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CoO has an odd number of electrons in its unit cell, and therefore is expected to be metallic. Yet, CoO
is strongly insulating owing to significant electronic correlations, thus classifying it as a Mott insulator. We
investigate the magnetic fluctuations in CoO using neutron spectroscopy. The strong and spatially far-reaching
exchange constants reported recently [P. M. Sarte et al., Phys. Rev. B 98, 024415 (2018)], combined with the
single-ion spin-orbit coupling of similar magnitude [R. A. Cowley et al., Phys. Rev. B 88, 205117 (2013)] results
in significant mixing between jeff spin-orbit levels in the low-temperature magnetically ordered phase. The
high degree of entanglement, combined with the structural domains originating from the Jahn-Teller structural
distortion at ∼300 K, make the magnetic excitation spectrum highly structured in both energy and momentum.
We extend previous theoretical work on PrTl3 [W. J. L. Buyers et al., Phys. Rev. B 11, 266 (1975)] to construct
a mean-field and multilevel spin-orbit exciton model employing the aforementioned spin exchange and spin-
orbit coupling parameters for coupled Co2+ ions lying on a rocksalt lattice. This parametrization, based on a
tetragonally distorted type-II antiferromagnetic unit cell, captures both the sharp low-energy excitations at the
magnetic zone center, and the energy broadened peaks at the zone boundary. However, the model fails to describe
the momentum dependence of the excitations at high-energy transfers, where the neutron response decays faster
with momentum than the Co2+ form factor. We discuss such a failure in terms of a possible breakdown of
localized spin-orbit excitons at high-energy transfers.

DOI: 10.1103/PhysRevB.100.075143

I. INTRODUCTION

Mott insulators are materials where conventional band
theory fails, predicting metallic behavior owing to half-filled
bands, with the origin of the insulating response indicative of
strong electronic correlations [1–5]. Mott insulators are par-
ent materials for high-temperature cuprate superconductivity
[6–8]. Moreover, there have been some suggestions that these
insulators may even be implicated as being parent to some
iron-based superconductors [9–13]. These Mott insulators
display well-defined spin excitations, however, rapidly break
down [14–17] on charge doping toward superconductivity
[18]. More recently, Mott insulators with strong spin-orbit
coupling have been of particular interest in the search for
unconventional topological states [19–21]. These studies have
focused on 4d and 5d transition metals with strong spin-
orbit coupling resulting in jeff = 1

2 ground states, and new
Kitaev bond directional phases [22–24]. However, much of
the single-ion physics that results in these jeff = 1

2 ground
states is present in Co2+-based compounds that also display
strong spin-orbit coupling [25,26].

In this context, it is timely to investigate the classic Mott
insulator CoO, where significant spin-orbit coupling is present
and comparable to the magnetic exchange. In this study, we in-
vestigate the mixed spin-orbit transitions in CoO through their
parametrization with a multilevel spin-orbit exciton model
extending previous theoretical work on PrTl3 [27]. While
this model reproduces the experimental data at low-energy
transfers, we show that its failure at high-energy transfers is
accompanied by a possible breakdown of these excitations.

For the past several decades, CoO has been one of the most
extensively studied Mott insulators. The 3d metal monoxide
was among the first orbitally ordered materials to be inves-
tigated with neutron diffraction [28]. Its primitive unit cell
consists of one 3d7 Co2+ and one 2s22p6 O2−, corresponding
to 15 valence electrons. With an odd number of valence
electrons, conventional band theory [29,30] would predict
CoO to be metallic. However, CoO is a very strong insulator
[31] with a room-temperature resistivity of 108 � cm, and an
optical band gap of 2.5 eV [32–34], with evidence for metallic
behavior being found only under extremely high pressures on
the order of 100 GPa [35].
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FIG. 1. (a) First four coordination shells of the high-temperature
CoO rocksalt structure. (b) Tanabe-Sugano diagram for d7 Co2+ in
octahedral coordination calculated by Cowley et al. [54]. Shaded
rectangles correspond to experimentally measured excitations for
cubic CoO at room temperature with heights and the width corre-
sponding to experimental errors in energy and the statistical error
of the refined value for 10Dq/J (dd ), respectively. The dashed red
line at 10Dq/J (dd ) ∼ 2.5 denotes the spin crossover from (left)
high-spin S = 3

2 , 4T1 to (right) low-spin S = 1
2 , 2E . (c) Calculated

normalized energy variation as a function of the tetragonal distortion
(Ĥdis) and the magnetic molecular field (ĤMF) perturbations to
the jeff manifolds from the ground-state crystal-field triplet 4T1 of
Co2+ in octahedral coordination. Both the energy eigenvalues and
individual parameters are presented to scale.

Possessing a cubic Fm3̄m structure [36–40] at room tem-
perature [Fig. 1(a)], CoO assumes long-range antiferromag-
netic order at T N ∼ 290 K [41], in contrast to the long-range
ferromagnetism predicted by general band coupling models
that assume a dominant direct exchange [42,43]. Despite
being the subject of many neutron diffraction studies, its
magnetic structure has proven to be particularly contentious,
with both collinear [44,45] and noncollinear [46,47] models
describing diffraction patterns equally well [48–52].

As illustrated in Fig. 1(b), the 4T1 crystal-field ground state
for CoO corresponds to the d7 Co2+ assuming a high-spin
(S = 3

2 ) configuration, yielding an orbital triplet with one
hole in the t2g orbital manifold. The resulting orbital degen-
eracy, coupled with both a Jahn-Teller driven [36] unit-cell

distortion and various far-reaching large exchange interac-
tions, yields a complex magnetic excitation spectrum that
results from the strong entanglement of multiple spin-orbit
levels [Fig. 1(c)]. The resulting multiparameter spin-orbital
Hamiltonian incorporating both exchange and spin-orbit cou-
pling of similar magnitude, further complicated by the com-
plex magnetic ordering and structural distortions, has made
the understanding of the magnetic excitations in this material
particularly difficult [53].

By employing both the spin-orbit coupling constant λ and
the magnetic exchange constants J that were experimentally
determined in our previous work [54,55] on the magnetically
diluted monoxide Mg0.97Co0.03O, we will show that the low-
energy magnetic excitation spectrum of CoO measured in the
Néel regime by inelastic neutron spectroscopy is reproduced
by a mean-field multilevel spin-orbit exciton model based
on Green’s functions [27]. Our parametrization successfully
captures the fine structure of the well-defined low-energy
spin excitations present at the magnetic zone center and also
the broadening in both momentum and energy at the zone
boundaries. In contrast, the model fails to reproduce the high-
energy response consisting of high-velocity excitations that
decay with momentum faster than the Co2+ form factor. We
suggest that this failure of the model provides evidence for a
breakdown of localized spin-orbit excitations at high-energy
transfers, possibly replaced by delocalized or itinerantlike
fluctuations, despite CoO being a strong Mott insulator.

This paper is divided into three general sections. In the first
section, we describe the theoretical framework that we apply
to parametrize the neutron scattering response in CoO. We
first outline the single-ion response defining the crystal-field
Hamiltonian, and then discuss the coupled equations of mo-
tion that were used to numerically derive the neutron response.
In the second section, we first present the experimental data
as measured with neutron spectroscopy, followed by a direct
comparison to our multilevel spin-orbit exciton model. To
conclude, we discuss the high-energy excitations and the poor
agreement with the Co2+ form factor and speculate as to their
origin.

II. THEORY

We first discuss the theoretical framework used to describe
the localized magnetic response in CoO. The neutron mag-
netic cross section is proportional to the magnetic dynamic
structure factor S(Q, ω) defined by

S(Q, ω) = g2
L f 2(Q)

∑
αβ

(δαβ − Q̂αQ̂β )Sαβ (Q, ω), (1)

where gL is the Landé g factor, f (Q) is the magnetic form
factor [50,56], and Sαβ (Q, ω) corresponds to the dynamic
spin structure factor. Since the orbital angular momentum is
quenched (i.e., 〈L̂〉 = 0) for 3d7 Co2+, the orbital contribution
to the scattering cross section is assumed to be weak, and
therefore the spin operators provide the dominant contribution
to the neutron scattering cross section [57]. This assumption
allows Sαβ (Q, ω) to be defined in terms of expectation values
of spin operators Ŝν (i, t ) of index ν = +, −, or z, acting on
a site i at a time t . Such a definition of the dynamic structure
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factor is given by

Sαβ (Q, ω) = 1

2π

∫
dt eiωt 〈Ŝα (Q, t )Ŝβ (−Q, 0)〉,

whose relationship to the response function Gαβ (Q, ω) is
given by the fluctuation-dissipation theorem as

Sαβ (Q, ω) = − 1

π

1

1 − exp(ω/kBT )
�Gαβ (Q, ω). (2)

Motivated by previous work on PrTl3 [27,58], the theoret-
ical portion of this paper begins by first writing the equations
of motion for the response function in terms of commutators
involving the magnetic Hamiltonian Ĥ. We then investigate
this magnetic Hamiltonian in CoO to define both the single-
ion states and how these states are coupled from site to site
on the rocksalt lattice. Finally, we apply mean-field theory
to decouple the equations of motion, thereby reducing the
formula for the response functions to a set of coupled linear
equations that can be computed numerically and directly com-
pared with experiment. In this approach, we use creation and
annihilation operators of the single-ion states rather than the
Holstein-Primakoff transformation for a single spin operator.
This approach allows for both the incorporation of spin-orbit
level mixing, and the explicit inclusion of the single-ion
terms in the Hamiltonian, such as spin-orbit coupling, rather
than employing anisotropy terms that incorporate the orbital
physics through perturbation theory [59].

