
Technical Report

RAL-TR-2004-033

(Revised)

Council for the Central Laboratory of the Research Councils

May 11, 2007

Iain S. Duff

Combining direct and iterative methods

for the solution of large systems

in different application areas



c© Council for the Central Laboratory of the Research Councils

Enquires about copyright, reproduction and requests for additional copies of this report should

be addressed to:

Library and Information Services

CCLRC Rutherford Appleton Laboratory

Chilton Didcot

Oxfordshire OX11 0QX

UK

Tel: +44 (0)1235 445384

Fax: +44(0)1235 446403

Email: library@rl.ac.uk

CCLRC reports are available online at:

http://www.clrc.ac.uk/Activity/ACTIVITY=Publications;SECTION=225;

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or damage arising from

the use of information contained in any of their reports or in any communication about their

tests or investigations.



RAL-TR-2004-033
(Revised)

Combining direct and iterative methods for the

solution of large systems in different application

areas1

Iain S. Duff2

ABSTRACT

We are concerned with the solution of sets of linear equations where the matrices are of

very high order. We first discuss sparse direct methods and consider the size of problems

that they can currently solve. We then discuss the limitations of such methods, where

current research is going in moving these limitations, and how far we might expect to go

with direct solvers in the near future.

This leads us to the conclusion that very large systems, by which we mean three

dimensional problems in more than a million degrees of freedom, require the assistance of

iterative methods in their solution. However, even the strongest advocates and developers

of iterative methods recognize their limitations when solving difficult problems, that is

problems that are poorly conditioned and/or very unstructured. It is now universally

accepted that sophisticated preconditioners must be used in such instances.

A very standard and sometimes successful class of preconditioners are based on incomplete

factorizations or sparse approximate inverses, but we very much want to exploit the

powerful software that we have developed for sparse direct methods over a period of

more than thirty years. We thus discuss various ways in which a symbiotic relationship

can be developed between direct and iterative methods in order to solve problems that

would be intractable for one class of methods alone. In these approaches, we will use a

direct factorization on a “nearby” problem or on a subproblem.

We then look at examples using this paradigm in four quite different application areas;

the first solves a subproblem and the others a nearby problem using a direct method.

Keywords: sparse direct methods, iterative methods, domain decomposition, constrained

optimization, nonlinear water waves, electromagnetics.
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1 Introduction

We are concerned with the solution of the set of linear equations

Ax = b, (1.1)

where the coefficient matrix A is of very high dimension, say in excess of 106. In most cases,

A will be sparse; that is most of its entries are zero. Although in one of our applications

the matrix is dense, even there we use sparse techniques and a sparse direct code. We thus

discuss what we mean by sparse matrices in Section 2 and illustrate some of the many

applications that give rise to such matrices.

We discuss sparse direct codes in Section 3. We then emphasize that sparse direct codes

can be used to solve really quite large problems with test cases in the order of a million

degrees of freedom becoming quite common. We summarize the current leading edge of

the purely direct approach in Section 4. In this section, we also indicate the limitations

and indicate why other techniques are necessary.

An alternative approach to solving systems of linear equations is to use iterative

methods. We consider such techniques in Section 5 where we also indicate current ways

of accelerating the convergence of such methods.

We then examine approaches that combine direct and iterative methods to solve very

large sparse problems. We believe that this is really the only way to solve systems when

the number of degrees of freedom exceeds several million. We illustrate this approach by

reference to earlier work by this author and others. The main novelty of this paper is that

we collect and identify applications where an off-the-shelf sparse direct solver is used so

that advantage can be taken of the increasing number of readily available sparse direct

codes.

In Section 6 we describe two ways in which direct solvers can be used and in the

remaining sections give examples of each of these. We discuss domain decomposition in

Section 7, an optimization application in Section 8, an application to nonlinear water waves

in Section 9, and the preconditioning of dense systems from electromagnetics applications

in Section 10.

2 Sparse matrices

Sparse systems arise in very many application areas. We list just a few such areas in

Table 2.1.

