H
def
=

















H11 HT
21 0 AT

1

H21 HT
22 0 AT

2

0 0 D−1 ET

A1 A2 E 0

















and K̄G
def
=

















G11 GT
21 0 AT

1

G21 GT
22 0 AT

2

0 0 D−1 ET

A1 A2 E 0

















.

We then have the following immediate consequences.
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Corollary 3.8. Suppose that G and H are as in (3.7) and that (3.8) and A3 hold. Suppose

furthermore that
(

H22 0

0 D−1

)

(3.11)

is positive definite, and let

ρ̄ = min
[

η, rank(H21)
]

+ min
[

η, rank(H21) + min[η, rank(H11)]
]

,

where η = rank(A2 E). Then K̄−1
G K̄H has at most

rank(R̄T HT
21 + H21R̄ + R̄T H11R̄) + 1 ≤ min(ρ̄, n + l −m) + 1 ≤ min(2m, n + l −m) + 1

distinct eigenvalues.

Corollary 3.9. Suppose that G and H are as in (3.7) and that (3.9) and A3 hold. Suppose

furthermore that
(

H22 0

0 D−1

)

+ R̄T HT
11R̄ (3.12)

is positive definite, and that

ν̄ = 2 min
[

η, rank(H21)
]

,

where η = rank(A2 E). Then K̄−1
G K̄H has at most

rank(R̄T HT
21 + H21R̄) + 1 ≤ ν̄ + 1 ≤ min(2m, n + l −m) + 1

distinct eigenvalues.

Corollary 3.10. Suppose that G and H are as in (3.7) and that (3.10) and A3 hold.

Suppose furthermore that

(

H22 0

0 D−1

)

+ R̄T HT
21 + H21R̄ (3.13)

is positive definite, and that

µ̄ = min
[

η, rank(H11)
]

,

where η = rank(A2 E). Then K̄−1
G K̄H has at most

rank(R̄T H11R̄) + 1 ≤ µ̄ + 1 ≤ min(m, n + l −m) + 1

distinct eigenvalues.

While the requirements that (3.11)–(3.13) be positive definite may at first seem strong

assumptions, as before this is not as severe as it might first seem, for we have the following

immediate corollary to Theorem 3.3.
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Corollary 3.11. The inertial requirement (2.6) holds for a given H if and only if there

exists a positive semi-definite matrix ∆̄ such that

(

H 0

0 D−1

)

+

(

AT

ET

)

∆(A E)

is positive definite for all ∆ for which ∆ − ∆̄ is positive semi-definite. In particular, if

(2.6) holds, H + AT ∆A and ET ∆E + D−1 are positive definite for all such ∆.

Just as we did for (3.4)–(3.5), we may rewrite (2.2) as the equivalent





H + AT ∆A AT ∆E AT

ET ∆A ET ∆E + D−1 ET

A E 0









x

z

w



 =





g

0

0



 ,

where w = y −∆(Ax + Ez) = y −∆(Ax − Cy) = y. Eliminating the variable z, we find

that
(

H + AT ∆A AT P T

PA −W

) (

x

y

)

= −

(

g

0

)

,

where

P = I −∆W and W = E(ET ∆E + D−1)−1ET .

Hence
(

H + AT ∆A AT

A −C̄

) (

x

ȳ

)

= −

(

g

0

)

, (3.14)

where

C̄ = P−1WP−T = (I −∆W )−1W (I −W∆)−1 and ȳ = P Ty. (3.15)

Thus it follows from Corollary 3.11 that we may rewrite (2.2) so that its trailing and leading

diagonal blocks are, respectively, negative semi- and positive definite. If we are prepared

to tolerate fill-in in these blocks, requirements (3.11)–(3.13) then seem more reasonable.

Although (3.15) may appear complicated for general C, C̄ is diagonal whenever C is.

More generally, if E = I, C̄ = D + D∆D and we may recover y = (I + ∆D)ȳ.

4 Suitable preconditioners

It has long been common practice (at least in optimization circles) [3,6,13,22,26,36,41,47] to

use explicit-factorization preconditioners of the form (1.2) by specifying G and factorizing

MG using a suitable symmetric, indefinite package such as MA27 [21] or MA57 [20]. While

such techniques have often been successful, they have usually been rather ad hoc, with

little attempt to improve upon the eigenvalue distributions beyond those suggested by

Theorem 3.1. In this section we investigate an implicit-factorization alternative.
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4.1 Implicit-factorization preconditioners

Recently Dollar and Wathen [19] proposed a class of incomplete factorizations for saddle-

point problems (C = 0), based upon earlier work by Schilders [45]. They consider precon-

ditioners of the form

MG = PBP T , (4.1)

where solutions with each of the matrices P , B and P T are easily obtained. In particular,

rather than obtaining P and B from a given MG, MG is derived from specially chosen P

and B. In this section, we examine a broad class of methods of this form.

In order for the methods we propose to be effective, we shall require that

A4 A1 and its transpose are easily invertible.

Since there is considerable flexibility in choosing the “basis” A1 from the rectangular matrix

A by suitable column interchanges, assumption A4 is often easily, and sometimes trivially,

satisfied. Note that the problem of determining the “sparsest” A1 is NP hard, [9,10], while

numerical considerations must be given to ensure that A1 is not badly conditioned if at all

possible [27]. More generally, we do not necessarily assume that A1 is sparse or has a sparse

factorization, merely that there are effective ways to solve systems involving A1 and AT
1 . For

example, for many problems involving constraints arising from the discretization of partial

differential equations, there are highly effective iterative methods for such systems [4].

Suppose that

P =





P11 P12 AT
1

P21 P22 AT
2

P31 P32 P33



 and B =





B11 BT
21 BT

31

B21 B22 BT
32

B31 B32 B33



 . (4.2)

Our goal is to ensure that

(MG)31 = A1, (4.3a)

(MG)32 = A2 (4.3b)

and (MG)33 = −C, (4.3c)

whenever MG = PBP T . Pragmatically, though, we are only interested in the case where

one of the three possibilities

P11 = 0, P12 = 0 and P32 = 0, (4.4a)

or P11 = 0, P12 = 0 and P21 = 0, (4.4b)

or P12 = 0, P32 = 0 and P33 = 0 (4.4c)

(as well as non-singular P31 and P22) hold, since only then will P be easily block-invertible.

Likewise, we restrict ourselves to the three general cases

B21 = 0, B31 = 0 and B32 = 0 with easily invertible B11, B22 and B33, (4.5a)

B32 = 0 and B33 = 0 with easily invertible B31 and B22, (4.5b)

or B11 = 0 and B21 = 0 with easily invertible B31 and B22, (4.5c)
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so that B is block-invertible. B is also easily block invertible if

B21 = 0 and B32 = 0 with easily invertible

(

B11 BT
31

B31 B33

)

and B22, (4.6)

and we will also consider this possibility.

We consider all of these possibilities in detail in Appendix A, and summarize our

findings in Tables 4.1 and 4.2. We have identified eleven possible classes of easily-invertible

factors that are capable of reproducing the A and C blocks of MG, a further two which

may be useful when C is diagonal, and one that is only applicable if C = 0.

Notice that there are never restrictions on P22 and B22.

4.2 Reproducing H

Having described families of preconditioners which are capable of reproducing the required

components A and C of MG, we now examine what form the resulting G takes. In par-

ticular, we consider which sub-matrices of G can be defined to completely reproduce the

associated sub-matrix of H; we say that a component Gij, i, j ∈ {1, 2}, is complete if it is

possible to choose it so that Gij = Hij. We give the details in Appendix B, and summarize

our findings for each of the 14 families from Section 4.1 in Table 4.3. In Table 4.3 the

superscript 1 indicates that the value of G21 is dependent on the choice of G11. If Gij,

i, j ∈ {1, 2}, is a zero matrix, then a superscript 2 is used. The superscript 3 means that

G21 is dependent on the choice of G11 when C = 0, but complete otherwise, whilst the

superscript 4 indicates that G11 is only guaranteed to be complete when C = 0.

Some of the sub-matrices in the factors P and B can be arbitrarily chosen without

changing the completeness of the family. We shall call these “free blocks.” For example,

consider Family 2 from Table 4.1. The matrix G produced by this family always satisfies

G11 = 0, G21 = 0, and G22 = P22B22P
T
22. Hence, P22 can be defined as any non-singular

matrix of suitable dimension, and BT
22 can be subsequently chosen so that G22 = H22. The

simplest choice for P22 is the identity matrix. We observe, that the choice of the remaining

sub-matrices in P and B will not affect the completeness of the factorization, and are

only required to satisfy the conditions given in Table 4.1. The simplest choices for these

sub-matrices will be P31 = I, and B11 = 0, giving P33 = −1
2
C, and B31 = I. Using these

simple choices we obtain:

P =





0 0 AT
1

0 I AT
2

I 0 −1
2
C



 and B =





0 0 I

0 B22 0

I 0 0



 .

The simplest choice of the free blocks may result in some of the families having the same

factors as other families. This is indicated in the Comments column of the table. Table 4.3

also gives the conditions that C must satisfy to use the family, and whether the family

is feasible to use, i.e., are the conditions on the blocks given in Tables 4.1 and 4.2 easily

satisfied?
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Family/

reference P B conditions

1.

(A.3)–

(A.4)





0 0 AT
1

0 P22 AT
2

P31 0 P33









B11 0 0

0 B22 0

0 0 B33





B11 = −P−1
31 (C + P33)P

−T
31

B33 = P−1
33

2.

(A.10)–

(A.11)





0 0 AT
1

0 P22 AT
2

P31 0 P33









B11 0 BT
31

0 B22 0

B31 0 0





P31 = B−T
31

P33 + P T
33 + P31B11P

T
31 = −C

3.

(A.12)





0 0 AT
1

P21 P22 AT
2

P31 0 −C









B11 0 BT
31

0 B22 0

B31 0 0





B31 = P−T
31

B11 = P−1
31 CP−T

31

4.

(A.16)–

(A.17)





0 0 AT
1

P21 P22 AT
2

P31 0 P33









0 0 BT
31

0 B22 BT
32

B31 B32 0





P21 = −P22B
T
32B

−T
31

P31 = B−T
31

P33 + P T
33 = −C

5.