A. Equation of motion for the response function

According to linear response theory, the response function
measured with neutrons is proportional to the Fourier trans-
form of the retarded Green’s function that is given by

Gαβ (i j, t ) = G(Ŝα (i, t ), Ŝβ ( j, 0))

= −i
(t )〈[Ŝα (i, t ), Ŝβ ( j, 0)]〉, (3)

where 
(t ) is the Heaviside function. As shown in Sec. I
of the Supplemental Material [60], by taking the first time
derivative of Gαβ (i j, t ), applying the Heisenberg equation
of motion, and Fourier transforming from the time to the
frequency domain, one arrives at the following equation of
motion:

ωG(Â, B̂, ω) = 〈[Â, B̂]〉 + G([Â, Ĥ], B̂, ω), (4)

where Â and B̂ denote generic spin operators. Equation (4)
indicates that deriving a model for the neutron scattering
response functions relies both on the understanding of the
Hamiltonian Ĥ and its commutator with the spin operators.
We now investigate the individual contributions to magnetic
Hamiltonian in CoO.

B. Total magnetic Hamiltonian Ĥ
The total magnetic Hamiltonian consisting of crystal-field

(CF) contributions and coupling between Co2+ on sites i and
j can be written as

Ĥ = ĤCF +
∑

i j

J (i j)Ŝ(i) · Ŝ( j).

By defining a molecular field Hamiltonian

ĤMF(i) =
∑

i

HMF(i)Ŝz(i),

where

HMF(i) = 2
∑
i> j

J (i j)〈Ŝz( j)〉, (5)

Ĥ can be written as a sum of a single-ion (Ĥ1) and an interion
(Ĥ2) term given by

Ĥ1 =
∑

i

ĤCF(i) +
∑

i

Ŝz(i)

⎛
⎝2

∑
i> j

J (i j)〈Ŝz( j)〉
⎞
⎠ (6)

and

Ĥ2 =
∑

i j

J (i j)Ŝz(i)[Ŝz( j) − 2〈Ŝz( j)〉]

+ 1

2

∑
i j

J (i j)[Ŝ+(i)Ŝ−( j) + Ŝ−(i)Ŝ+( j)], (7)

where 〈Ŝz( j)〉 denotes a thermal average given by

〈Ŝα〉 =
∑

n

fn〈n|Ŝα|n〉 ≡
∑

n

Ŝαnn fn, (8)

with Ŝαnn = 〈n|Ŝα|n〉, and fn is the Boltzmann thermal popu-
lation factor. The inclusion of a factor of 2 in Eq. (6) follows
the convention that was established in Ref. [53] to explicitly
account for the double counting in the sum over sites.

The procedure we follow to derive the neutron response
consists of two parts. First, we diagonalize the single-ion
component Ĥ1 for a given molecular field such that

Ĥ1 =
∑

n

∑
i

ωnC
†
n (i)Cn(i), (9)

where C(i) and C†(i) are ladder operators satisfying the
commutation relations [Cn(i),C†

m( j)] = δi jδnm, and ωn are the
energy eigenvalues. The second step consists of using these
states to apply mean-field theory on the interion Ĥ2 term
to then compute the neutron response using the equation of
motion given in Eq. (4). We will now discuss the eigenstates
of the single-ion component of the Hamiltonian Ĥ, followed
by the interion component. This section concludes with the
application of mean-field theory on the interion component,
allowing for the derivation of an expression for the Green’s
function that can be calculated numerically and compared
directly to experiment.

1. Single-ion Hamiltonian Ĥ1

As schematically illustrated in Fig. 1(c), the single-ion
component of the Hamiltonian consists of four components

Ĥ1 = ĤCF + ĤMF

= (ĤCEF + ĤSO + Ĥdis ) + ĤMF,

corresponding to the contributions from the crystalline electric
field ĤCEF, spin-orbit ĤSO, structural distortion Ĥdis, and
mean molecular field ĤMF. Hyperfine nuclear transitions are
neglected since previous measurements [61] have indicated
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that these are on the order of ∼μeV, and thus beyond the
experimental resolution of our study. We now discuss each
term of the Hamiltonian Ĥ1.

Crystalline electric field, ĤCEF. As illustrated in the
Tanabe-Sugano [62–64] diagram in Fig. 1(b), for the case
of CoO, the 3d7 Co2+ is octahedrally coordinated by the
weak field O2− ligand resulting in a crystal-field splitting
10Dq that is weaker than the energy differences between the
free-ion terms [65]. Consequently, the crystalline electric field
contribution ĤCEF can be treated as a perturbation to the
free-ion basis states that are defined by Hund’s rules incor-
porating the effects of electron-electron Coulomb repulsion
and the Pauli exclusion principle. A combination of Hund’s
first rule of maximum multiplicity and second rule requiring
the total orbital angular momentum L be maximized yields a
total spin of S = 3

2 and orbital angular momentum L = 3, for
the 3d7 Co2+, corresponding to an orbital ground-state term
symbol of 4F .

The crystalline electric field ĤCEF contribution corre-
sponding to the octahedral coordination of the 4F free-ion
ground state by O2− ligands can be expressed in terms of the
Stevens operators Ô0

4 and Ô4
4, and the numerical coefficient

B4 < 0 [66,67] as

ĤCEF = B4
(
Ô0

4 + 5Ô4
4

)
.

Since the spin-orbit coupling is expected to be considerably
weaker than the crystal-field contribution for the 3d Co2+, the
complete set of commuting observables are L̂2, L̂z, Ŝ2, and
Ŝz with corresponding good quantum numbers L, mL, s, and
ms in the Russell-Saunders L-S coupling scheme; thus, by the
Wigner-Eckart theorem, both Stevens operators in ĤCEF can
be defined in the |L, mL〉 basis, as summarized in Sec. II of the
Supplemental Material [60].

The diagonalization of ĤCEF results in an orbital triplet
ground state (4T1), an excited orbital triplet (4T2), and an

orbital singlet 4A2, where �(4T1 → 4T2) = 480B4 and
�(4T2 → 4A2) = 600B4. The Stevens factor B4 is related to
the crystal-field splitting by 10Dq = 400B4 [Fig. 1(b)], where
10Dq was previously measured to be ∼1 eV [54,68–72].
Since the 4T1 crystal-field ground state and 4T2 first excited
state are separated by ∼1 eV, it is a valid approximation that
the 4T1 ground state will exclusively determine the magnetic
properties of CoO [73,74].

Spin-orbit coupling, ĤSO. The second perturbation to the
4F free-ion ground state is spin-orbit coupling given by

ĤSO = λL̂ · Ŝ, (10)

where λ is the spin-orbit coupling constant. A common
approach is to exclusively consider the 4T1 ground state,
requiring a projection from the original |L = 3, mL〉 basis onto
a smaller basis |l = 1, ml〉 that defines the subspace that is
spanned by the crystal-field ground state. As discussed by
Abragam and Bleaney [66], this particular projection can be
performed using representation theory. Here, we outline an
alternate method based on the matrix representation of angular
momentum operators [75] that was inspired by the work on 4d
and 5d transition metal oxides by Stamokostas and Fiete [76].

The matrix approach begins by first determining the set
of eigenvectors |φCEF〉 of the crystalline electric field Hamil-
tonian ĤCEF in the |L = 3, mL〉 basis. Since |φCEF〉 is also
a basis, a transformation matrix C can be constructed that
rotates from the |L = 3, mL〉 to the |φCEF〉 basis. The matrix
C consists of columns corresponding to eigenvectors of ĤCEF

in the |L = 3, mL〉 basis arranged in order of increasing energy
eigenvalues. In the case of degenerate eigenvalues, a small
perturbative Zeeman term of the form εŜz, with ε being a
small constant, was applied to remove the degeneracy and
uniquely define the column order. For Co2+ in octahedral
coordination with B4 set to −1, C is given by

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −0.79 0.61 0 0 0
0 0 0 0 −0.71 0 −0.71

0.61 0 0 0 0 −0.79 0
0 1.00 0 0 0 0 0
0 0 −0.61 −0.79 0 0 0
0 0 0 0 −0.71 0 0.71

0.79 0 0 0 0 0.61 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Having obtained the transformation matrix, the rotation from the |L = 3, mL〉 to the |φCEF〉 basis can then be accomplished
by Ô|φCEF〉 = C−1Ô|L,mL〉C.

For the L̂z operator, this transformation yields

C−1L̂zC =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1.50 0 0 0 0 −1.94 0
0 0 0 0 0 0 0
0 0 −1.50 −1.94 0 0 0
0 0 −1.94 −0.50 0 0 0
0 0 0 0 0 0 2.00

−1.94 0 0 0 0 0.50 0
0 0 0 0 2.00 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

illustrating the ground-state orbital triplet 4T1, and the excited orbital triplet 4T2 and singlet 4A2 states. We note that the opposite
sequence exists in the case of a tetrahedral environment with an orbital singlet ground state [77]. A comparison of the top 3 × 3
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block matrix to the L̂z operator in the |l = 1, ml〉 basis given
by

L̂z =
⎡
⎣−1 0 0

0 0 0
0 0 1

⎤
⎦

confirms that the block matrix is equivalent to the L̂z operator
in the |l = 1, ml〉 basis, with a projection factor α = − 3

2 , in
agreement with previous approaches based on representation
theory. Therefore, in the low-temperature and low-energy
limit, the spin-orbit Hamiltonian [Eq. (10)] can be rewritten
as

ĤSO = αλl̂ · Ŝ,

corresponding to a new Hamiltonian consisting of new orbital
angular momentum operators that act on the projected |l =
1, ml〉 basis.