This table, reproduced from Duff, Grimes and Lewis (1989), shows the number

of matrices from each discipline present in the Harwell-Boeing Sparse Matrix

Collection. This was the main source of sparse test problems for many years but

there are now several more recent projects that give good access to a wide range

of sparse matrices. The Harwell-Boeing collection morphed into the Rutherford-

Boeing Sparse Matrix Collection (Duff, Grimes and Lewis 1997b) that is available
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acoustic scattering

air traffic control

astrophysics

biochemical

chemical engineering

chemical kinetics

circuit physics

computer simulation

4

1

2

2

16

14

1

7

demography

economics

electric power

electrical engineering

finite elements

fluid flow

laser optics

linear programming

3

11

18

1

50

6

1

16

network flow

numerical analysis

oceanography

petroleum engineering

reactor modeling

statistics

structural engineering

survey data

1

4

4

19

3

1

95

11

Table 2.1: A list of some application areas for sparse matrices

from CERFACS (www.cerfacs.fr/algor/Softs/index.html). The Matrix Market

(http://math.nist.gov/MatrixMarket) has a well organized collection of the Harwell-

Boeing set and several other sparse matrices, and a very comprehensive collection is

currently available from Tim Davis at the University of Florida (Davis 2004).

The Grid-TLSE Project, centred in Toulouse, is designing a one-stop shop for sparse

direct methods and will inter alia allow users to access a very wide range of sparse problems

from several sources (http://www.enseeiht.fr/lima/tlse). There are several recent

reports on this project (Buvry, Daydé, Pantel and Puglisi 2004, Amestoy, Duff, Giraud,

L’Excellent and Puglisi 2004).

The definition of a large sparse matrix is a matter for some debate. Suffice it to say that

we regard a matrix as large if it cannot be factorized efficiently using a code for general

linear systems from a standard package for dense systems, such as LAPACK (Anderson,

Bai, Bischof, Demmel, Dongarra, Du Croz, Greenbaum, Hammarling, McKenney,

Ostrouchov and Sorensen 1995). The order of a matrix that is considered large is thus

a function of time depending on the development of both dense and sparse codes and

advances in computer architecture. We show in Table 2.2 the order of general unstructured

matrices which sparse methods have been used to solve as a function of the date. I think

this alone serves to illustrate some of the advances in sparse solution methods over the last

35 years.

The matrix is sparse if the presence of zeros within the matrix enables us to exploit

this fact and obtain an economical solution.

There are two main classes of techniques for solving (1.1): iterative methods and direct

methods. In a direct method, we use a factorized representation and solve the system

using these factors in a predetermined amount of memory and time, usually to a high

degree of accuracy. In iterative methods, we construct a sequence of approximations to

the solution, often the “best” approximation in subspaces of increasing dimension. The

work is generally low per iteration but the number of iterations is usually not known a

priori and may be high, particularly if an accurate solution is required. We discuss direct
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date order

1970 200

1975 1000

1980 10000

1985 100000

1990 250000

1995 1000000

2000 2000000

2005 5000000

Table 2.2: Order of general sparse matrices solved by direct methods as a

function of date

methods of solution in Section 3 and iterative techniques in Section 5 and discuss the

combination of these approaches in Section 6.

The best references for a general overview of work on sparse matrices come from

the proceedings of conferences (Willoughby 1969, Reid 1971, Rose and Willoughby

1972, Himmelblau 1973, Bunch and Rose 1976, Barker 1977, Duff and Stewart 1979, Duff

1981, Evans 1985, Duff, Gould, Douglas and Giraud 1997a).

3 Direct methods

Direct methods use a factorization of the coefficient matrix to facilitate the solution. The

most common factorization for unsymmetric systems is an LU factorization where the

matrix A (or rather a permutation of it) is expressed as the product of a lower triangular

matrix L and an upper triangular matrix U . Thus

PAQ = LU, (3.1)

where P and Q are permutation matrices. This factorization can then be used to solve the

system (1.1) through the two steps:

Ly = Pb, (3.2)

and

Uz = y, (3.3)

whence the solution x is just a permutation of the vector z, viz.

x = Qz. (3.4)

This use of LU factorization to solve systems of equations is usually termed Gaussian

elimination and indeed the terms are often used synonymously. Another way of viewing