(A.18)–

(A.19)





0 0 AT
1

P21 P22 AT
2

P31 0 P33









0 0 BT
31

0 B22 BT
32

B31 B32 B33





−C = P33 + P T
33 − P33B33P

T
33

B31 = (I −B33P
T
33)P

−T
31

B32 = −B31P
T
21P

−T
22

6.

(A.20)–

(A.21)





0 0 AT
1

0 P22 AT
2

P31 P32 P33









B11 BT
21 BT

31

B21 B22 0

B31 0 0





P31 = B−T
31

P32 = −P31B
T
21B

−1
22

P33 + P T
33

= −C − P31(B11 −BT
21B

−1
22 B21)P

T
31

7.

(A.28)–

(A.29)





0 0 AT
1

0 P22 AT
2

P31 P32 P33









0 0 BT
31

0 B22 BT
32

B31 B32 B33





P33 + P T
33 + P33(B33 −B32B

−1
22 BT

32)P
T
33

= −C

P32 = −P33B32B
−1
22

P31 = (I − P32B
T
32 − P33B

T
33)B

−T
31

Table 4.1: Possible implicit factors for the preconditioner (1.2). We give the P and B

factors and any necessary restrictions on their entries. We also associate a family number

with each class of implicit factors, and indicate where each is derived in Appendix A.
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Family/

reference P B conditions

8.

(A.30)





AT
1 0 AT

1

AT
2 P22 AT

2

−C 0 0









−C−1 0 0

0 B22 0

0 0 B33



 C invertible

9.

(A.31)–

(A.32)





P11 0 AT
1

P21 P22 AT
2

P31 0 0









B11 BT
21 BT

31

B21 B22 0

B31 0 0





B11 = −P−1
31 CP−T

31

B31 = P−T
31 −MB11

B21 = P−1
22 (P21 − AT

2 M)B11

P11 = AT
1 M for some invertible M

10.

(A.33)





P11 0 AT
1

P21 P22 AT
2

P31 0 0









0 0 BT
31

0 B22 BT
32

B31 B32 B33





C = 0

P31 = B−T
31

11.

(A.37)–

(A.38)





0 0 AT
1

P21 P22 AT
2

P31 0 −C









B11 0 BT
31

0 B22 0

B31 0 B33





C invertible

P T
31 = B−1

11 BT
31C

B33 = (B31P
T
31 − I)C−1

12.

(A.37),

(A.42)–

(A.43)





0 0 AT
1

P21 P22 AT
2

P31 0 −C









B11 0 BT
31

0 B22 0

B31 0 B33





B11 = P−1
31 CP−T

31

B31 = P−T
31 , where

B33C = 0

13.

(A.44)–

(A.45)





0 0 AT
1

0 P22 AT
2

P31 0 P33









B11 0 BT
31

0 B22 0

B31 0 B33





P31 = (I − P33B33)B
−T
31

B11 = P−1
31

(

P33B33P
T
33

−C − P33 − P T
33

)

P−T
31

14.

(A.47)–

(A.48)





P11 0 AT
1

P21 P22 AT
2

P31 0 0









B11 0 BT
31

0 B22 0

B31 0 B33





B11 = −P−1
31 CP−T

31

B31 = P−T
31 −MB11

P11 = AT
1 M

P21 = AT
2 M for some invertible M

Table 4.2: Possible implicit factors for the preconditioner (1.2) (continued). We give the

P and B factors and any necessary restrictions on their entries. We also associate a family

number with each class of implicit factors, and indicate where each is derived in Appendix

A.
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Table 4.4 gives some guidance towards which families from Tables 4.1 and 4.2 should

be used in the various cases of G given in Section 3. We also suggest simple choices for the

free blocks. In our view, although Table 4.3 indicates that it is theoretically possible to

reproduce all of H using (e.g.) Family 9, in practice this is unviable because of the density

of the matrices that need to be factorized.

Family Completeness Conditions Feasible Comments

G11 G21 G22 on C to use

1. X ×1
X any C X

2. ×2 ×2 X any C X

3. ×2 X X any C X

Simplest choice of “free-blocks” is
4. ×2 ×2 X any C X

the same as that for Family 2.

5. X ×1 X any C C = 0

Simplest choice of “free-blocks” is
6. ×2 ×2 X any C X

the same as that for Family 2.

If C = 0 and use simplest choice of

7. X X
3

X any C C = 0 “free-blocks”, then same as that for

Family 5 with C = 0.

8. X ×1 X non-singular X

9. X X X any C C = 0

Generalization of factorization
10. X X X C = 0 X

suggested by Schilders, [19, 45].

11. X X X non-singular X

C = 0 gives example of Family 10.
12. X

4
X X any C diagonal C

C non-singular gives Family 3.

13. X ×1
X any C X

14. X ×1 X any C X
C = 0 gives example of Family 10.

Table 4.3: Blocks of G for the families of preconditioners given in Tables 4.1 and 4.2.
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Sub-blocks of G Conditions on C Family Free block choices

G22 = H22, G11 = 0, G21 = 0 any C 2 P22 = I, P31 = I, B11 = 0

G22 = H22, G11 = H11, G21 = 0 C = 0 10 B21 = 0, P22 = I, P31 = I

G22 = H22, G11 = H11, G21 = 0 C non-singular 11 P22 = I, P31 = I

G22 = H22, G21 = H21, G11 = 0 any C 3 P22 = I, P31 = I

Table 4.4: Guidance towards which family to use to generate the various choices of G given

in Section 3.

5 Numerical Examples

In this section we examine how effective implicit factorization preconditioners might be

when compared with explicit factorization ones. We consider problems generated using the

complete set of quadratic programming examples from the CUTEr [33] test set used in our

previous experiments for the C = 0 case [18]. All inequality constraints are converted to

equations by adding slack variables, and a suitable “barrier” penalty term is added to the

diagonal of the Hessian for each bounded or slack variable to simulate systems that might

arise during an iteration of an interior-point method for such problems; in each of the test

problems the value 1.1 is used. The resulting equality-constrained quadratic programs are

then of the form

minimize
x∈IRn

gTx + 1

2
xT Hx subject to Ax = 0. (5.7)

Given this data H and A, two illustrative choices of diagonal C are considered, namely

cii = 1 for 1 ≤ i ≤ m, (5.8)

and

cii =

{

0 for 1 ≤ i ≤
⌈

m
2

⌉

1 for
⌈

m
2

⌉

+ 1 ≤ i ≤ m;
(5.9)

in practice such C may be thought of as regularization terms for some or all on the con-

straints in (5.7). Our aim is thus to solve the system (1.1) using a suitably preconditioned

PPCG iteration.

Rather than present large tables of data (which we defer to Appendix C), here we use

performance profiles [15] to illustrate our results. To explain the idea, let P represent the

set of preconditioners that we wish to compare. Suppose that the run of PPCG using a

given preconditioner i ∈ P reports the total CPU time tij ≥ 0 when executed on example

j from the test set T . For all problems j ∈ T , we want to compare the performance of

algorithm i with the performance of the fastest algorithm in the set P. For j ∈ T , let
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tMIN

j = min{tij; i ∈ P}. Then for α ≥ 1 and each i ∈ P we define

k(tij, t
MIN

j , α) =

{

1 if tij ≤ αtMIN

j

0 otherwise.

The performance profile [15] of algorithm i is then given by the function

pi(α) =

∑

j∈T k(tij, t
MIN

j , α)

|T |
, α ≥ 1.

Thus pi(1) gives the fraction of the examples for which algorithm i is the most effective

(according to the statistic tij), pi(2) gives the fraction for which algorithm i is within

a factor of 2 of the best, and limα→∞ pi(α) gives the fraction for which the algorithm

succeeded.

We consider two explicit factorization preconditioners, one using exact factors (G = H),

and the other using a simple projection (G = I). A Matlab interface to the HSL package

MA57 [20] (version 2.2.1) is used to factorize KG and subsequently solve (3.4). Three

implicit factorizations of the form (4.1) with factors (4.2) are also considered. The first is

from Family 1 (Table 4.1), and aims for simplicity by choosing P31 = I, P33 = I = B33 and

B22 = I = P22, and this leads B11 = −(C+I); such a choice does not necessarily reproduce

any of H, but is inexpensive to use. The remaining implicit factorizations are from Family

2 (Table 4.1). The former (marked (a) in the Figures) selects G22 = H22 while the latter

(marked (b) in the Figures) chooses G22 = I; for simplicity we chose P31 = I = B31,

B11 = 0, P22 = I and P33 = − 1

2
C (see §4.2), and thus we merely require that B22 = H22

for case (a) and B22 = I for case (b)—we use MA57 to factorize H22 in the former case.

Given A, a suitable basis matrix A1 is found by finding a sparse LU factorization of AT

using the built-in Matlab function lu. An attempt to correctly identify rank is controlled

by tight threshold column pivoting, in which any pivot may not be smaller than a factor

τ = 2 of the largest entry in its (uneliminated) column [27, 28]. The rank is estimated

as the number of pivots, ρ(A), completed before the remaining uneliminated sub-matrix

is judged to be numerically zero, and the indices of the ρ(A) pivotal rows and columns

of A define A1—if ρ(A) < m, the remaining rows of A are judged to be dependent, and

are discarded. Although such a strategy may not be as robust as, say, a singular-value

decomposition or a QR factorization with pivoting, both our and others’ experience [27]

indicate it to be remarkably reliable and successful in practice. Having found A1, the

factors are discarded, and a fresh LU decomposition of A1, with a looser threshold column

pivoting factor τ = 100, is computed using lu in order to try to encourage sparse factors.

All of our experiments were performed using a dual processor Intel Xeon 3.2GHz Work-

station with hyper-threading and 2 Gbytes of RAM. Our codes were written and executed

in Matlab 7.0 Service Pack 1.