By assigning an effective angular momentum operator
to the subspace spanned by the |l = 1, ml〉 basis, it is im-
plied these new operators must follow the same commutation

relations for general angular momentum operators. To check
this fundamental requirement is satisfied, we have trans-
formed the three L̂x,y,z operators, each of which is a 7 × 7
matrix, to the |φCEF〉 basis with the procedure outlined above.
We then extracted the top 3 × 3 block matrices of the pro-
jected matrices C−1L̂x,y,zC to define l̂x,y,z, and confirmed that
these matrices do follow the commutation relations of angular
momentum given by l̂ × l̂ = il̂. We note that the presence
of a thermally isolated low-energy triplet does not guarantee
that these commutation relations are followed. An example of
such a failure has been recently discussed in the context of
low-energy doublets in the heavy fermion CeRhSi3 [78].

Having projected L̂ onto a fictitious operator l̂ to reflect the
triplet orbital degeneracy of the 4T1 ground state of ĤCEF, we
now derive the eigenstates of the perturbative ĤSO term. The
basis is now the 12 |l = 1, ml ; s = 3

2 , ms〉 states, and based
on both the Landé interval rule and the addition theorem of
angular momentum, we expect this Hamiltonian to yield three
levels defined by jeff = 1

2 , 3
2 , and 5

2 . Using the projection
factor α = − 3

2 , and the experimentally determined [54] spin-
orbit coupling constant λ = −16 meV, the diagonalization of
the spin-orbit Hamiltonian ĤSO matrix yields

diag
(
ĤSO

) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−60 0 0 0 0 0 0 0 0 0 0 0
0 −60 0 0 0 0 0 0 0 0 0 0
0 0 −24 0 0 0 0 0 0 0 0 0
0 0 0 −24 0 0 0 0 0 0 0 0
0 0 0 0 −24 0 0 0 0 0 0 0
0 0 0 0 0 −24 0 0 0 0 0 0
0 0 0 0 0 0 36 0 0 0 0 0
0 0 0 0 0 0 0 36 0 0 0 0
0 0 0 0 0 0 0 0 36 0 0 0
0 0 0 0 0 0 0 0 0 36 0 0
0 0 0 0 0 0 0 0 0 0 36 0
0 0 0 0 0 0 0 0 0 0 0 36

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

confirming a doublet ground state with quartet and sextet excited manifolds [Fig. 1(c)] with �(doublet → quartet) =
−36 meV ≡ 3

2αλ and �(quartet → sextet) = −60 meV ≡ 5
2αλ. Finally, we may confirm that each manifold corresponds to

jeff = 1
2 , 3

2 , and 5
2 , respectively, by projecting the components of the effective total angular momentum operator ĵ = l̂ + Ŝ onto

the subspaces spanned by the spin-orbit manifolds of ĤSO. As was the case for the projection onto the subspace spanned by the
4T1 crystal-field ground state, such a projection is accomplished by first defining a transformation C which rotates operators from
the |l, ml , s, ms〉 basis to the |φSO〉 basis with the columns being the eigenvectors of ĤSO arranged in increasing energy. Rotating
the ĵz operator onto the |φSO〉 basis yields

C−1 ĵzC =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
2 0 0 0 0 0 0 0 0 0 0 0

0 1
2 0 0 0 0 0 0 0 0 0 0

0 0 − 3
2 0 0 0 0 0 0 0 0 0

0 0 0 − 1
2 0 0 0 0 0 0 0 0

0 0 0 0 1
2 0 0 0 0 0 0 0

0 0 0 0 0 3
2 0 0 0 0 0 0

0 0 0 0 0 0 − 5
2 0 0 0 0 0

0 0 0 0 0 0 0 − 3
2 0 0 0 0

0 0 0 0 0 0 0 0 − 1
2 0 0 0

0 0 0 0 0 0 0 0 0 1
2 0 0

0 0 0 0 0 0 0 0 0 0 3
2 0

0 0 0 0 0 0 0 0 0 0 0 5
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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A comparison of the block matrices of the projected ĵz
operator as given above to the Ĵz operator in the | jeff =
1
2 , mj〉, | jeff = 3

2 , mj〉, and | jeff = 5
2 , mj〉 bases confirms that

the top 2 × 2, middle 4 × 4, and bottom 6 × 6 block matrices
correspond to jeff = 1

2 , 3
2 , and 5

2 manifolds, respectively. By
projecting the ĵx and ĵy operators, it can be shown that
these block matrices also satisfy the canonical commutation
relations of angular momentum.

Distortion Hamiltonian, Ĥdis. The next perturbation to the
single-ion Hamiltonian corresponds to the structural defor-
mation of the CoO unit cell that accompanies long-range
antiferromagnetic order, resulting in the distortion of the
crystalline electric field from ideal octahedral coordination
[79]. While the exact symmetry of the low-temperature phase
has proven to be particularly contentious, we will consider
a simple tetragonal distortion, corresponding to a uniaxial
distortion along the z axis. Utilizing symmetry arguments
[80], the influence of such a distortion on the crystalline
electric field is given by

Ĥdis = B2Ô0
2 = �

(
l̂2
z − 2

3

)
,

with a distortion parameter �.
Molecular field Hamiltonian, ĤMF. The final term in the

single-ion Hamiltonian corresponds to the effect of the molec-
ular field that results from the magnetic order of Co2+ mo-
ments lying on the rocksalt lattice. ĤMF behaves as a Zeeman-
type term, resulting in a splitting of the nearly degenerate
jeff levels. By considering a single dominant next-nearest-
neighbor 180◦ Co2+-O2−-Co2+ superexchange pathway with
a magnetic exchange constant J2, the corresponding mean
molecular field is given by

ĤMF =
∑

i

HMF(i)Ŝz = 2z2J2〈Ŝz〉Ŝz,

where HMF(i) is defined by Eq. (5) above, and z2 denotes
the number of next-nearest neighbors. As summarized by
Fig. 1(c), the result of such a strong value of this exchange
interaction is the significant entanglement between individual
jeff levels, in contrast with other Co2+-based magnets such as
CoV2O6 [81], CoV3O8 [75], and CoNb2O6 [82], where the
degree of mixing is much weaker. In these particular magnets,
the spin-orbit split levels remain well-separated in energy,
and therefore can be considered as jeff = 1

2 magnets. The
strong intertwining in CoO represents a limitation imposed
on approaches based on conventional linear spin-wave theory,
and the reason why a multilevel spin-orbit exciton model
needs to be considered.

2. Interion Hamiltonian Ĥ2

As summarized by Eq. (7), the interion Hamiltonian is
defined by the exchange parameters J (i j) between sites i and
j. In contrast to the parameters for the single-ion Hamiltonian
Ĥ1, 10Dq, λ, and ĤMF, discussed above, there does not exist
a widely accepted set of experimentally determined exchange
constants for CoO [83]. Given the complexity of the mixed
jeff levels [Fig. 1(c)], we have previously investigated the pair
response in the dilute monoxide Mg0.97Co0.03O [55], where
chemical dilution removes both the magnetic order-induced

molecular field and the accompanying structural distortion
that are originally present in CoO [84–86]. A summary of
the experimental results is presented in Fig. 2, taken from
Ref. [55]. Utilizing probabilistic arguments, it was shown that
the series of well-defined low-energy magnetic excitations
[Fig. 2(a)] present in Mg0.97Co0.03O correspond to excitations
of Co2+ pairs. These pairs are described by the effective pair
Hamiltonian given by

Ĥpair = αλl̂1 · Ŝ1 + αλl̂2 · Ŝ2 + 2J1,2Ŝ1 · Ŝ2, (11)

corresponding to a 144 × 144 matrix in terms of the two-
particle basis of |l1 = 1, ml1 , s1 = 3

2 , ms1〉 ⊗ |l2 = 1, ml2 , s2 =
3
2 , ms2〉, where li, mli , si, and msi denote the eigenvalues of
the l̂, l̂z, Ŝ, and Ŝz operators, respectively, for the ith particle.
As summarized schematically in Fig. 2(b), the pair Hamil-
tonian Ĥpair describes individual jeff = 1

2 pair excitations as
transitions between triplet (�̃ = 1) and singlet (�̃ = 0) levels
separated by an energy �E = α̃J , where α̃ behaves as an
effective conversion factor between the energy transfer mea-
sured experimentally and the corresponding desired magnetic
exchange constants. The solution to Ĥpair as a function of
exchange energy J is shown in Fig. 2(c), with the solid black
line and colored points corresponding to the exact solution
to the above Hamiltonian and the measured energy positions,
respectively. For comparison, the behavior predicted by the
projection theorem of angular momentum is also presented.
The deviation of the exact solution from the linear behavior
predicted by the projection theorem is a consequence of
the coupling of the ground-state jeff = 1

2 and higher-energy
jeff = 3

2 manifolds. Since the degree of coupling increases as
|J| → |λ|, the predicted values for exchange constants with
larger magnitudes, specifically J2, are particularly sensitive
to the value of the spin-orbit coupling constant λ. This point
will be addressed below in the context of the analysis of the
single-crystal data.