Gaussian elimination is as a multistage algorithm which processes the equations in some

order. At each stage, a variable is chosen in the equation and is eliminated from all
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subsequent equations by subtracting an appropriate multiple of that equation from all

subsequent ones. The coefficient of the chosen variable is called the pivot in Gaussian

elimination and the multiple of the pivot row or equation is called the multiplier. Clearly,

there must be some reordering performed (called pivoting) if a pivot is zero but equally

pivoting will normally be necessary if the pivot is very small (in fact if the multipliers are

large) relative to other entries since then original information could be lost (from adding

very large numbers to relatively very small numbers in finite-precision arithmetic) and we

could solve a problem quite different from that originally intended. A good reference for

studying this in more detail is the book by Golub and Van Loan (1996) but a different

perspective is given by several other texts (Stewart 1973, Meurant 1999, Watkins 2002).

If the matrix A is symmetric positive definite, it is normal to use the factorization

PAP T = LLT . (3.5)

The factorization (3.5) is called a Cholesky factorization. For more general symmetric

matrices, the factorization

PAP T = LDLT , (3.6)

is more appropriate. For a stable decomposition in the indefinite case, the matrix D is

block diagonal with blocks of order 1 or 2, and L is unit lower triangular.

In the sparse case, pivoting is also required to preserve sparsity in the factors. For

example, if the matrix A is an arrowhead matrix as shown in Figure 3.1, then selecting entry

(1, 1) as pivot will give dense triangular factors while choosing pivots from the diagonal in

any order with entry (1, 1) chosen last will give no fill-in (that is, there will be no entries

in positions that were not entries in the original matrix). Of course, such a choice could

be bad numerically. The reconciliation of these possibly conflicting goals of maintaining

sparsity while preserving numerical stability has been a major topic of research for many

years. See, for example, the book by Duff, Erisman and Reid (1986).

x x x x x x x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x x x x x x x

Original matrix Reordered matrix

Figure 3.1: Original and reordered matrix

Thus, a major concern when the matrix A is sparse is that the factors L and U will
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generally be denser than the original A. This is evident if we look at the elementary

operations used in Gaussian elimination.

After k steps of elimination on a matrix of order n, the reduced matrix is the lower

n − k by n − k matrix modified from the original matrix according to the first k pivots

steps. If we denote the entries of the original matrix by a
(1)
ij and those of the reduced

matrix after k stages of Gaussian elimination by a
(k+1)
ij , then fill-in is caused in Gaussian

elimination if, in the basic operation

a
(k+1)
ij ← a

(k)
ij − a

(k)
ik [a

(k)
kk ]

−1
a

(k)
kj , (3.7)

the entry in location (i, j) of the original A was zero. The ordering of the rows and columns

of A can be important in preserving sparsity in the factors. Figure 3.1 was an example of

a case where ordering the rows and columns to preserve sparsity in Gaussian elimination

is extremely effective.

We refer the reader to Duff et al. (1986) for a more detailed presentation on sparse

direct methods. The book by George and Liu (1981) has a good discussion for symmetric

matrices and there are several other texts that may be of interest (Tewarson 1973, Jennings

1977, Østerby and Zlatev 1983, Pissanetzky 1984, Zlatev 1991).

4 Extent and limitations of sparse direct codes

Modern codes for direct methods for solving (1.1) can be remarkably efficient, the main

limitation being the storage of L and U . Although the algorithms for matrix factorization

attempt to maintain sparsity in these factors, they are often far denser than A. For

example, if a nested dissection ordering is used on the matrix from the discretization of a

simple elliptic operator on a square (cubic) grid of side k, the storage for the factors will

be O(k2 log k) (O(k4)). Furthermore, it can be proved that this is an asymptotic lower

bound for a direct method using Gaussian elimination.

The power of direct methods for solving sparse linear systems is not always appreciated,

particularly by people working in the computational solution of partial differential

equations. It is important to emphasize that systems of order more than one million

are now solved almost routinely and matrices of this order are now included in benchmark

tests. Although the conventional wisdom is that direct methods are more suited for two-

dimensional discretizations, many of the larger standard test cases (for example from the

PARASOL test set, http://www.parallab.uib.no/parasol/) are from three-dimensional

models.