In Figures 5.1–5.2 (see Tables C.1 and C.2 for the raw data), we compare our five

preconditioning strategies for (approximately) solving the problem (1.1) when C is given

by (5.8) using the PPCG scheme (variant 2) described in Section 2. We consider both low
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and high(er) accuracy solutions. For the former, we terminate as soon as the residual σ

has been reduced more than 10−2 from its original value, while the latter requires a 10−8

reduction; these are intended to simulate the levels of accuracy that might be required

within a nonlinear equation or optimization solver in early (global) and later (asymptotic)

phases of the solution process.
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Figure 5.1: Performance profile, p(α): CPU time (seconds) to reduce relative residual by

10−2, when C is given by (5.8).
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Figure 5.2: Performance profile, p(α): CPU time (seconds) to reduce relative residual by

10−8, when C is given by (5.8).
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We see that if low accuracy solutions suffice, the implicit factorizations appear to be

significantly more effective at reducing the residual than their explicit counterparts. In

particular, the implicit factorization from Family 1 seems to be the most effective. Of

interest is that for Family 2, the cost of applying the more accurate implicit factorization

that reproduces H22 generally does not pay off relative to the cost of the cheaper implicit

factorizations. For higher accuracy solutions, the leading implicit factorization still slightly

outperforms the explicit factors, although now the remaining implicit factorizations are less

effective.

Figures 5.3–5.4 (c.f., Tables C.3–C.4) repeat the experiments when C is given by (5.9).
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Figure 5.3: Performance profile, p(α): CPU time (seconds) to reduce relative residual by

10−2, when C is given by (5.9).

Once again the implicit factorizations seem very effective, with a shift now to favour

those from Family 2, most especially the less sophisticated of these.

6 Comments and conclusions

In this paper we have considered conjugate-gradient like methods for block symmetric

indefinite linear systems that arise from (perturbations of) saddle point problems. Such

methods require preconditioners that preserve certain sub-blocks from the original systems

but allow considerable flexibility for the remaining “non-crucial” blocks. To this end, we

have constructed fourteen families of implicit factorizations that are capable of reproducing

the required sub-blocks and (some) of the remainder. These generalize known implicit

factorizations [18, 19] for the C = 0 case. Improved eigenvalue clustering is possible if
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Figure 5.4: Performance profile, p(α): CPU time (seconds) to reduce relative residual by

10−8, when C is given by (5.9).

additionally some of the “non-crucial” blocks are reproduced. We have shown numerically

that these implicit-factorization preconditioners can be effective.

A number of important issues remain. Firstly, we have made no effort to find the best

preconditioner(s) from amongst our families, and indeed in most cases have not even tried

them in practice. As always with preconditioning, there is a delicate balance between

improving clustering of eigenvalues and the cost of doing so, especially since in many

applications low accuracy estimates of solution suffice. We expect promising candidates to

emerge in due course, but feel it is beyond the scope of this paper to indicate more than

(as we have already demonstrated) that this is a promising approach.

Secondly and as we pointed out in [18], the choice of the matrix A1 is crucial, and

considerations of both its stability and sparsity, and of its effect on the which of the

“non-crucial” blocks may be reproduced, are vital. Thirdly (and possibly related), when

experimenting with Family 3 (Table 4.1), we found that some very badly conditioned

preconditioners were generated. Specifically, our aim had been to reproduce G21 = H21,

and for simplicity we had chosen P31 = I = B31 and B22 = I = P22, and this leads to

P21 = H21A
−1
1 . Note that we did not try to impose additionally that G22 = H22 as this

would have lead to non-trivial B22. Also notice that we did not need to form P21, merely to

operate with it (and its transpose) on given vectors. On examining the spectrum of (3.3)

for some small badly conditioned examples, the preconditioner appeared to have worsened

rather than improved the range of the eigenvalues. Whether this is a consequence or

requiring two solves with A1 (and its transpose) when applying the preconditioner rather

than the single solve required when not trying to reproduce H21, and whether the same
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would be true for other families trying to do the same is simply conjecture at this stage.

However it is certainly a cautionary warning.
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Appendix A

We examine each of the sub-cases mentioned in Section 4 in detail. Note that for general

P and B partitioned as in (4.2), we have

(MG)31 = (P31B11 + P32B21)P
T
11 + (P31B

T
21 + P32B22)P

T
12

+P33(B31P
T
11 + B32P

T
12) + (P31B

T
31 + P32B

T
32)A1 + P33B33A1,

(MG)32 = (P31B11 + P32B21)P
T
21 + (P31B

T
21 + P32B22)P

T
22

+P33(B31P
T
21 + B32P

T
22) + (P31B

T
31 + P32B

T
32)A2 + P33B33A2

and (MG)33 = (P31B11 + P32B21)P
T
31 + (P31B

T
21 + P32B22)P

T
32

+P33(B31P
T
31 + B32P

T
32) + (P31B

T
31 + P32B

T
32)P

T
33 + P33B33P

T
33.

Case 1: (4.4a) and (4.5a) hold

If (4.4a) and (4.5a) hold, P31, P22, B11, B22 and B33 are non singular, and

(MG)31 = P33B33A1,

(MG)32 = P33B33A2 + P31B11P
T
21

and (MG)33 = P33B33P
T
33 + P31B11P

T
31.

In this case, requirement (4.3a) implies that

P33B33 = I (A.1)

and thus that P33 is symmetric. The requirement (4.3b) then forces P31B11P
T
21 = 0, and

thus that

P21 = 0

since P31 and B11 are non singular. The final requirement (4.3c) is then that

P33 + P31B11P
T
31 = −C. (A.2)

Thus, in this case,

P =





0 0 AT
1

0 P22 AT
2

P31 0 P33



 and B =





B11 0 0

0 B22 0

0 0 B33



 , (A.3)

where

B11 = −P−1
31 (C + P33)P

−T
31 and B33 = P−1

33 . (A.4)

Case 2: (4.4a) and (4.5b) hold

If (4.4a) and (4.5b) hold, P31, P22, B31 and B22 are non singular, and

(MG)31 = P31B
T
31A1,

(MG)32 = P31B
T
31A2 + P31B11P

T
21 + P31B

T
21P

T
22 + P33B31P

T
21

and (MG)33 = P31B
T
31P

T
33 + P31B11P

T
31 + P33B31P

T
31.
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In this case, requirement (4.3a) implies that

P31B
T
31 = I, (A.5)

holds. It then follows from (A.5) that

P33 + P T
33 + P31B11P

T
31 = −C (A.6)

since we require (4.3c). The remaining requirement (4.3b) implies that P31B11P
T
21 +

P31B
T
21P

T
22 + P33B31P

T
21 = 0, which is most easily guaranteed if either

B21 = 0 and P21 = 0 (A.7)

or

B21 = 0 and P31B11 = −P33B31 (A.8)

or

B21 = 0, B11 = 0 and P33 = 0. (A.9)

When (A.7) holds, it follows from (A.5) and (A.6) that

P =





0 0 AT
1

0 P22 AT
2

P31 0 P33



 and B =





B11 0 P−1
31

0 B22 0

P−T
31 0 0



 , (A.10)

where

P33 + P T
33 + P31B11P

T
31 = −C. (A.11)

In the caseof (A.8),

P =





0 0 AT
1

P21 P22 AT
2

P31 0 −C



 and B =





B11 0 P−1
31

0 B22 0

P−T
31 0 0



 , (A.12)

as then

P33 + P31B11P
T
31 = P33 − P33B31P

T
31 = P33 − P33 = 0

from (A.5) and (A.8) and hence P33 = P T
33 = −C from (A.6). Finally, (A.9) can only hold

when C = 0, and is a special instance of (A.12).

Case 3: (4.4a) and (4.5c) hold

If (4.4a) and (4.5c) hold, P31, P22, B31 and B22 are non singular, and

(MG)31 = P31B
T
31A1 + P33B33A1,

(MG)32 = P31B
T
31A2 + P33B33A2 + P33(B31P

T
21 + B32P

T
22)

and (MG)33 = P31B
T
31P

T
33 + P33B33P

T
33 + P33B31P

T
31.
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Since P31 and B31 are non singular, requirement (4.3a) implies that either (A.5) holds and

either P33 = 0 or B33 = 0, or

P33B33 = I − P31B
T
31 (A.13)

with nonzero P33 and B33. It is easy to see that it is not possible for requirement (4.3c) to

hold when P33 = 0 unless C = 0, which leads to

P =





0 0 AT
1

P T
21 P22 AT

2

B−T
31 0 0



 and B =





0 0 BT
31

0 B22 BT
32

B31 B32 B33



 (A.14)

in this special case. So suppose instead that (A.5) holds and that B33 = 0. In this case,

the requirement (4.3c) is simply that

P33 + P T
33 = −C,

while (4.3b) additionally requires that

B31P
T
21 + B32P

T
22 = 0. (A.15)

This results in

P =





0 0 AT
1

P21 P22 AT
2

P31 0 P33



 and B =





0 0 BT
31

0 B22 BT
32

B31 B32 0



 , (A.16)

where

P21 = −P22B
T
32B

−T
31 , P31 = B−T

31 and P33 + P T
33 = −C. (A.17)

Finally, suppose that (A.13) holds with nonzero P33 and B33. Then requirement (4.3c) is

that

−C = P33B33P
T
33(I − P33B

T
33)P

T
33 + P33(I − B33P

T
33) = P33 + P T

33 − P33B33P
T
33

while once again (A.15) holds since P22 6= 0. Thus, in this case

P =





0 0 AT
1

P21 P22 AT
2

P31 0 P33



 and B =





0 0 BT
31

0 B22 BT
32

B31 B32 B33



 , (A.18)

is possible provided that

B33 = P−1
33 + P−T

33 + P−1
33 CP−T

33 , B31 = (I − B33P
T
33)P

−T
31 and B32 = −B31P

T
21P

−T
22 .

(A.19)
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Case 4: (4.4b) and (4.5a) hold

If (4.4b) and (4.5a) hold, P31, P22, B11, B22 and B33 are non singular, and

(MG)31 = P33B33A1,

(MG)32 = P33B33A2 + P32B22P
T
22

and (MG)33 = P33B33P
T
33 + P32B22P

T
32 + P31B11P

T
31.

As in case 1, requirement (4.3a) implies that (A.1) holds (and thus that P33 is symmetric).

Requirement (4.3b) then forces P32B22P
T
22 = 0, and thus that P32 = 0 since P22 and B22

are non singular. But then requirement (4.3c) leads once again to (A.2), and hence exactly

the same conclusions as for case 1.

Case 5: (4.4b) and (4.5b) hold

If (4.4b) and (4.5b) hold, P31, P22, B31 and B22 are non singular, and

(MG)31 = P31B
T
31A1,

(MG)32 = P31B
T
31A2 + (P31B

T
21 + P32B22)P

T
22

and (MG)33 = P31B
T
31P

T
33 + (P31B

T
21 + P32B22)P

T
32 + P33B31P

T
31 + (P31B11 + P32B21)P

T
31,

As in case 2, requirement (4.3a) implies that (A.5) holds. Hence requirement (4.3b) and

the non-singularity of P22 together imply that

P31B
T
21 + P32B22 = 0.