While the energy dependence affords estimates of the
exchange constants, the relative distance R between the two
Co2+ spins that participate in the exchange interaction, and
thus the relative coordination shell [Fig. 2(a)], can be deter-
mined for each magnetic excitation from their momentum
dependence via the first moment sum rule [75,87,88], as
is summarized in Fig. 2. Given the ground state for anti-
ferromagnetically/ferromagnetically coupled Co2+ ions is a
triplet/singlet, the temperature dependence was used to estab-
lish the sign of the exchange constant [89]. A final summary
of the estimates of the exchange constants for the first four
coordination shells of CoO is presented in Table I.

C. Mean-field theory for multilevel spin-orbit excitons

As discussed above, the modeling of the neutron response
requires an understanding of both the Hamiltonian and its
commutator with the spin operators. In the previous section,
we diagonalized the single-ion Hamiltonian Ĥ1 such that
Ĥ1|n〉 = ωn|n〉. Since all terms of the interion Hamiltonian
Ĥ2 are based on the components of the spin operator Ŝ,
these operators can be rotated onto the basis states of the
single-ion Hamiltonian by use of the ladder operators that
were previously defined in Eq. (9) with such a coordinate
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FIG. 2. (a) Background (pure and nonmagnetic MgO) subtracted powder-averaged neutron-scattering intensity maps of Mg0.97Co0.03O
measured on (top) MARI at 5 K with an Ei = 30 meV, (middle) MARI at 5 K with an Ei = 10 meV, and (bottom) IRIS at 11 K with an
Ef of 1.84 meV revealing seven low-energy bands of dispersionless magnetic excitations. (b) Relevant energy scales for the effective pair
Hamiltonian. (c) Calculated difference in the ground-state manifold’s energy eigenstates obtained from the diagonalization of the effective
pair Hamiltonian (black line). The nonlinearity is in contrast with the behavior predicted by the projection theorem (gray line). (Inset) The
mechanism for antiferromagnetism (top) and weaker ferromagnetism (bottom) is a result of a combination of the 90◦ Co2+-O2−-Co2+ exchange
pathway and the orbital degree of freedom in the t2g channel on each Co2+, in agreement with the predictions of the Goodenough-Kanamori-
Anderson rules. Yellow arrows denote local t2g spin configurations and teal arrows denote total spin configurations on each Co2+.

rotation being given by

Ŝ(±,z) =
∑
mn

Ŝ(±,z)mnC
†
mCn. (12)

TABLE I. Initial values (in meV) for the parameters of the spin-
orbit exciton model.

Parameter Initial value Reference

λ −16 [54]

� −8.76 [101,102]

J1F −0.918 [55]
J1AF 1.000
J2 3.09
J3F −0.182
J3AF 0.262
J4F −0.0504
J4AF 0.0759

HMF 64.8 [98–100]

By writing the full Hamiltonian Ĥ = Ĥ1 + Ĥ2 in terms
of the ladder operators as defined in Eq. (12), and using the
definition of the interlevel susceptibility Ĝ defined by

Gαβ (i, j, ω) =
∑
mn

ŜαmnĜβ (m, n, i, j, ω), (13)

where the indices α, β are either +, −, or z, the second
term on the right-hand side of the equation of motion of the
Green’s function [Eq. (4)] reduces to three sets of commuta-
tors, termed diagonal, transverse, and longitudinal, with each
involving spin operators rewritten in terms of ladder operators,
as discussed in Sec. III of the Supplemental Material [60].
Buyers et al. [27] demonstrated that by combining the random
phase decoupling method [90–93] (Sec. IV of the Supplemen-
tal Material [60]) with the definitions of both the single-site
response function

gαβ (E ) =
∑

n

{
Sα0nSβn0

E + i� − En0
− Sαn0Sβ0n

E + i� + En0

}
, (14)
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and the Fourier transform of the exchange interaction J (Q)

J (Q) =
∑
i 
= j

Ji je
iQ·di j , (15)

the full neutron response Fourier transformed into momentum
Q space can be written as a set of coupled linear equations
given by

Gαβ (Q, E ) = gαβ (E ) + gα+(E )J (Q)G−β (Q, E )

+ gα−(E )J (Q)G+β (Q, ω)

+ 2gαz(E )J (Q)Gzβ (Q, E ), (16)

where ω has been relabeled as E = h̄ω. Here, we have em-
ployed the T → 0 K single-site response function since the
energy transfers under consideration in the current investiga-
tion (� 20 meV) are much larger than the sample temperature
(∼ 0.5 meV). The denominator of gαβ consists of Eno =
h̄ωn − h̄ω0 corresponding to the energy associated with a
transition from the ground state |0〉 to the |n〉 eigenstate of the
single-ion Hamiltonian Ĥ1, while the presence of the positive
infinitesimal � is to ensure analyticity, and was set to 50%
of the experimental resolution width (HWHM) on MERLIN

[94] that was calculated by PYCHOP [95]. Coupling between
the single-site response functions, and thus the dispersion of
the total response functions Gαβ , is defined by J (Q) which
is parametrized by both Ji j and di j denoting the exchange
constant and displacement vector, respectively, between sites
i and j. As a first approximation, our calculations have con-
sidered the simplest case where the exchange interaction is
spatially isotropic. We note that in general this is not case,
owing to the anisotropy of the orbital configuration of Co2+.

By considering all possible combinations of indices α, β

in Eq. (16) and noting that the nonzero single-site response
functions for Co2+ in such a highly symmetric environment
are g+−, g−+, and gzz, only three nonzero Green’s functions
are obtained:

G+−(Q, E ) = g+−(E ) + g+−(E )J (Q)G+−(Q, E ),

G−+(Q, E ) = g−+(E ) + g−+(E )J (Q)G−+(Q, E ), (17)

Gzz(Q, E ) = gzz(E ) + 2gzz(E )J (Q)Gzz(Q, E ),

with both G++ and G−− being both zero, as required by
definition of the retarded Green’s function.

The simplest model for the long-range antiferromagnetic
order in CoO is a type-II collinear antiferromagnetic magnetic
structure [28]. Corresponding to (111) ferromagnetic sheets
stacked antiferromagnetically along the [111] direction, this
type of magnetic structure has been observed in CoO under
pressure, despite the suppression of the structural distortion
[96]. Such a model implies that CoO can be reduced to two
unique magnetic sublattices; thus, the site indices i and j
assume labels of either 1 or 2, and Eq. (17) becomes four
coupled linear equations

G+−
11 (Q, E ) = g+−

1 (E ) + g+−
1 (E )Js(Q)G+−

11 (Q, E )

+ g+−
1 (E )Jd (Q)G+−

21 (Q, E ),

G+−
21 (Q, E ) = g+−

2 (E )Js(Q)G+−
21 (Q, E )

+ g+−
2 (E )Jd (Q)G+−

11 (Q, E ),

G+−
12 (Q, E ) = g+−

1 (E )Js(Q)G+−
12 (Q, E )

+ g+−
1 (E )Jd (Q)G+−

22 (Q, E ),

G+−
22 (Q, E ) = g+−

2 (E ) + g+−
2 (E )Js(Q)G+−

22 (Q, E )

+ g+−
2 (E )Jd (Q)G+−

12 (Q, E ), (18)

and

Gzz
11(Q, E ) = gzz

1 (E ) + 2gzz
1 (E )Js(Q)Gzz

11(Q, E )

+ 2gzz
1 (E )Jd (Q)Gzz

21(Q, E ),

Gzz
21(Q, E ) = 2gzz

2 (E )Js(Q)Gzz
21(Q, E )

+ 2gzz
2 (E )Jd (Q)Gzz

11(Q, E ),

Gzz
12(Q, E ) = 2gzz

1 (E )Js(Q)Gzz
12(Q, E )

+ 2gzz
1 (E )Jd (Q)Gzz

22(Q, E ),

Gzz
22(Q, E ) = gzz

2 (E ) + 2gzz
2 (E )Js(Q)Gzz

22(Q, E )

+ 2gzz
2 (E )Jd (Q)Gzz

12(Q, E ), (19)

with Js and Jd denoting J (Q) on the same (i = j) and different
(i 
= j) sublattices, respectively. Solving these four coupled
equations yields

G+−(Q, E ) ≡
∑

i j

G+−
i j (Q, E ) = g+−

1 (E ) + g+−
2 (E ) + 2g+−

1 (E )g+−
2 (E )[Jd (Q) − Js(Q)]

[1 − g+−
1 (E )Js(Q)] · [1 − g+−

2 (E )Js(Q)] − g+−
1 (E )g+−

2 (E )[Jd (Q)]2
,

Gzz(Q, E ) ≡
∑

i j

Gzz
i j (Q, E ) = gzz

1 (E ) + gzz
2 (E ) + 4gzz

1 (E )gzz
2 (E )[Jd (Q) − Js(Q)][

1 − 2gzz
1 (E )Js(Q)

] · [
1 − 2gzz

2 (E )Js(Q)
] − 4gzz

1 (E )gzz
2 (E )[Jd (Q)]2

,

where G−+(Q, E ) has the same form as G+−(Q, E ) with indices + ←→ −. The equations above are a function of the single-site
response function gαβ and the Fourier transform of the exchange interaction J (Q).