Thus either

B21 = 0 and P32 = 0

or

P32 = −P31B
T
21B

−1
22 with nozero B21 and P32

since B31 and P22 are non singular. The first of these two cases is identical to (A.10)–

(A.11) under requirement (4.3c). Under the same requirement, simple manipulation for

the second case gives

P =





0 0 AT
1

0 P22 AT
2

P31 P32 P33



 and B =





B11 BT
21 BT

31

B21 B22 0

B31 0 0



 , (A.20)

where

P31 = B−T
31 , P32 = −P31B

T
21B

−1
22 and P33 + P T

33 = −C − P31(B11 −BT
21B

−1
22 B21)P

T
31.

(A.21)
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Case 6: (4.4b) and (4.5c) hold

If (4.4b) and (4.5c) hold, P31, P22, B31 and B22 are non singular, and

(MG)31 = (P31B
T
31 + P32B

T
32)A1 + P33B33A1,

(MG)32 = (P31B
T
31 + P32B

T
32)A2 + P33B33A2 + P32B22P

T
22 + P33B32P

T
22

and (MG)33 = (P31B
T
31 + P32B

T
32)P

T
33 + P33B33P

T
33 + P32B22P

T
32 + P33(B31P

T
31 + B32P

T
32).

Requirement (4.3a) implies that either

P31B
T
31 + P32B

T
32 = I, (A.22)

and either P33 = 0 or B33 = 0, or

P31B31 = I − P33B33 − P32B
T
32 (A.23)

with nonzero P33 and B33. Just as in case 3, it is easy to see that it is not possible for

requirement (4.3c) to hold when P33 = 0 unless C = 0, and in this case (A.14) holds with

P21 = 0. So suppose instead that (A.22) holds and that B33 = 0. Then the non-singularity

of P22 and B22 and requirement (4.3b) together imply that

P32 = −P33B32B
−1
22 . (A.24)

Finally, requirement (4.3b), (A.22) and (A.24) give that

P33 + P T
33 + P33B32B

−1
22 BT

32P
T
33 = −C. (A.25)

This results in

P =





0 0 AT
1

0 P22 AT
2

P31 P32 P33



 and B =





0 0 BT
31

0 B22 BT
32

B31 B32 0



 , (A.26)

where
P33 + P T

33 + P33B32B
−1
22 BT

32P
T
33 = −C,

P32 = −P33B32B
−1
22 and P31 = (I − P32B

T
32)B

−T
31 .

(A.27)

Notice that although (A.25) restricts the choice of B32 and B22, it is easily satisfied, for

example, when B32 = 0.

Finally, suppose that (A.23) holds with nonzero P33 and B33. Then once again the

non-singularity of P22 and B22 and requirement (4.3b) together imply that (A.24) holds,

while (A.23) and (A.24) show that requirement (4.3c) holds whenever

−C = P33B33P
T
33 + (I − P33B33)P

T
33 + P33(I − B33P

T
33) + P32B22P

T
32

= P33 + P T
33 + P33(B32B

−1
22 BT

32 − B33)P
T
33.

This results in

P =





0 0 AT
1

0 P22 AT
2

P31 P32 P33



 and B =





0 0 BT
31

0 B22 BT
32

B31 B32 B33



 , (A.28)
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where
P33 + P T

33 + P33(B32B
−1
22 BT

32 − B33)P
T
32 = −C,

P32 = −P33B32B
−1
22 and P31 = (I − P32B

T
32 − P33B33)B

−T
31 .

(A.29)

Note that (A.26)–(A.27) is the special case B33 = 0 of (A.28)–(A.29).

Case 7: (4.4c) and (4.5a) hold

If (4.4c) and (4.5a) hold, P31, P22, B11, B22 and B33 are non singular, and

(MG)31 = P31B11P
T
11, (MG)32 = P31B11P

T
21 and (MG)33 = P31B11P

T
31.

To satisfy requirements (4.3a)–(4.3c), C must be non-singular and in this case

P11 = AT
1 , P21 = AT

2 , P31 = −C and B11 = −C−1.

This then leads to

P =





AT
1 0 AT

1

AT
2 P22 AT

2

C 0 0



 and B =





−C−1 0 0

0 B22 0

0 0 B33



 . (A.30)

Case 8: (4.4c) and (4.5b) hold

If (4.4c) and (4.5b) hold, P31, P22, B31 and B22 are non singular, and

(MG)31 = P31B11P
T
11 + P31B

T
31A1,

(MG)32 = P31B11P
T
21 + P31B

T
21P

T
22 + P31B

T
31A2

and (MG)33 = P31B11P
T
31.

Requirements (4.3a)–(4.3c) (in reverse order) then imply that

B11 = −P−1
31 CP−T

31 ,

B31 = P−T
31 − A−T

1 P11B11

and B21 = P−1
22 (P21 − AT

2 A−T
1 P11)B11.

While there is very little reason to believe that B31 will be easily invertible in general, it

may be if P11 = AT
1 M for some diagonal M and if P31 and B11 are also diagonal. This

then leads to

P =





P11 0 AT
1

P21 P22 AT
2

P31 0 0



 and B =





B11 BT
21 BT

31

B21 B22 0

B31 0 0



 , (A.31)

where

B11 = −P−1
31 CP−T

31 , B31 = P−T
31 −MB11, B21 = P−1

22 (P21 − AT
2 M)B11 and P11 = AT

1 M

(A.32)

for some suitable M .



32 H. Sue Dollar, Nicholas I. M. Gould, Wil H. A. Schilders and Andrew J. Wathen

Case 9: (4.4c) and (4.5c) hold

If (4.4c) and (4.5c) hold, P31, P22, B31 and B22 are non singular, and

(MG)31 = P31B
T
31A1, (MG)32 = P31B

T
31A2 and (MG)33 = 0

We can only satisfy requirements (4.3a)–(4.3c) for this case if C = 0, and this gives

P =





P11 0 AT
1

P21 P22 AT
2

B−T
31 0 0



 and B =





0 0 BT
31

0 B22 BT
32

B31 B32 B33



 (A.33)

under such circumstances. Note that (A.14) is a special case of (A.33).

Case 10: (4.4a) and (4.6) hold

If (4.4a) and (4.6) hold, P31, P22 and B22 are non singular, and

(MG)31 = P31B
T
31A1 + P33B33A1,

(MG)32 = P31B
T
31A2 + P33B33A2 + P31B11P

T
21 + P33B31P

T
21

and (MG)33 = P31B
T
31P

T
33 + P33B33P

T
33 + P31B11P

T
31 + P33B31P

T
31.

To satisfy (4.3a) and (4.3b), necessarily

P31B
T
31 + P33B33 = I (A.34)

and either

P31B11 + P33B31 = 0. (A.35)

or

P31B11 + P33B31 6= 0 and P21 = 0. (A.36)

If (A.34) and (A.35) hold, requirement (4.3c) is simply that P33 = −C. If C is invertible,

this leads to

P =





0 0 AT
1

P21 P22 AT
2

P31 0 P33



 and B =





B11 0 BT
31

0 B22 0

B31 0 B33



 , (A.37)

where

P33 = −C, P T
31 = −B−1

11 BT
31P

T
33 and B33 = (I − B31P

T
31)P

−T
33 . (A.38)

However, since solves with B simply involve B22 and

(

B11 BT
31

B31 B33

)

=

(

B11 0

B31 I

) (

B−1
11 0

0 C−1

) (

BT
11 BT

31

0 I

)

(A.39)
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the block form of (A.39) indicate that only products with C, and not its inverse, are

required when solving with B, and that B33 need not be formed. If C is singular (A.34)

and (A.35) give that

P33 = −C, B31 = (I + B33C)P−T
31 and B11 = P−1

31 (C + CB33C)P−T
31 (A.40)

As before solves with B simply involve B22 and
(

B11 BT
31

B31 B33

)

=

(

P−1
31 0

0 I

) (

CB33C + C I + CB33

I + B33C B33

) (

P−T
31 0

0 I

)

,

and thus we need to ensure that
(

CB33C + C I + CB33

I + B33C B33

)

=

(

C I

I 0

)

+

(

C

I

)

B33

(

C I
)

(A.41)

is non-singular (and has the correct inertia). The possibility B33 = 0 is that given by

(A.12) in Case 2, but an interesting alternative is when B33 is chosen so that

B33C = 0. (A.42)

In this case, (A.40) becomes

P33 = −C, B31 = P−T
31 and B11 = P−1

31 CP−T
31 , (A.43)

and (A.41) gives
(

CB33C + C I + CB33

I + B33C B33

)

=

(

C I

I B33

)

=

(

I 0

B33 I

)(

C I

I 0

)

which is clearly (block) invertible.

If (A.34) and (A.36), requirement (4.3c) is that

−C = P T
33 + P31B11P

T
21 + P33B31P

T
21,

and this leads to

P =





0 0 AT
1

0 P22 AT
2

P31 0 P33



 and B =





B11 0 BT
31

0 B22 0

B31 0 B33



 , (A.44)

where

P31 = (I − P33B33)B
−T
31 and B11 = P−1

31

(

P33B33P
T
33 − C − P33 − P T

33

)

P−T
31 . (A.45)

A particularly simple case is when P33 = 0, for then

P =





0 0 AT
1

0 P22 AT
2

B−T
31 0 0



 and B =





BT
31CB31 0 BT

31

0 B22 0

B31 0 B33



 (A.46)

although even then B will not normally be easily invertible unless C, B31 and B33 are

diagonal.
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Case 11: (4.4b) and (4.6) hold

If (4.4b) and (4.6) hold, P31, P22 and B22 are non singular, and

(MG)31 = P31B
T
31A1 + P33B33A1,

(MG)32 = P31B
T
31A2 + P33B33A2 + P32B22P

T
22

and (MG)33 = P31B
T
31P

T
33 + P33B33P

T
33 + P33B31P

T
31 + P32B22P

T
32 + P31B11P

T
31.

To satisfy requirement (4.3a), necessarily (A.34) holds. But then requirement (4.3b) and

the non-singularity of P22 and B22 forces P32 = 0. This case is then simply a sub-case of

the previous one.