In contrast to the single-site response function, J (Q) does explicitly depend on the particular magnetic sublattice under
consideration, stemming from the presence of the position indices i and j in its definition given by Eq. (15). The Co2+ sites
in the d and s sublattices for a particular coordination shell m was determined by first selecting a reference Co2+ cation, thus
defining a reference (111) plane as illustrated in Fig. 3. By definition of the type-II antiferromagnetic structure, Co2+ cations
located on odd integer number of (111) planes away from the reference plane are defined as belonging to the d sublattice, while
Co2+ cations located in the same or an even integer number of (111) planes away are on the s sublattice.
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The program VESTA [97] was used to determine the displacement vectors to calculate Js,d from Eq. (15) giving

Js(Q) = 2J1{cos[π (H − K )] + cos[π (K − L)] + cos[π (L − H )]} + · · · (m = 1)

2J3{cos[π (2H − K − L)] + cos[π (2H + K + L)] + cos[π (H − 2K + L)] + · · · (m = 3)

cos[π (−H − 2K − L)] + cos[π (H − K + 2L)] + cos[π (−H − K + 2L)]} + · · ·
2J4{cos[2π (H − L)] + cos[2π (H − K )] + cos[π (L − K )] + · · · (m = 4)

cos[π (H + L)] + cos[π (H + K )] + cos[π (K + L)]} (20)

and

Jd (Q) = 2J1{cos[π (H + K )] + cos[π (K + L)] + cos[π (L + H )]} + · · · (m = 1)

2J2{cos(2πH ) + cos(2πK ) + cos(2πL)} + · · · (m = 2)

2J3{cos [π (2H − K + L)] + cos [π (2H + K − L)] + cos [π (−H − 2K + L)] + · · · (m = 3)

cos [π (H − 2K − L)] + cos [π (−H + K + 2L)] + cos [π (H − K + 2L)]}, (21)

where the contributions from each coordination shell m have
been labeled explicitly.

By employing the definitions of the single-site response
function gαβ [Eq. (14)], and the Fourier transform of the
exchange interaction Js,d (Q) [Eqs. (20) and (21)], the total
response function G(Q, E ) given by

G(Q, E ) ≡
∑
αβ

Gαβ (Q, E )

= G+−(Q, E ) + G−+(Q, E ) + Gzz(Q, E ) (22)

FIG. 3. Isometric view of all Co2+ cations located in the (a) first
(m = 1), (b) second (m = 2), (c) third (m = 3), and (d) fourth
(m = 4) coordination shells of the CoO rocksalt structure. For the
purposes of reference, all (111) planes are labeled as either s and
d planes with respect to the reference Co2+ (central black site). All
displacement vectors dm,i j are listed in Table SI in the Supplemental
Material [60] and used to calculate Js(Q) and Jd (Q) discussed in the
text.

can be calculated numerically. In the T → 0 K limit, the
imaginary part of G(Q, E ) is proportional to the dynamical
structure factor [Eq. (2)], and thus Eq. (1) may be reduced to

S(Q, E ) ∝∼ − f 2(Q)�G(Q, E ),

demonstrating that the imaginary component of the total
response function given by Eq. (22), with the inclusion of the
magnetic form factor which here has been approximated by
the isotropic magnetic form factor f (Q), is directly propor-
tional to the neutron magnetic cross section.

D. Parameters: Initial values and orbital configurations

Having presented our model, we now discuss the
parametrization of the spin-orbit excitations in CoO. Since our
model approximates CoO as a tetragonally distorted type-II
antiferromagnet, the single-site response gαβ , itself being a
function of the single-ion Hamiltonian Ĥ1 [Eq. (6)], is defined
by three parameters: λ, �, and HMF. The spin-orbit coupling
parameter λ was taken to be −16 meV, corresponding to its
value reported by Cowley et al. [54]. An initial estimate for the
mean molecular field HMF was determined by first extracting
the value for

∑
i> j

zi jJi j from the reported [98–100] Curie-Weiss

temperature θCW = −330 K (−28.4 meV) via its mean-field
definition

θCW = − 2

3ζ
S(S + 1)

∑
i> j

zi jJi j, (23)

where ζ is a scale factor of 1.9 calculated by Kanamori
[98] accounting for mixing between the 4F and 4P free-
ion states. Inserting the value of

∑
i> j zi jJi j into the def-

inition of HMF given by Eq. (5) yields an initial estimate
of 64.8 meV. An initial estimate of the tetragonal distortion
parameter � = −8.76 meV was determined by scaling the
value of −1.49 meV that was reported for KCoF3 [101] by
an empirical factor of 0.0116/0.00197 = 5.89 corresponding
to the ratio of their respective tetragonal distortions δa/a.

To define J (Q), we have taken the values for the ex-
change constants for the dilute monoxide Mg0.97Co0.03O [55]
as estimates for pure undiluted CoO since these exchange
constants correspond to a Curie-Weiss temperature [Eq. (23)]
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in close agreement with the value reported for CoO. However,
our investigation on Mg0.97Co0.03O also revealed that each
coordination shell possessed the possibility for both antifer-
romagnetic and ferromagnetic coupling, with the exception
of the second nearest neighbor which is fixed to be anti-
ferromagnetic by the 180◦ Co2+-O2−-Co2+ superexchange
pathway. As illustrated in Fig. 2(c), inset, such dual behavior
is a direct consequence of the t2g degeneracy of the high-spin
d7 configuration of Co2+, and thus a particular choice of J ,
be it antiferromagnetic or ferromagnetic, corresponds to a
specific local orbital configuration. By incorporating this dual
behavior for coordination shells 1, 3, and 4, we must consider
all 23 = 8 sets of exchange constants of the form xAxx, where
x can be either antiferromagnetic (A) or ferromagnetic (F).
Furthermore, since our model incorporates the effects of a
tetragonal (uniaxial) distortion, we must also distinguish the
involvement of a distorted or undistorted bonding configura-
tion for each of the 8 xAxx orbital configurations. Thus, with
these 2 additional degrees of freedom, our model must con-
sider 16 different orbital configurations of the form xAxxγ ,
where the index γ = 1 or 2, distinguishing the presence or
absence of distorted bonding configurations.

Each of these 16 xAxxγ combinations may be interpreted
as a unique orbital configuration, physically corresponding to
a unique type of “domain” in the bulk CoO single crystal, each
of which is subject to a different mean molecular field HMF.
In contrast, since all cations under consideration are assumed
to be Co2+ in octahedral coordination subject to a cooperative
Jahn-Teller tetragonal distortion, λ, �, and the individual Jn

values (where n denotes a particular type of coupling in a
coordination shell m) are fixed to be equal for each of the
16 xAxxγ orbital configurations. By noting that our neutron
spectroscopic measurements were performed with a large
experimental beam that irradiated a macroscopic number of
domains in the single crystal of CoO, our model considers the
mean contribution from all 16 equally weighted xxAxγ orbital
configurations. The initial parameters considered in the model
and their initial values are summarized in Table I.

III. EXPERIMENT

Having discussed both the underlying theory of Co2+

magnetism and the corresponding physical parameters that
constitute our spin-orbit exciton model, we will now address
the experimental results from neutron scattering experiments
on a single crystal of CoO. This section begins with a descrip-
tion of the experimental techniques, followed by a summary
of the neutron spectroscopic data. We conclude this section
with a description of how our model was used to interpret the
low-energy fluctuations of CoO deep within the Néel regime.

A. Experimental details

Sample preparation. Polycrystalline samples of CoO were
synthesized by annealing high purity Co3O4 (>99.99%) under
flowing Ar at 1200 ◦C for 36 h with intermittent grinding
until laboratory x-ray diffraction confirmed the absence of
the Co3O4 precursor. The phase pure CoO powder was com-
pressed into cylindrical rods using a hydraulic press and
subsequently annealed under flowing Ar at 1275 ◦C for 24 h in

a horizontal annealing furnace. Crystal growth was performed
using the floating zone technique with a four-mirror optical
floating zone halogen furnace (CSI system Inc.), yielding a
10-g single crystal of CoO (l = 50 mm, φ = 8 mm). The
feed and seed rods were counter-rotated at 35 rpm with a
vertical translation of 2 to 4 mm h−1 in a pure Ar atmo-
sphere. The initial polycrystalline seed rod was replaced for
subsequent runs by single-crystal seeds from earlier growths.
Previous [54] optical and scanning electron microscopy, x-ray
diffraction and DC susceptibility measurements on the single
crystal confirmed the presence of a single growth domain with
a mosaic spread of approximately 0.1◦ and the absence of both
multiple magnetic or strain domains on the crystal surface and
Co3O4 impurities, respectively.

Neutron inelastic scattering. Neutron inelastic scattering
measurements were performed on the MERLIN direct geome-
try chopper spectrometer [94] at the ISIS neutron spallation
source (Didcot, UK). The t0 chopper was spun at 50 Hz
in parallel with the “sloppy” Fermi chopper package to fix
the incident energy with the energy transfer defined as E =
Ei − E f . To access a large dynamic range, three fixed incident
energies Ei of 110, 75, and 45 meV were selected with Fermi
chopper frequencies of 350, 300, and 250 Hz, providing a
resolution at the elastic line (E = 0) of 7.3, 4.8, and 2.7 meV,
respectively. A 5-g portion of the CoO single crystal was
mounted in a top-loading closed-cycle refrigerator such that
the [110] and [001] crystallographic axes lay within the
horizontal plane. A tomographic reconstruction in momentum
space was accomplished by rotating the crystal about the [010]
axis over 120◦ in 0.5◦ steps.

The four-dimensional (Q, E ) experimental data at each
angle � and Ei was collected at 5 K for an accumulated charge
of 30 μA h on the spallation target. The raw experimental data
were normalized by accumulated proton charge, corrected
for detector-efficiency using a vanadium reference sample,
and reduced by the MANTID data analysis software [103,104].
Visualization and manipulation of reduced experimental data
including rebinning and projections were performed using the
HORACE software package distributed by ISIS [105].