Case 12: (4.4c) and (4.6) hold

If (4.4c) and (4.6) hold, P31, P22 and B22 are non singular, and

(MG)31 = P31B11P
T
11 + P31B

T
31A1,

(MG)32 = P31B11P
T
21 + P31B

T
31A2

and (MG)33 = P31B11P
T
31.

Just as for case 8, requirements (4.3a) and (4.3c) respctively imply that

B11 = −P−1
31 CP−T

31 and B31 = P−T
31 − A−T

1 P11B11.

But requirement (4.3b) imposes that B11(P
T
21−P T

11A
−1
1 A2) = 0, which is certainly satisfied

when

P T
21 = P T

11A
−1
1 A2.

The latter is true, for example if

P11 = AT
1 M and P21 = AT

2 M

for a given matrix M . In general, we thus have that

P =





P11 0 AT
1

P21 P22 AT
2

P31 0 0



 and B =





B11 0 BT
31

0 B22 0

B31 0 B33



 (A.47)

where

B11 = −P−1
31 CP−T

31 , B31 = P−T
31 − A−T

1 P11B11 and P21 = AT
2 A−T

1 P11.

The warnings concerning the easy invertibility of B31 we mention for case 9 equally apply

here, and so we actually require

B11 = −P−1
31 CP−T

31 , B31 = P−T
31 −MB11, P11 = AT

1 M and P21 = AT
2 M, (A.48)

for some suitable (diagonal) M .
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Appendix B

Here we examine the matrix G which arises for each of the families mentioned in Section 4.1.

Note that for general P and B partioned as in (4.2), we have

G11 = P11B11P
T
11 + P11B

T
21P

T
12 + P11B

T
31A1 + P12B21P

T
11 + P12B22P

T
12

+ P12B
T
32A1 + AT

1 B31P
T
11 + AT

1 B32P
T
12 + AT

1 B33A1

G21 = P21B11P
T
11 + P21B

T
21P

T
12 + P21B

T
31A1 + P22B21P

T
11 + P22B22P

T
12

+ P22B
T
32A1 + AT

2 B31P
T
11 + AT

2 B32P
T
12 + AT

2 B33A1

and G22 = P21B11P
T
21 + P21B

T
21P

T
22 + P21B

T
31A2 + P22B21P

T
21 + P22B22P

T
22

+ P22B
T
32A2 + AT

2 B31P
T
21 + AT

2 B32P
T
22 + AT

2 B33A2

Family 1 (Appendix, A, Case 1): (4.4a) and (4.5a) hold

In this case
G11 = AT

1 B33A1, G21 = AT
2 B33A1

and G22 = P21B11P
T
21 + P22B22P

T
22 + AT

2 B33A2.

Since P21 = 0 for Family 1, G22 becomes

G22 = P22B22P
T
22 + AT

2 B33A2.

Families 2 and 3 (Appendix, A, Case 2): (4.4a) and (4.5b) hold

In this case

G11 = 0,

G21 = P21B
T
31A1

and G22 = P21B11P
T
21 + P21B

T
21P

T
22 + P21B

T
31A2 + P22B21P

T
21 + P22B22P

T
22

+ AT
2 B31P

T
21.

For Family 2, B21 = 0 and P21 = 0, so that G21 and G22 become

G21 = 0 and G22 = P22B22P
T
22.

For Family 3, B21 = 0, so that G22 becomes

G22 = P21B11P
T
21 + P21B

T
31A2 + P22B22P

T
22 + AT

2 B31P
T
21.

Families 4 and 5 (Appendix, A, Case 3): (4.4a) and (4.5c) hold

Here

G11 = AT
1 B33A1,

G21 = P21B
T
31A1 + P22B

T
32A1 + AT

2 B33A1

and G22 = P21B
T
31A2 + P22B22P

T
22 + P22B

T
32A2 + AT

2 B31P
T
21 + AT

2 B32P
T
22

+ AT
2 B33A2.
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For both families, (A.15) holds, and thus

G21 = AT
2 B33A1 and G22 = P22B22P

T
22 + AT

2 B33A2.

In addition, for Family 4, B33 = 0, and thus

G11 = 0, G21 = 0 and G22 = P22B22P
T
22.

Family 6 (Appendix, A, Case 5): (4.4b) and (4.5b) hold

Here

G11 = 0, G21 = 0 and G22 = P22B22P
T
22.

Family 7 (Appendix, A, Case 6): (4.4b) and (4.5c) hold

In this case

G11 = AT
1 B33A1,

G21 = P22B
T
32A1 + AT

2 B33A1

and G22 = P22B22P
T
22 + P22B

T
32A2 + AT

2 B32P
T
22 + AT

2 B33A2.

Family 8 (Appendix, A, Case 7): (4.4c) and (4.5a) hold

Here

G11 = P11B11P
T
11 + AT

1 B33A1

G21 = P21B11P
T
11 + AT

2 B33A1

and G22 = P21B11P
T
21 + P22B22P

T
22 + AT

2 B33A2.

But since P11 = AT
1 , P21 = AT

2 and B11 = −C−1, we have

G11 = AT
1 (B33 − C−1)A1

G21 = AT
2 (B33 − C−1)A1

and G22 = P22B22P
T
22 + AT

2 (B33 − C−1)A2.

Family 9 (Appendix, A, Case 8): (4.4c) and (4.5b) hold

In this case

G11 = P11B11P
T
11 + P11B

T
31A1 + AT

1 B31P
T
11,

G21 = P21B11P
T
11 + P21B

T
31A1 + P22B21P

T
11 + AT

2 B31P
T
11

and G22 = P21B11P
T
21 + P21B

T
21P

T
22 + P21B

T
31A2 + P22B21P

T
21 + P22B22P

T
22

+ AT
2 B31P

T
21.
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Family 10 (Appendix, A, Case 9): (4.4c) and (4.5c) hold

Here

G11 = P11B
T
31A1 + AT

1 B31P
T
11 + AT

1 B33A1,

G21 = P21B
T
31A1 + P22B

T
32A1 + AT

2 B31P
T
11 + AT

2 B33A1

and G22 = P21B
T
31A2 + P22B22P

T
22 + P22B

T
32A2 + AT

2 B31P
T
21 + AT

2 B32P
T
22

+ AT
2 B33A2.

Families 11, 12 and 13 (Appendix, A, Case 10): (4.4a) and (4.6)

hold

In this case

G11 = AT
1 B33A1,

G21 = P21B
T
31A1 + AT

2 B33A1

and G22 = P21B11P
T
21 + P21B

T
31A2 + P22B22P

T
22 + AT

2 B31P
T
21 + AT

2 B33A2.

For Family 13, P21 = 0, and thus

G11 = AT
1 B33A1,

G21 = AT
2 B33A1

and G22 = P22B22P
T
22 + AT

2 B33A2.

Family 14 (Appendix, A, Case 12): (4.4c) and (4.6) hold

Here

G11 = P11B11P
T
11 + P11B

T
31A1 + AT

1 B31P
T
11 + AT

1 B33A1,

G21 = P21B11P
T
11 + P21B

T
31A1 + AT

2 B31P
T
11 + AT

2 B33A1

and G22 = P21B11P
T
21 + P21B

T
31A2 + P22B22P

T
22 + AT

2 B31P
T
21 + AT

2 B33A2

Appendix C

Here we give the raw data for each of the experiments reported in Section 5. For each algo-

rithm used, we report the CPU time (in seconds) needed to construct the preconditioner,

along with the number of PPCG iterations and total time (including the construction cost)

required to solve the problem. Both low- and high(er)-accuracy solutions are recorded for

both of the examples of C we considered.
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Table C.1: CUTEr QP problems—residual decrease of at least 10−2 and C = I

Explicit factors Implicit factors

G = H G = I Family 1 Family 2(a) Family 2(b)

name fact. iter. total fact. iter. total fact. iter. total fact. iter. total fact. iter. total

AUG2DCQP 0.38 1 0.45 0.12 1 0.18 0.07 13 0.19 0.07 267 1.94 0.02 36 0.30

AUG2DQP 0.12 1 0.18 0.12 1 0.18 0.06 13 0.17 0.03 268 1.89 0.02 36 0.29

AUG3DCQP 0.16 1 0.24 0.16 1 0.24 0.06 24 0.24 0.03 96 0.74 0.03 37 0.33

AUG3DQP 0.16 1 0.24 0.16 1 0.24 0.07 25 0.26 0.03 96 0.75 0.03 37 0.33

BLOCKQP1 5.03 1 33.28 4.98 1 33.15 0.14 1 28.20 0.06 1 28.18 0.06 1 28.09

BLOCKQP2 4.98 1 33.13 5.02 1 33.14 0.14 1 28.22 0.06 1 28.17 0.07 1 28.16

BLOCKQP3 4.96 1 33.03 5.04 1 33.13 0.14 1 28.08 0.06 1 28.10 0.06 1 28.07

BLOWEYA 0.27 1 0.33 16.58 1 16.69 0.06 1 0.10 0.05 1 0.09 0.05 1 0.09

BLOWEYB 0.28 1 0.34 16.52 1 16.63 0.06 1 0.10 0.05 1 0.09 0.05 1 0.08

BLOWEYC 0.29 1 0.35 14.75 1 14.87 0.07 1 0.11 0.05 1 0.09 0.05 1 0.09

CONT-050 0.36 1 0.53 0.61 1 0.81 0.05 1 0.17 0.01 1 0.13 0.01 1 0.13

CONT-101 2.17 1 3.33 4.39 1 5.84 0.20 0 1.02 0.06 0 0.87 0.05 0 0.87

CONT-201 13.18 1 21.04 29.63 1 38.82 0.86 0 6.94 0.24 0 6.27 0.24 0 6.30

CONT1-10 2.16 1 3.35 4.22 1 5.57 0.20 1 1.08 0.05 1 0.93 0.05 1 0.92

CONT1-20 13.33 1 21.64 29.07 1 38.37 0.85 0 7.48 0.25 0 6.84 0.25 0 6.78

CONT5-QP ran out of memory ran out of memory 0.91 1 6.63 0.24 1 5.94 0.25 1 5.92

CVXQP1 48.16 1 50.38 139.83 1 142.34 0.18 2 0.36 0.13 1310 43.43 0.12 1258 42.24

CVXQP2 27.27 1 28.66 29.21 1 30.67 0.11 3 0.21 0.30 523 21.98 0.30 130 5.63

CVXQP3 53.57 1 56.33 78.67 1 82.48 0.45 1 0.89 0.16 1 0.59 0.06 1 0.48

DUALC1 0.13 1 0.23 0.03 1 0.06 0.01 1 0.03 0.01 1 0.02 0.01 3 0.03

DUALC2 0.03 1 0.05 0.03 1 0.05 0.01 1 0.04 0.01 1 0.03 0.01 0 0.02

DUALC5 0.04 1 0.07 0.13 1 0.16 0.02 10 0.06 0.01 1 0.03 0.01 563 0.81

DUALC8 0.10 1 0.23 0.10 1 0.20 0.04 1 0.15 0.01 1 0.11 0.01 7 0.12

GOULDQP2 0.85 1 1.04 0.79 1 1.04 0.27 4 0.45 0.12 13 0.60 0.11 14 0.65

GOULDQP3 0.81 1 0.99 0.92 1 1.23 0.27 4 0.46 0.11 13 0.78 0.11 15 0.98

KSIP 0.50 1 1.04 0.50 1 1.02 0.06 2 0.59 0.01 2 0.55 0.01 2 0.55

MOSARQP1 0.09 1 0.13 0.09 1 0.13 0.04 7 0.09 0.02 5 0.08 0.02 5 0.08

NCVXQP1 117.67 1 119.93 141.30 1 143.77 0.14 2 0.32 9.66 1420 69.96 9.64 676 38.51

NCVXQP2 129.22 1 131.48 141.86 1 144.34 0.14 3 0.35 9.64 1 9.82 9.65 31 11.12

NCVXQP3 128.41 1 130.66 129.05 1 131.54 0.14 2 0.32 9.64 1197 60.17 8.36 1047 52.77

NCVXQP4 89.54 1 90.99 93.00 1 94.49 0.12 2 0.20 19.55 564 51.00 19.44 4 19.73

NCVXQP5 89.18 1 90.61 84.34 1 85.80 0.14 3 0.25 19.56 790 62.90 22.38 9 22.94

NCVXQP6 88.20 1 89.58 91.74 1 93.18 0.14 3 0.24 18.91 522 47.40 18.91 161 27.79

NCVXQP7 628.16 1 632.70 82.54 1 86.56 0.34 1 0.78 0.17 1 0.61 0.06 1 0.47

NCVXQP8 61.02 1 64.21 84.22 1 88.60 0.28 1 0.73 0.19 1 0.65 0.07 1 0.52

NCVXQP9 54.51 1 57.44 85.05 1 88.96 0.29 1 0.74 2.20 1 2.66 2.10 1 2.53

POWELL20 0.34 1 0.47 0.32 1 0.46 0.14 1 0.20 0.06 13 0.31 0.06 14 0.32

PRIMAL1 0.11 1 0.76 0.11 1 0.12 0.05 19 0.08 0.01 8 0.03 0.01 2 0.02

PRIMAL2 0.16 1 0.17 0.16 1 0.17 0.05 18 0.09 0.02 2 0.03 0.03 2 0.04

PRIMAL3 0.57 1 0.60 0.59 1 0.62 0.04 25 0.14 0.02 2 0.04 0.01 2 0.03

PRIMAL4 0.30 1 0.32 0.30 1 0.32 0.05 15 0.11 0.01 2 0.03 0.02 2 0.03

PRIMALC1 0.01 1 0.02 0.02 1 0.02 0.02 2 0.03 0.01 248 0.25 0.01 30 0.04

PRIMALC2 0.02 1 0.02 0.03 1 0.03 0.03 2 0.03 0.01 245 0.24 0.01 245 0.24

PRIMALC5 0.02 1 0.02 0.02 1 0.02 0.05 2 0.05 0.02 7 0.03 0.02 7 0.03

PRIMALC8 0.04 1 0.04 0.03 1 0.04 0.02 2 0.03 0.02 64 0.12 0.01 6 0.02

QPBAND 0.42 1 0.55 0.42 1 0.57 0.19 2 0.26 0.15 16 0.77 0.15 14 0.71

QPNBAND 0.53 1 0.70 0.43 1 0.59 0.18 3 0.27 0.15 12 0.61 0.15 12 0.63

QPCBOEI1 0.05 1 0.09 0.06 1 0.10 0.02 16 0.09 0.01 2 0.04 0.01 2 0.04

QPCBOEI2 0.09 1 0.11 0.09 1 0.11 0.02 2 0.03 0.02 1 0.02 0.02 1 0.03

QPNBOEI1 0.43 1 0.47 0.05 1 0.09 0.03 16 0.09 0.01 3 0.05 0.01 2 0.05

QPNBOEI2 0.11 1 0.12 0.09 1 0.11 0.02 2 0.03 0.01 1 0.02 0.01 1 0.02

QPCSTAIR 0.05 1 0.11 0.05 1 0.11 0.02 3 0.08 0.01 13 0.09 0.01 5 0.07

QPNSTAIR 0.05 1 0.11 0.06 1 0.12 0.02 4 0.08 0.01 9 0.08 0.01 5 0.07

SOSQP1 0.12 1 0.17 0.12 1 0.18 0.07 1 0.10 0.03 1 0.06 0.03 1 0.06

STCQP2 0.86 1 0.96 1.47 1 1.62 0.05 4 0.12 0.09 1 0.13 0.09 2622 38.05

STNQP2 63.37 1 63.72 66.32 1 66.82 0.12 8 0.38 6.52 247 17.24 0.27 15 0.86

UBH1 0.34 1 0.52 0.33 1 0.52 0.13 2 0.29 0.05 1 0.17 0.05 4 0.23
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Table C.2: CUTEr QP problems—residual decrease of at least 10−8 and C = I

Explicit factors Implicit factors

G = H G = I Family 1 Family 2(a) Family 2(b)

name fact. iter. total fact. iter. total fact. iter. total fact. iter. total fact. iter. total

AUG2DCQP 0.38 1 0.44 0.12 1 0.18 0.07 157 1.11 0.07 1220 8.48 0.02 89 0.66

AUG2DQP 0.12 1 0.18 0.12 1 0.18 0.06 165 1.14 0.03 1271 8.83 0.02 670 4.60

AUG3DCQP 0.16 1 0.24 0.16 1 0.24 0.06 106 0.75 0.03 1684 11.91 0.03 2621 18.50

AUG3DQP 0.16 1 0.24 0.16 1 0.24 0.07 106 0.76 0.03 273 1.98 0.03 50 0.42

BLOCKQP1 5.03 1 33.06 4.98 1 33.11 0.14 1 28.22 0.06 2 28.20 0.06 2 28.14

BLOCKQP2 4.98 1 33.02 5.02 1 33.31 0.14 1 28.27 0.06 2 28.15 0.07 2 28.13

BLOCKQP3 4.96 1 33.06 5.04 1 33.15 0.14 1 28.24 0.06 2 28.17 0.06 2 28.23

BLOWEYA 0.27 1 0.32 16.58 1 16.69 0.06 1 0.09 0.05 1 0.09 0.05 1 0.09

BLOWEYB 0.28 1 0.33 16.52 1 16.63 0.06 1 0.10 0.05 1 0.09 0.05 1 0.08

BLOWEYC 0.29 1 0.35 14.75 1 14.87 0.07 1 0.11 0.05 1 0.09 0.05 1 0.09

CONT-050 0.36 1 0.53 0.61 1 0.81 0.05 9 0.23 0.01 28 0.34 0.01 29 0.35

CONT-101 2.17 1 3.33 4.39 1 5.82 0.20 0 1.03 0.06 0 0.86 0.05 0 0.84

CONT-201 13.18 1 21.05 29.63 1 38.79 0.86 0 6.97 0.24 0 6.25 0.24 0 6.34

CONT1-10 2.16 1 3.34 4.22 1 5.57 0.20 6 1.26 0.05 28 1.80 0.05 30 1.90

CONT1-20 13.33 1 21.66 29.07 1 38.44 0.85 0 7.52 0.25 0 6.76 0.25 0 6.77

CONT5-QP ran out of memory ran out of memory 0.91 1 6.71 0.24 110 30.72 0.25 147 37.19