B. Experimental data

We begin by first presenting a summary of the experimental
data from single-crystal neutron spectroscopic measurements
allowing for a direct comparison with previous work on
CoO to establish consistency. The experimental data from the
MERLIN chopper spectrometer at 5 K is presented in Fig. 4 in
the form of (Q, E ) slices along both (1.5 ± 0.1, 1.5 ± 0.1, L)
[Figs. 4(a) and 4(c)] and (2.0 ± 0.1, 2.0 ± 0.1, L) [Fig. 4(b)]
capturing both the magnetic zone center and boundary, where
both are compared to previously published work in the form
of Q-integrated cuts presented in Figs. 4(d) and 4(e), re-
spectively. As illustrated in Fig. 4(a), a (Q, E ) slice with an
incident energy Ei = 110 meV exhibits a band of excitations
extending from ∼20 meV up to ∼60 meV energy transfer,
corresponding to a similar range in energy transfer reported by
previous THz [107] and Raman [108] spectroscopic measure-
ments. These excitations decrease in intensity with increasing
L, as is expected for the Co2+ magnetic form factor, thus
indicating these excitations are possibly magnetic. A higher

075143-10



SPIN-ORBIT EXCITONS IN COO PHYSICAL REVIEW B 100, 075143 (2019)

FIG. 4. (Q, E ) slices of CoO measured on MERLIN at 5 K with
an Ei of (a) 110 meV, (b) 75 meV, and (c) 45 meV. All (Q, E )
slices have been folded along [001]. A comparison of Q-integrated
cuts of (c) and (b) with previous measurements in the literature at
the (d) magnetic zone centers, and (e) magnetic zone boundaries,
respectively. Solid lines in (e) indicate the location of excitations
previously determined by IR spectroscopy [106]. Horizontal bars
indicate instrumental resolution.

resolution slice with an Ei = 45 meV [Fig. 4(c)] reveals that
the band of excitations corresponds to a fine structure consist-
ing of a series of modes that are unevenly spaced in energy,
in agreement with previous triple-axis [53,109], time-of-flight

data [110], and Raman spectroscopy [111], with the exception
of a broader peak reported for triple-axis measurements at
∼40 meV. However, it is important to note that the previously
reported triple-axis measurements employed final energies
E f = 14.6 and 30.5 meV, both of which potentially produce
spurious signals near 40 meV as a result of weak elastic
scattering corresponding to Ei → 4 E f (λ f /2) and 4 Ei (λi/2)
→ 9 E f (λ f /3) [112]. This weak elastic process may have
contributed to the extra scattering intensity that was observed
in the previously reported triple-axis data, yet is absent in
our current time-of-flight data. We also note the presence
of nearly dispersionless optical phonon branches near this
energy may also contribute to the overall neutron cross section
[113,114]. We will later discuss how this fine structure near
the magnetic zone center can be understood in terms of the
spin-orbit excitations.

Slices and Q-integrated cuts through the magnetic zone
boundary presented in Figs. 4(b) and 4(e) show additional
complexity present in the neutron response. At low-energy
transfers below ∼20 meV, strong acoustic phonons can be
seen in Fig. 4(b) to disperse from the even integer positions in
momentum transfers. The phonon nature of these excitations
is confirmed by the fact that the cross section grows with
increasing momentum transfer L, in contrast to the magnetic
cross section that is subject to the Co2+ form factor. In
addition to the acoustic phonons, a flat band is observed
at E ∼ 20 meV. This band also exhibits higher intensity at
large momentum transfers, indicating lattice fluctuations as
the origin. However, it should be noted that a peak in the
aluminum phonon density of states exists near this energy
transfer, thus suggesting that this particular band likely cor-
responds to scattering from the sample can and walls of the
cryostat. At higher-energy transfers, two distinct bands of
excitations are present over a large range of energy transfers
spanning from ∼30 to ∼70 meV. The intensity of these bands
weakens with momentum transfer L; however, as illustrated
in Fig. 4(e), these excitations overlap with lattice vibrational
modes previously identified by infrared spectroscopy [106].
We will later discuss the origin of these excitations in terms
of magnetovibrational scattering [115] by comparing the dis-
persion of these two high-energy bands at the magnetic zone
boundary to those of phonons measured at large momentum
transfers.

C. Comparison between experimental data and
the spin-orbit exciton calculation

Having summarized our experimental data, we now present
a direct comparison to our calculated parametrization based
on the Green’s function approach that has been discussed
above. Here, we first present the final model used to describe
the experimental data. This is followed by a discussion con-
cerning how such a model and its refined parameters were
obtained.

As illustrated in Fig. 5, by allowing the value of mean
molecular field HMF to refine independently for each of the
equally weighted 16 xAxxγ domains, each possessing identi-
cal refined values of λ, J , and �, our mean-field multilevel
spin-orbit exciton model successfully reproduces both the
fine structure at the magnetic zone center and the broad

075143-11



P. M. SARTE et al. PHYSICAL REVIEW B 100, 075143 (2019)

FIG. 5. Comparison of (Q, E ) slices and corresponding Q-integrated cuts for CoO measured on MERLIN at 5 K and calculated with a
mean-field multilevel spin-orbit exciton model employing the refined parameters listed in Tables III and II for an Ei of [(a), (d), (g)] 45 meV,
[(b), (e), (h)] 110 meV, and [(c), (f), (i)] 75 meV. Horizontal bars in Q-integrated cuts indicate experimental resolution. All (Q, E ) slices have
been folded along [001]. Individual contributions for each xAxxγ orbital configuration to the Q-integrated cuts presented in (g) and (h) are
illustrated in Fig. S1 [60].
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FIG. 6. Comparison of (a) measured (Ei = 110 meV, 5 K) and
(b) calculated (Q, E ) slices at high-energy transfers illustrating the
individual contributions of the G−+ and Gzz components to the total
neutron response. The (Q, E ) slice presented in (a) has been folded
along [001].

excitations at the (1.5, 1.5,−1) zone boundary, while cap-
turing the steeply dispersive columns of scattering observed
at higher-energy transfers (Fig. 6). The refined values of the
mean molecular field HMF are listed in Table II for the 16
xAxxγ orbital configurations, each with refined values of λ,
�, and Jm,ξ summarized in Table III.

The need for all 16 xAxxγ domains is illustrated in
Figs. 7(e) and 7(f), where despite the success of the spin-
orbit exciton model in reproducing the bandwidth of the
excitations between ∼20 meV up to ∼60 meV with the initial
parameters listed in Table I, the use of a single xAxxγ orbital
configuration fails to reproduce the low-energy fine structure

TABLE II. Refined values (in meV) of the mean molecular field
parameter HMF for all 16 xAxxγ orbital configurations considered in
a mean-field multilevel spin-orbit exciton model, each with refined
values of λ, �, and Jm,ξ listed in Table III. Numbers in parentheses
indicate statistical errors.

Orbital configuration Refined value

AAAA1 62.4(2)
AAAA2 46.2(1)
AAAF1 55.3(2)
AAAF2 53.9(1)
AAFA1 46.2(1)
AAFA2 49.9(1)
AAFF1 56.2(2)
AAFF2 56.0(2)
FAAA1 47.3(1)
FAAA2 47.9(1)
FAAF1 58.9(3)
FAAF2 58.8(2)
FAFA1 61.6(3)
FAFA2 60.9(3)
FAFF1 48.9(1)
FAFF2 59.5(2)
Average 54.4(4)

at the zone center and the steeply dispersive columns of high-
energy scattering at the zone boundary, instead predicting the
presence of a single dominant highly dispersive G−+ mode
[Figs. 7(b) and 7(g)]. While both G++ and G−− modes exhibit
negligible intensity [Fig. 7(d)], a direct consequence of the
definition of Gαβ given by Eq. (16) above, the spin-orbit
exciton model does predict two additional gapped modes
corresponding to the longitudinal Gzz mode and the transverse
G+− mode. As summarized in Figs. 7(a) and 7(c), it is clear
that both the weakly dispersive G+− and Gzz modes cannot
account for the missing spectral weight in the fine structure,

FIG. 7. A comparison of the calculated (Q, E ) slices along (1.5, 1.5, L) for (a) G+−, (b) G−+, (c) Gzz, and (d) G++ components of (e)
the total response function G and (f) the corresponding slice measured on MERLIN at T = 5 K with an Ei = 110 meV, with (g), (h) the same
comparison for an Ei = 45 meV. The calculated model presented here only includes the AAAA orbital configuration. The model’s parameters’
values were fixed to those initial values listed in Table I. The (Q, E ) slices presented in (f) and (h) have been folded along [001]. The intensity
modulation observed in the calculated response for high-resolution measurements presented in (g) is an artifact of the steep dispersion of the
excitation, manifesting itself as singularities in gαβ and creating numerical difficulties with sampling the G+− mode.
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TABLE III. Summary of the initial values, parameter spaces, and
refined values for the parameters of the mean-field multilevel spin-
orbit exciton model. All values are reported in meV and numbers in
parentheses indicate statistical errors.