CVXQP1 48.16 1 50.39 139.83 1 142.36 0.18 51 1.56 0.13 9237 305.76 0.12 4165 138.96

CVXQP2 27.27 1 28.67 29.21 1 30.67 0.11 369 7.39 0.30 9400 380.46 0.30 1353 55.55

CVXQP3 53.57 1 56.32 78.67 1 82.50 0.45 3 0.98 0.16 9291 369.75 0.06 5782 224.38

DUALC1 0.13 1 0.14 0.03 1 0.05 0.01 16 0.05 0.01 2 0.02 0.01 15 0.04

DUALC2 0.03 1 0.05 0.03 1 0.05 0.01 9 0.05 0.01 1 0.03 0.01 0 0.02

DUALC5 0.04 1 0.07 0.13 1 0.16 0.02 11 0.06 0.01 135 0.22 0.01 563 0.82

DUALC8 0.10 1 0.20 0.10 1 0.21 0.04 13 0.18 0.01 997 2.16 0.01 14 0.13

GOULDQP2 0.85 1 1.04 0.79 1 1.04 0.27 17 0.87 0.12 317 11.63 0.11 715 25.62

GOULDQP3 0.81 1 0.99 0.92 1 1.23 0.27 18 0.93 0.11 96 4.63 0.11 673 31.52

KSIP 0.50 1 1.02 0.50 1 1.03 0.06 8 0.61 0.01 6 0.57 0.01 6 0.57

MOSARQP1 0.09 1 0.13 0.09 1 0.13 0.04 50 0.27 0.02 295 2.07 0.02 952 6.58

NCVXQP1 117.67 1 119.93 141.30 1 143.77 0.14 61 1.73 9.66 9557 416.62 9.64 1802 86.77

NCVXQP2 129.22 1 131.49 141.86 1 144.36 0.14 9942 236.88 9.64 1 9.82 9.65 31 11.10

NCVXQP3 128.41 1 130.67 129.05 1 131.54 0.14 62 1.78 9.64 9877 443.35 8.36 2618 119.47

NCVXQP4 89.54 1 90.98 93.00 1 94.49 0.12 8373 163.19 19.55 7877 438.09 19.44 416 42.25

NCVXQP5 89.18 1 90.59 84.34 1 85.79 0.14 8263 160.94 19.56 1069 78.17 22.38 61 25.79

NCVXQP6 88.20 1 89.60 91.74 1 93.18 0.14 9041 175.54 18.91 9394 531.64 18.91 248 32.56

NCVXQP7 628.16 1 632.76 82.54 1 86.49 0.34 3 0.84 0.17 9736 373.63 0.06 4650 180.96

NCVXQP8 61.02 1 64.21 84.22 1 88.69 0.28 3 0.81 0.19 9994 426.71 0.07 5460 215.20

NCVXQP9 54.51 1 57.41 85.05 1 89.06 0.29 3 0.79 2.20 1790 81.11 2.10 1124 50.49

POWELL20 0.34 1 0.47 0.32 1 0.46 0.14 1 0.20 0.06 3581 54.93 0.06 82 1.37

PRIMAL1 0.11 1 0.12 0.11 1 0.12 0.05 172 0.30 0.01 21 0.05 0.01 31 0.07

PRIMAL2 0.16 1 0.17 0.16 1 0.17 0.05 132 0.31 0.02 23 0.08 0.03 37 0.12

PRIMAL3 0.57 1 0.60 0.59 1 0.62 0.04 117 0.44 0.02 36 0.16 0.01 37 0.16

PRIMAL4 0.30 1 0.32 0.30 1 0.32 0.05 62 0.27 0.01 13 0.08 0.02 53 0.23

PRIMALC1 0.01 1 0.02 0.02 1 0.02 0.02 6 0.03 0.01 248 0.25 0.01 132 0.14

PRIMALC2 0.02 34 0.05 0.03 1 0.03 0.03 4 0.03 0.01 245 0.23 0.01 245 0.24

PRIMALC5 0.02 1 0.02 0.02 1 0.02 0.05 5 0.05 0.02 16 0.04 0.02 14 0.03

PRIMALC8 0.04 1 0.04 0.03 1 0.04 0.02 5 0.03 0.02 536 0.81 0.01 46 0.08

QPBAND 0.42 1 0.55 0.42 1 0.57 0.19 7 0.37 0.15 50 1.97 0.15 224 8.36

QPNBAND 0.53 1 0.70 0.43 1 0.58 0.18 7 0.36 0.15 30 1.24 0.15 159 5.98

QPCBOEI1 0.05 1 0.09 0.06 1 0.10 0.02 113 0.28 0.01 222 0.51 0.01 23 0.09

QPCBOEI2 0.09 1 0.11 0.09 1 0.11 0.02 4 0.03 0.02 2 0.03 0.02 2 0.03

QPNBOEI1 0.43 1 0.47 0.05 1 0.09 0.03 114 0.29 0.01 20 0.08 0.01 24 0.09

QPNBOEI2 0.11 1 0.12 0.09 1 0.11 0.02 4 0.03 0.01 2 0.02 0.01 2 0.02

QPCSTAIR 0.05 1 0.11 0.05 1 0.11 0.02 144 0.35 0.01 142 0.35 0.01 38 0.14

QPNSTAIR 0.05 1 0.11 0.06 1 0.12 0.02 145 0.35 0.01 135 0.34 0.01 28 0.12

SOSQP1 0.12 1 0.17 0.12 1 0.18 0.07 3 0.13 0.03 18 0.27 0.03 34 0.46

STCQP2 0.86 1 0.96 1.47 1 1.62 0.05 92 1.12 0.09 1 0.13 0.09 6140 89.14

STNQP2 63.37 1 63.72 66.32 1 66.82 0.12 5141 129.65 6.52 4747 177.13 0.27 5966 207.81

UBH1 0.34 1 0.53 0.33 1 0.52 0.13 30 0.87 0.05 472 10.12 0.05 47 1.13
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Table C.3: CUTEr QP problems—residual decrease of at least 10−2 and

C given by (5.9)

Explicit factors Implicit factors

G = H G = I Family 1 Family 2(a) Family 2(b)

name fact. iter. total fact. iter. total fact. iter. total fact. iter. total fact. iter. total

AUG2DCQP 0.13 1 0.19 0.13 1 0.19 0.06 19 0.21 0.02 43 0.35 0.02 1 0.06

AUG2DQP 0.12 1 0.18 0.12 1 0.18 0.06 19 0.21 0.02 43 0.35 0.02 1 0.06

AUG3DCQP 0.16 2 0.25 0.17 2 0.25 0.06 14 0.19 0.03 12 0.15 0.03 10 0.14

AUG3DQP 0.17 2 0.25 0.17 2 0.26 0.06 14 0.18 0.03 13 0.16 0.03 10 0.14

BLOCKQP1 4.94 2 32.95 4.93 2 33.05 0.14 1 28.14 0.06 1 28.07 0.07 1 28.10

BLOCKQP2 4.93 2 32.84 4.87 2 33.00 0.14 1 28.11 0.07 1 28.11 0.07 1 27.99

BLOCKQP3 4.94 2 32.87 4.81 2 32.99 0.14 1 28.20 0.06 1 28.11 0.06 1 28.02

BLOWEYA 0.25 1 0.31 14.64 1 14.73 0.06 1 0.09 0.02 1 0.06 0.02 1 0.06

BLOWEYB 0.26 1 0.31 14.72 1 14.82 0.06 1 0.09 0.03 1 0.06 0.02 1 0.06

BLOWEYC 0.26 1 0.31 12.99 1 13.09 0.06 1 0.10 0.03 1 0.07 0.03 1 0.06

CONT-050 0.36 1 0.53 0.60 1 0.79 0.05 1 0.17 0.01 1 0.13 0.01 1 0.13

CONT-101 2.17 1 3.33 4.33 1 5.72 0.20 0 1.03 0.05 0 0.86 0.05 0 0.84

CONT-201 13.18 1 20.95 29.39 1 38.16 0.87 0 6.95 0.23 0 6.46 0.23 0 6.25

CONT1-10 2.16 1 3.34 4.14 1 5.47 0.20 1 1.11 0.05 1 0.93 0.05 1 0.93

CONT1-20 13.24 1 21.52 28.77 1 38.13 0.88 0 7.48 0.22 0 6.80 0.22 0 6.72

CONT5-QP ran out of memory ran out of memory 0.87 1 6.50 0.25 1 5.87 0.25 1 5.83

CVXQP1 0.48 2 0.75 0.46 2 0.79 0.14 2 0.33 0.06 1 0.22 0.06 1 0.22

CVXQP2 0.16 2 0.29 0.16 2 0.29 0.11 2 0.20 0.07 1 0.13 0.07 1 0.13

CVXQP3 0.71 2 1.29 505.39 2 506.87 0.16 1 0.59 0.05 1 0.47 0.05 1 0.47

DUALC1 0.03 1 0.04 0.03 1 0.05 0.01 2 0.03 0.01 2 0.02 0.01 1 0.02

DUALC2 0.02 2 0.04 0.02 2 0.04 0.02 2 0.04 0.01 89 0.13 0.01 150 0.20

DUALC5 0.03 2 0.06 0.03 2 0.06 0.02 2 0.05 0.01 9 0.04 0.01 26 0.07

DUALC8 0.07 2 0.17 0.07 1 0.17 0.02 1 0.12 0.01 3 0.12 0.01 2 0.12

GOULDQP2 0.48 2 0.72 0.47 2 0.78 0.26 4 0.45 0.12 1 0.20 0.12 1 0.21

GOULDQP3 0.47 2 0.71 0.46 2 0.76 0.26 4 0.47 0.12 1 0.21 0.12 1 0.21

KSIP 0.50 2 1.03 0.50 1 1.03 0.03 1 0.56 0.01 2 0.54 0.01 1 0.52

MOSARQP1 0.09 3 0.15 0.09 3 0.15 0.04 6 0.09 0.03 2 0.06 0.02 2 0.06

NCVXQP1 0.41 2 0.69 0.46 2 0.79 0.14 2 0.32 0.06 1 0.21 0.06 1 0.21

NCVXQP2 0.41 14 1.23 0.46 10 1.29 0.15 1 0.30 0.06 1 0.22 0.06 1 0.22

NCVXQP3 0.41 42 2.65 0.46 15 1.59 0.13 2 0.32 0.06 1 0.24 0.06 1 0.22

NCVXQP4 0.16 3 0.33 0.16 3 0.33 0.11 2 0.20 0.07 1 0.13 0.08 1 0.14

NCVXQP5 0.17 13 0.66 0.17 13 0.66 0.15 4 0.27 0.09 1 0.15 0.07 1 0.13

NCVXQP6 0.16 26 0.98 0.16 19 0.77 0.14 2 0.22 0.08 1 0.14 0.07 1 0.13

NCVXQP7 0.83 2 1.40 527.57 3 529.12 0.19 1 0.63 0.05 1 0.46 0.07 1 0.47

NCVXQP8 0.87 11 2.00 528.25 8 530.43 0.17 1 0.62 0.05 1 0.49 0.06 1 0.48

NCVXQP9 0.72 66 4.99 539.13 16 542.62 0.16 1 0.58 0.05 1 0.47 0.06 1 0.48

POWELL20 0.30 1 0.42 0.32 1 0.45 0.13 1 0.19 0.08 2 0.16 0.06 1 0.12

PRIMAL1 0.12 2 0.13 0.12 1 0.13 0.04 18 0.07 0.02 9 0.04 0.02 2 0.03

PRIMAL2 0.16 1 0.17 0.15 1 0.16 0.05 19 0.09 0.02 2 0.03 0.01 2 0.02

PRIMAL3 0.58 1 0.60 0.58 1 0.61 0.03 24 0.13 0.02 2 0.04 0.02 2 0.05

PRIMAL4 0.30 1 0.32 0.30 1 0.32 0.03 15 0.09 0.03 2 0.04 0.03 2 0.04

PRIMALC1 0.02 1 0.02 0.02 1 0.02 0.02 3 0.03 0.02 248 0.25 0.01 97 0.11

PRIMALC2 0.01 1 0.02 0.01 1 0.01 0.06 2 0.06 0.01 245 0.24 0.01 132 0.13

PRIMALC5 0.02 1 0.02 0.03 1 0.03 0.03 3 0.03 0.02 7 0.03 0.01 8 0.02

PRIMALC8 0.03 1 0.04 0.04 1 0.04 0.03 3 0.04 0.01 16 0.03 0.01 12 0.03

QPBAND 0.26 2 0.40 0.24 2 0.41 0.19 2 0.27 0.11 12 0.44 0.10 11 0.41

QPNBAND 0.24 1 0.33 0.24 2 0.42 0.19 2 0.27 0.10 10 0.39 0.12 8 0.34

QPCBOEI1 0.05 6 0.10 0.05 4 0.10 0.03 2 0.06 0.01 2 0.04 0.01 2 0.04

QPCBOEI2 0.10 6 0.12 0.10 3 0.12 0.02 2 0.03 0.01 1 0.02 0.01 1 0.02

QPNBOEI1 0.05 7 0.11 0.05 5 0.11 0.04 2 0.07 0.02 2 0.05 0.01 2 0.05

QPNBOEI2 0.11 6 0.13 0.09 3 0.11 0.02 2 0.03 0.01 1 0.02 0.01 1 0.02

QPCSTAIR 0.05 4 0.12 0.05 3 0.12 0.02 3 0.08 0.01 1 0.06 0.01 1 0.06

QPNSTAIR 0.06 4 0.12 0.06 3 0.12 0.02 4 0.09 0.01 1 0.06 0.01 1 0.06

SOSQP1 0.11 1 0.16 0.12 1 0.18 0.07 1 0.10 0.03 1 0.06 0.03 1 0.06

STCQP2 0.13 1 0.19 0.14 1 0.20 0.05 4 0.12 0.03 255 3.08 0.03 4 0.09

STNQP2 0.31 1 0.43 0.32 5 0.58 0.12 4 0.28 0.06 1 0.14 0.06 5 0.23

UBH1 0.34 1 0.52 0.34 1 0.52 0.14 2 0.29 0.05 1 0.17 0.05 4 0.23
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Table C.4: CUTEr QP problems—residual decrease of at least 10−8 and

C given by (5.9)

Explicit factors Implicit factors

G = H G = I Family 1 Family 2(a) Family 2(b)

name fact. iter. total fact. iter. total fact. iter. total fact. iter. total fact. iter. total

AUG2DCQP 0.13 6 0.26 0.13 7 0.27 0.06 163 1.12 0.02 1158 7.94 0.02 233 1.61

AUG2DQP 0.12 6 0.24 0.12 7 0.26 0.06 159 1.09 0.02 72 0.55 0.02 247 1.74

AUG3DCQP 0.16 7 0.32 0.17 7 0.33 0.06 109 0.79 0.03 88 0.69 0.03 65 0.53

AUG3DQP 0.17 8 0.34 0.17 8 0.34 0.06 107 0.75 0.03 91 0.71 0.03 65 0.52

BLOCKQP1 4.94 2 33.05 4.93 2 32.97 0.14 1 28.12 0.06 2 28.18 0.07 2 28.17

BLOCKQP2 4.93 2 33.02 4.87 2 32.90 0.14 1 28.07 0.07 2 28.17 0.07 2 28.14

BLOCKQP3 4.94 2 32.92 4.81 3 32.82 0.14 1 28.11 0.06 2 28.09 0.06 2 28.16

BLOWEYA 0.25 5 0.36 14.64 4 14.82 0.06 1 0.09 0.02 1 0.06 0.02 1 0.06

BLOWEYB 0.26 5 0.37 14.72 4 14.90 0.06 1 0.09 0.03 1 0.06 0.02 1 0.06

BLOWEYC 0.26 5 0.37 12.99 4 13.18 0.06 1 0.10 0.03 1 0.07 0.03 1 0.06

CONT-050 0.36 7 0.67 0.60 8 1.03 0.05 8 0.22 0.01 19 0.27 0.01 19 0.27

CONT-101 2.17 6 3.96 4.33 7 6.97 0.20 0 1.02 0.05 0 0.86 0.05 0 0.84

CONT-201 13.18 6 24.10 29.39 6 43.18 0.87 0 6.92 0.23 0 6.37 0.23 0 6.30

CONT1-10 2.16 6 3.99 4.14 8 6.80 0.20 8 1.33 0.05 19 1.54 0.05 19 1.53

CONT1-20 13.24 6 24.70 28.77 7 43.92 0.88 0 7.53 0.22 0 6.72 0.22 0 6.75

CONT5-QP ran out of memory ran out of memory 0.87 1 6.55 0.25 36 13.90 0.25 36 13.30

CVXQP1 0.48 124 6.61 0.46 73 4.99 0.14 97 2.63 0.06 21 0.74 0.06 22 0.76

CVXQP2 0.16 116 3.66 0.16 85 2.72 0.11 180 3.77 0.07 27 0.71 0.07 15 0.45

CVXQP3 0.71 134 9.71 505.39 67 513.12 0.16 4 0.70 0.05 19 1.14 0.05 20 1.14

DUALC1 0.03 8 0.05 0.03 7 0.05 0.01 11 0.05 0.01 130 0.18 0.01 13 0.04

DUALC2 0.02 5 0.05 0.02 3 0.04 0.02 8 0.04 0.01 163 0.22 0.01 228 0.29

DUALC5 0.03 10 0.07 0.03 8 0.07 0.02 9 0.06 0.01 13 0.05 0.01 55 0.11

DUALC8 0.07 9 0.19 0.07 4 0.18 0.02 12 0.14 0.01 51 0.21 0.01 71 0.26

GOULDQP2 0.48 5 0.95 0.47 5 1.01 0.26 18 0.91 0.12 42 1.68 0.12 30 1.21

GOULDQP3 0.47 5 0.94 0.46 5 1.00 0.26 18 0.94 0.12 34 1.42 0.12 51 2.09

KSIP 0.50 6 1.05 0.50 8 1.07 0.03 15 0.61 0.01 6 0.57 0.01 5 0.54

MOSARQP1 0.09 14 0.26 0.09 13 0.25 0.04 50 0.26 0.03 14 0.12 0.02 14 0.11

NCVXQP1 0.41 9898 483.79 0.46 5925 352.31 0.14 91 2.46 0.06 21 0.73 0.06 22 0.74

NCVXQP2 0.41 9929 465.07 0.46 9929 582.50 0.15 4966 120.38 0.06 23 0.78 0.06 23 0.78

NCVXQP3 0.41 9997 466.65 0.46 8242 492.05 0.13 92 2.48 0.06 21 0.72 0.06 21 0.72

NCVXQP4 0.16 9489 296.79 0.16 8756 277.30 0.11 2693 52.80 0.07 28 0.74 0.08 16 0.48

NCVXQP5 0.17 9990 319.96 0.17 9973 320.34 0.15 9970 195.47 0.09 28 0.75 0.07 15 0.44

NCVXQP6 0.16 7284 209.70 0.16 9835 287.43 0.14 4658 85.75 0.08 27 0.72 0.07 15 0.44

NCVXQP7 0.83 9906 598.40 527.57 6192 1120.71 0.19 4 0.76 0.05 19 1.12 0.07 20 1.16

NCVXQP8 0.87 9918 640.50 528.25 9756 1523.06 0.17 4 0.76 0.05 19 1.20 0.06 20 1.17

NCVXQP9 0.72 9997 578.21 539.13 9884 1467.28 0.16 4 0.70 0.05 19 1.13 0.06 20 1.15

POWELL20 0.30 1 0.41 0.32 1 0.46 0.13 1 0.19 0.08 317 5.01 0.06 10 0.26

PRIMAL1 0.12 6 0.14 0.12 9 0.15 0.04 166 0.28 0.02 15 0.05 0.02 30 0.07

PRIMAL2 0.16 6 0.19 0.15 7 0.18 0.05 133 0.31 0.02 23 0.08 0.01 11 0.04

PRIMAL3 0.58 6 0.63 0.58 6 0.63 0.03 120 0.44 0.02 10 0.07 0.02 9 0.07

PRIMAL4 0.30 5 0.34 0.30 5 0.34 0.03 62 0.25 0.03 8 0.07 0.03 7 0.06

PRIMALC1 0.02 5 0.03 0.02 4 0.02 0.02 7 0.03 0.02 248 0.26 0.01 248 0.26

PRIMALC2 0.01 4 0.02 0.01 4 0.02 0.06 6 0.06 0.01 245 0.25 0.01 12 0.02

PRIMALC5 0.02 4 0.03 0.03 4 0.03 0.03 6 0.03 0.02 10 0.03 0.01 11 0.02

PRIMALC8 0.03 5 0.05 0.04 4 0.05 0.03 6 0.04 0.01 21 0.04 0.01 56 0.10

QPBAND 0.26 5 0.54 0.24 4 0.51 0.19 8 0.40 0.11 489 12.58 0.10 141 3.66

QPNBAND 0.24 9 0.69 0.24 6 0.61 0.19 7 0.38 0.10 131 3.43 0.12 76 2.06

QPCBOEI1 0.05 21 0.15 0.05 17 0.15 0.03 103 0.26 0.01 23 0.09 0.01 24 0.09

QPCBOEI2 0.10 19 0.15 0.10 18 0.15 0.02 4 0.03 0.01 2 0.03 0.01 2 0.03

QPNBOEI1 0.05 21 0.15 0.05 17 0.15 0.04 104 0.28 0.02 22 0.10 0.01 24 0.09

QPNBOEI2 0.11 18 0.16 0.09 18 0.15 0.02 4 0.03 0.01 2 0.02 0.01 2 0.02

QPCSTAIR 0.05 20 0.17 0.05 19 0.18 0.02 137 0.34 0.01 15 0.09 0.01 970 2.03

QPNSTAIR 0.06 20 0.18 0.06 19 0.18 0.02 125 0.32 0.01 15 0.09 0.01 11 0.09

SOSQP1 0.11 2 0.18 0.12 2 0.20 0.07 5 0.15 0.03 8 0.15 0.03 59 0.77

STCQP2 0.13 57 1.07 0.14 51 1.14 0.05 67 0.79 0.03 6029 71.04 0.03 5989 66.54

STNQP2 0.31 2402 87.38 0.32 529 18.89 0.12 930 22.62 0.06 1 0.14 0.06 5 0.24

UBH1 0.34 6 0.76 0.34 5 0.67 0.14 28 0.82 0.05 31 0.81 0.05 24 0.65