Parameter Initial value Range Refined value

λ −16 [−19, −13] −19.00(1)
� −8.76 [−8.76, −6.16] −6.16(1)
J1F −0.918 [−1.134, −0.730] −0.780(1)
J1AF 1.000 [0.798,1.24] 0.848(1)
J2 3.09 [2.29,4.55] 2.43(1)
J3F −0.182 [−0.220, −0.145] −0.154(1)
J3AF 0.262 [0.209,0.316] 0.223(1)
J4F −0.0504 [−0.0581, −0.0402] −0.0428(1)
J4AF 0.0759 [0.0606,0.0874] 0.0645(1)
HMF 64.8 [0,100] Table II

as both modes are significantly weaker in intensity relative to
the dominant G+− mode, while contributing solely at higher-
energy transfers (�40 meV). As illustrated in Figs. 6 and 8,
while the longitudinal Gzz corresponds to a band of scattering
that is broad in both momentum and energy while being
located above the dominant G−+ component, the transverse
G+− corresponds to a flat band of scattering centered about
∼40 meV.

In addition to the necessity for 16 xAxxγ domains, the
discrepancy between experiment and the calculated disper-
sion for each of the Gαβ components that were presented
in Fig. 7 confirmed the need for the optimization of the
spin-orbit exciton model’s parameters. A summary of the
influences of each of the model’s parameters for a fixed
orbital configuration J via λ, HMF, and � on the calculated
spectra is presented in Fig. 9. Calculations are shown by
false color maps and compared against constant momentum
cuts at the Q = (1.5, 1.5,−1.0) magnetic zone boundary and
Q = (1.5, 1.5,−0.5) zone center. For illustrative purposes,
two different orbital configurations AAAA and AAAF are
shown being denoted by solid and dashed lines, respectively.

As was previously noted in the discussion of the interion
Hamiltonian Ĥ2, the conversion factor α̃ (Fig. 2) between the
energy transfers measured by neutron spectroscopy and the
magnitude of the corresponding magnetic exchange constants
were determined by diagonalizing the pair Hamiltonian Ĥpair

[Eq. (11)]. Since deviations away from the linear dependence
predicted by the projection theorem occur when the value of
|J| → |λ|, the value of larger magnetic exchange constants,
such as the strong 180◦ antiferromagnetic superexchange J2,
is particularly sensitive to |λ|. As illustrated in Fig. 9(a), the
strong sensitivity of |J2| on the value of |λ| is of particular
concern for CoO since the experimentally determined value
of λ = −16(3) meV possesses a significant relative error of
almost 20% [54], corresponding to a large range of possible
exchange values.

The influence of the large relative error for λ is summarized
in Fig. 9(b), illustrating that an increase of |λ| by 20% to
−19 meV from its initial value of −16 meV for a fixed value
of a given molecular field HMF results in a significant shift
to higher-energy transfers for the dominant G−+ component
at both the magnetic zone center and boundary. This increase

FIG. 8. A comparison of (Q, E ) slices (a) measured at 5 K on
MERLIN and (b) calculated using spin-orbit exciton model for an Ei =
110 meV. (c) Comparison between (a) and (b) in a corresponding
Q-integrated cut. The success of the spin-orbit exciton model to re-
produce the G+− component is emphasized. (Q, E ) slices presented
in (a) and (b) have been folded along [001].

in energy transfer is much more prominent for the G−+ com-
ponent compared to the less intense G+−, with the greatest
increase for both components occurring at the magnetic zone
center. Similar behavior in the calculated response is observed
for a change in the mean molecular field HMF, as illustrated in
Fig. 9(c), with shifts in energy transfers significantly larger
compared to the same relative change in the value of |λ|.
In contrast with the three parameters presented so far, the
influence of the tetragonal distortion parameter � is most
pronounced on the less intense weakly dispersive G+− mode.
As illustrated in Fig. 9(d), � provides a mechanism to shift
the energy transfers of the G+− mode without inducing a
comparable shift for the dominant G−+ mode for a fixed set
of values for HMF and J via a fixed value for λ.

With such a large number of domains under consideration,
constraints on the parameter space for J via λ, �, and HMF

were required to ensure convergence for a least-squares opti-
mization. As summarized in Table III, the model presented in
Fig. 5 allowed λ to vary from −13 to −19 meV, corresponding
to the experimental error associated with its reported value
[54], while the value of � varied from −8.76 to −6.16 meV,
corresponding to the range of its values reported in the litera-
ture [54]. The exchange constants Jm,ξ for each coordination
shell m = 1 . . . 4, and type ξ = A and F were allowed to vary
±20% from their starting values obtained from the excitation
energies derived from Mg0.97Co0.03O [55] with a Hamiltonian
Ĥpair employing the value of λ under consideration. Such
a deviation of the exchange constants was rationalized by
noting that the estimates of the exchange constants listed in
Table I are based on the superexchange pathways present in
Mg0.97Co0.03O. Due to the prevalence of the nonmagnetic
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FIG. 9. (a) Influence of the spin-orbit exchange constant on the splitting of the jeff = 1
2 manifold as a function of |J| for the pair

Hamiltonian Ĥpair [Eq. (11)]. Co2+ pair excitations previously measured on MARI are shown explicitly with the corresponding value of J2 (inset)
particularly influenced by the nonlinearity at high-energy transfers. Calculated (Q, E ) slices for Ei = 110 and 45 meV with corresponding
Q-integrated cuts at the zone boundary and center, respectively, illustrating the influences of (b) the spin-orbit coupling constant λ, (c) the mean
molecular field HMF, and (d) the tetragonal distortion � parameters. Solid and dashed lines denote AAAA and AAAF orbital configurations,
respectively. The prominent G−+ and much weaker G+− have been labeled explicitly for reference. Unless otherwise stated, the values of λ,
HMF, �, and magnetic exchange constants J were set to their initial values described in the main text and listed in Table I.

Mg2+ in the dilute monoxide, these pathways and their su-
perexchange constants most likely differ compared to those
present in pure CoO. As a first approximation, the relative
deviation of all magnetic exchange constants J from their
respective values in Mg0.97Co0.03O were set to be equal for all
coordination shells m and type ξ . As was previously discussed
in Sec. II D, the values of λ, J , and � were constrained to be
equal for each of the 16 domains, while no such restriction

was applied to the mean molecular field HMF which was itself
allowed to vary independently for each domain from a value
of 0 to an arbitrarily large upper limit. In our model, this limit
was set to 100 meV, corresponding to ∼1.5 times the value of
the initial value of 64.8 meV.

Among all the spin-orbit exciton model’s parameters, the
expansion of the parameter space for the exchange constants
Jm,ξ proved to be of particular importance for the model’s
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FIG. 10. A comparison between (a), (c) the phonon scattering at large momentum transfers centered about the nuclear zone boundaries
and (b) the modes located near the magnetic zone boundary along the (2,2,0) direction that are unaccounted by our spin-orbit exciton model.
The overlap of the energy transfers range between the (b) low-Q scattering near the (2,2,0) magnetic zone boundary and both gapped optical
phonon modes centered near the (a) (5.5,3.5,4.5) and (c) (1,1,6) nuclear zone boundaries with energy transfers above ∼30 and ∼60 meV,
respectively, are emphasized with dashed lines. All three (Q, E ) slices have been folded along [001] and have been renormalized to share a
common relative intensity scale.

success in reproducing both the fine structure at the magnetic
zone center and the broad excitations at the (1.5, 1.5,−1)
zone boundary simultaneously. As summarized in Sec. VI
of the Supplemental Material [60], the restriction of the ex-
change constants Jm,ξ to be equal to their respective values
originally reported for Mg0.97Co0.03O [55] for a given value
of λ resulted in failure of the spin-orbit exciton model to
reproduce both broad excitations at the (1.5, 1.5,−1) zone
boundary (Fig. S2 [60]). As summarized by Table SIII [60],
such a restriction placed on the values of exchange con-
stants resulted in the value of λ being refined to its most
negative permissible value. Such behavior is a reflection of
the model’s attempts to minimize the average value for HMF

in order to capture the intensity at lower-energy transfers
at the (1.5, 1.5, L) zone boundary. As illustrated in Fig. S3
[60], the clear failure of the model, even by expanding the
parameter space of λ to include all values down to −23 meV,
confirmed the inability of the model to reproduce the data
at the zone boundary while employing the exact exchange
constants measured in Mg0.97Co0.03O.

D. Magnetovibrational scattering and the
magnetic zone boundary

Despite the success of the spin-orbit exciton parametriza-
tion of the experimental data along (1.5, 1.5, L), the model
still fails at the (2, 2, L) zone boundary, suggesting the pres-
ence of additional physics that is beyond our localized model.
The presence of such prominent magnetic scattering near
(2, 2, L) is particularly unusual due to the predictions from
both our spin-orbit exciton model and linear spin-wave theory
for nearly zero intensity for magnetic fluctuations at these
points in reciprocal space for an antiferromagnetic structure.

By comparing the scattering along (2, 2, L) to phonon
branches near different nuclear zone boundaries, we note that

there is a distinct overlap in dispersion. As is summarized
in Fig. 10(a), a strong and steeply dispersing optical phonon
mode near Q = (5.5, 3.5, 4.5) exhibits an identical dispersion
to that of the mode centered about (2,2,0), a mode that is not
accounted for by our localized model. The phonon nature of
the gapped mode in Fig. 10(a) is confirmed by the fact that the
intensity increases with Q. A similar observation is illustrated
in Fig. 10(c) for energy transfers greater than 60 meV, where
a gapped phonon mode, identified by both its Q dependence
and previously reported first-principles calculations [113],
exhibits a dispersion that is identical to the magnetic scattering
around (2,2,0).

The apparent similarity between the dispersion of phonons
at high Q and the magnetic scattering that was originally
unaccounted for in our model may suggest that our data at the
zone boundaries include a magnetovibrational contribution
to the neutron cross section. Corresponding to an indirect
energy exchange between the neutron and a vibrating nucleus
via the electromagnetic interaction between the neutron and
the unpaired electrons of the nucleus, the magnetovibrational
neutron cross section [115] is identical to the more commonly
employed direct one-phonon cross section employing the
nuclear force, with the exception that the nuclear scattering
length b is replaced by the magnetic scattering length given by

bmag = e2γ

mc2
f (Q)|μ|| sin α|,

where α is the angle between the momentum transfer Q and
the ordered magnetic moment direction μ. The presence of
the isotropic magnetic form factor f (Q) guarantees that the
cross section will ultimately decay with momentum transfer,
regardless of the underlying phonon origin of the scattering.
This particular cross section requires an ordered magnetic
structure and has been used previously to characterize the
dynamic magnetic form factor [116]. Similar cross sections
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have been reported in the rare-earth magnetic pyrochlores
[117] and doped manganites [118]. We note that in the case of
CoO, the magnetic ions are strongly correlated and coupled
in all three dimensions, implying that that the correlations
are maintained at large energy transfers in the range of
30–60 meV where prominent phonon modes exist. Based on
the comparison presented above, we suggest that both the
excitations along (2, 2, L), and other excitations that were
unaccounted for by our model such as the weak magnetic
scattering at ∼40 meV at the (1.5, 1.5, L) zone boundary
all originate from phonon modes, rather than the underlying
magnetic Hamiltonian Ĥ.

While we have cast this discussion in terms of the mag-
netovibrational cross section, which itself does not provide
any new information on the underlying Hamiltonian, these
excitations may be indicative of a coupling between the
lattice and magnetic degrees of freedom. Such magnetoelastic
coupling in the underlying Hamiltonian has been investigated
recently in CeAuAl3 [119]. It is particularly compelling to
consider such a claim given that these modes are located
near the expected energy scale for the single-ion spin-orbit
transitions from | jeff = 1

2 〉 → | jeff = 3
2 〉. We will not inves-

tigate this coupling further given the need for first-principles
calculations to reconcile past reported phonon data and the
modes identified in our current study.

E. High-energy response and the Co2+ form factor

We have demonstrated that the experimental data at low-
energy transfers can be successfully parametrized in terms of
spin-orbit excitons with crystal field and exchange parameters
based on our previous work reported on MgO substituted with
Co2+. In Sec. III C, such a mean-field multilevel spin-orbit
exciton model was shown to successfully reproduce the data
in pure CoO near the zone center for energy transfers below
40 meV, while the failure of the model near the magnetic zone
boundaries up to energy transfers of ∼60 meV was attributed
in Sec. III D to either magnetovibrational scattering or a
coupling to underlying phonon excitations that were identified
at large momentum transfers. In this final subsection, we
will address the magnetic excitations at large energy transfers
above ∼65 meV, where no phonon scattering is expected,
exceeding the dynamic range predicted by first-principles
calculations [113] and measured by both our time-of-flight
experiment and previous experiments [53,114,120].

In Fig. 11 we present a comparison between the scattering
for high-energy transfers ([70, 105] meV) with the lower-
energy magnetic fluctuations that were discussed above in
terms of our spin-orbit exciton parametrization. As summa-
rized in Fig. 11(a), excitations located at low momentum
transfers extend up to high energies. Previously identified in
Fig. 6 as being magnetic in origin, it appeared that these
excitations were successfully reproduced by the spin-orbit ex-
citon model. These “columns” of scattering were interpreted
as a result of the overlap at the magnetic zone boundary
of multiple G−+ components from different local orbital
arrangements that were required to capture the fine structure
of the strongly dispersing fluctuations [Fig. 11(b)] centered
about the zone centers and found at lower-energy transfers.
While the analysis presented so far suggests that the Q de-

FIG. 11. (a) Energy-integrated (E = [70, 105] meV) slice mea-
sured on MERLIN at 5 K with an Ei of 110 meV. (b) (Q, E ) slice
folded along [001] measured on MERLIN at 5 K with an Ei of 75 meV.
Q-integrated (ξ, ξ , L) cuts measured on MERLIN at 5 K with an Ei of
(c) 110 meV, (d) 75 meV, and (e) 45 meV. Solid and dashed lines
in Q-integrated cuts correspond to the Co2+ magnetic form factor
f 2(Q) that includes and excludes the intensity at (1.5,1.5,±0.5),
respectively. Both (Q, E ) slices presented in (a) and (b) have been
folded along [001]. Arrows in (a), (b), and (c) indicate fluctuations
exhibiting potential itinerantlike behavior. For the purposes of com-
parison, the specific region in (Q, E ) space (blue-green) identified in
(c) as possibly containing itinerantlike fluctuations has been labeled
explicitly in Fig. 12(b).

pendence for all magnetic excitations appears to follow the
Co2+ form factor, the energy-integrated slice in Fig. 11(a)
demonstrates this is not the case for high-energy transfers,
where the intensity decays more rapidly than f 2(Q). Such an
observation can be confirmed by comparing momentum cuts
of the magnetic fluctuations at small momentum transfers with
the magnetic form factor for Co2+. In contrast with the lowest-
energy transfers [[20–40] meV, Fig. 11(e)] where the magnetic
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FIG. 12. Comparison of (a) (Q, E ) slice measured on MERLIN

with Ei = 110 meV and the corresponding (b) calculated kinemat-
ically permissable (Q, E ) region for the 2-magnon continuum. The
specific region in (Q, E ) space that was previously identified in
Fig. 11(c) being labeled explicitly. The (Q, E ) slice presented in
(a) has been folded along [001].

fluctuations follow the form factor, deviations from such lo-
calized magnetic behavior begin to appear at (1.5, 1.5,±0.5)
for intermediate energy transfers [[40,70] meV, Fig. 11(d)],
with the deviations being particularly prominent around
(1.5,1.5,0) at the highest-energy transfers [[70,105] meV,
Fig. 11(e)]. The rapid decay of intensity with momentum
transfer may be indicative of a real-space object that is ex-
tended spatially, and not due to localized magnetism.

We now speculate as to the possible origin for such delo-
calized magnetism. In the case of the highest-energy transfers
in CoO, where the relative deviation from the form factor
is greatest, the scattering is steeply “dispersive” in energy,
indicative of a large underlying energy scale. These fluctua-
tions are highly reminiscent of the magnetic response found
in itinerant magnets such as CeRhIn5 [121], the cuprates
[16,17], and also iron-based systems [122,123]. In the case
of CeRhIn5, the high-energy steeply dispersive excitations
were found to be longitudinally polarized and occupied a
region in (Q, E ) phase space where two magnon processes
were kinematically allowed. Termed the “1 + 2” model, mul-
timagnon decay processes were used to provide a heuristic
description of the data in the case of CeRhIn5. Motivated by
the qualitative similarities in the excitation spectrum between
CeRhIn5 and CoO, we investigated the possibility that the
steeply dispersing excitations observed in CoO overlap a
similarly allowed region of (Q, E ) phase space. The phase
space permitted for such a decay of the low-energy magnetic
fluctuations was calculated using a simple model based on en-
ergy and momentum conservation that is given by [124–126]

G(Q, E ) =
∑

Q1,Q2

δ(Q − Q1 − Q2)δ
(
E − EQ1 − EQ2

)
,

where EQ1,2 are the energies of transverse excitations at a given
momentum transfer. As shown in Fig. 12, the kinematically
allowed region overlaps in both momentum and energy with
the steeply dispersing excitations at the highest-energy trans-
fers; a region where the spin-orbit exciton model predicts
the presence of a longitudinally polarized excitations (i.e.,
the Gzz mode), as was previously illustrated in Fig. 6(b).

Employing the observed overlap that is summarized in Fig. 12,
we speculate that the spectral weight for these steeply disper-
sive high-energy excitations that are localized in momentum
draws from this longitudinally polarized mode, analogous
to what was observed in previously investigated itinerant
magnets. Magnetism spatially extending beyond the Co2+ site
has been suggested theoretically with some moment expected
to be presented on the oxygen atom [32]. Given the extended
nature of the magnetism in such a scenario, the magnetism
would be expected to decay faster in momentum transfer than
the isotropic Co2+ form factor. An intermediate example has
been reported in the case of Sr2CuO3 [127] which found
excellent agreement between the magnetic form factor and a
model including strong covalent bonding and hybridization of
the 3d orbitals. It could be that the higher-energy excitations
are more sensitive to such a situation in CoO.

IV. CONCLUDING REMARKS

We have presented a neutron spectroscopic study of the
magnetic fluctuations in the Mott insulator CoO. We have
parametrized the low-energy magnetic excitations near the
magnetic zone center in terms of a mean-field multilevel spin-
orbit exciton model incorporating multiple structural domains
owing to multiple local orbital arrangements, as well as a
prominent tetragonal Jahn-Teller distortion. Dispersive exci-
tations at the zone boundaries mimicking magnetic scattering
at low Q that were originally unaccounted for by the spin-
orbit exciton model were found to exhibit similar disper-
sions as phonons measured at larger momentum transfers,
suggesting that the model’s failures at the zone boundaries
may be attributed to magnetovibrational scattering or possibly
coupling to lattice degrees of freedom. Finally, we report
a discrepancy between the Q dependence of excitations at
high-energy transfers and the behavior predicted by the Co2+

form factor. Despite the strong insulating nature of CoO, we
speculate that such a discrepancy corresponds to a breakdown
of spin-orbit excitons that may be accompanied by a crossover
from localized to spatially extended magnetism, reminiscent
of an itinerantlike response or strong covalency.
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