There has been much recent work on extending the range of problems that can be

solved by direct methods. Most of this has been directed at exploiting parallelism and

there are several codes available for doing this. It is important to note that nearly all

modern sparse direct codes use dense matrix kernels at their inner loop and can thus

exploit modern machine architectures very efficiently. A typical rule of thumb is that

sparse codes will run at about half the rate of dense matrix-matrix multiply for large scale
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realistic factorizations. Other recent work on sparse direct solvers attempts to address

the most severe limitation of direct methods by holding the factors out-of-core and even

performing some of the factorization operations out-of-core.

However, for the rest of this presentation, we will look at another way of extending

the scope of sparse direct methods so that we can solve systems one or two orders of

magnitude larger. In addition, we will do this in a way that capitalizes on the increasing

body of software for sparse direct methods by using a sparse direct code with very little

or no modification. We will call this approach a hybrid direct-iterative approach. Another

example of this can be found in many implementations of the multigrid approach where

often the coarse grid problem (that could be considered a “nearby” problem) is solved by

a direct method within an overall iterative approach.

Before continuing we will first very briefly discuss iterative methods or a subset of them.

5 Iterative methods

In contrast to direct methods, iterative methods do not normally modify the matrix and

do not form any representation of the inverse. Furthermore, most iterative methods do not

require the matrix to be represented explicitly, sometimes it is sufficient to be able to form

the product of the matrix with a vector, although this may restrict the preconditioning

available (see Section 5.1).

In an iterative method for solving (1.1), we start with a guess for the solution (often

just the zero vector) and then successively refine this guess hopefully getting closer to

the solution at each stage. The power of most iterative methods lies in the cheapness

with which each iteration is performed. The problem is that very many iterations may be

needed. This can be reduced by preconditioning the matrix as indicated in Section 5.1,

but then the cost of each iteration is increased. There are very many books that are good

references for iterative methods. We think that those by Saad (1996) and van der Vorst

(2003) are very accessible but there are many books suitable for the more mathematically

inclined (Hackbusch 1993, Axelsson 1996, Greenbaum 1997) or that are more software

oriented (Barrett, Berry, Chan, Demmel, Donato, Dongarra, Eijkhout, Pozo, Romine and

van der Vorst 1993, Kelley 1995) with the former containing significant code fragments.

Iteration techniques such as successive approximation have been around since the first

days of scientific computing and the early iterative techniques for solving sparse linear

equations were based on such approaches (Gauss-Seidel, SOR etc). While these methods

are still used (for example, as smoothers in multigrid techniques), it is true to say that

most modern methods for the iterative solution of sparse equations are based on Krylov

sequences.

In a Krylov-sequence based method, we compute an approximate solution to our

problem from subspaces of increasing dimension usually with some optimality condition

over all vectors in the subspace so that the solution will be obtained when the subspace is
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of sufficient dimension. The Krylov sequence is defined as

Kk(A; r0) = span{r0, Ar0, A
2r0, ...A

k−1r0}, (5.1)

where r0 = b − Ax(0) with x(0) the original “guess” at the solution. From the above, the

approximate solution at stage k will be such that

x(k) ∈ x(0) +Kk(A; r0)

and we will require some optimality condition, for example that

‖b− Ax(k)‖2 (5.2)

is minimized. One such method, applicable to general unsymmetric systems is GMRES (Saad

and Schultz 1986). Krylov methods are discussed in detail in a recent book by van der

Vorst (2003). The residual at the i-th iteration of an iterative method can be expressed as

r(i) = Pi(A)r(0), (5.3)

where Pi is a polynomial such that Pi(0) = 1. If we expand r(0) in terms of the eigenvectors

of A we see that we want Pi to be small on the eigenvalues of A so that the spectrum of A is

crucial in determining how quickly our method converges. For example, if there are many

eigenvalues close to zero or if the spectrum is widely distributed, the degree of polynomial

will have to be high in order to be small on all eigenvalues and so the number of iterations

required will be large.

A major feature of most Krylov based methods for symmetric systems are that they

can be implemented using short term recurrences which means that only a few vectors of

length n need be kept and the amount of computation at each stage of the iterative process

is modest. However, Faber and Manteuffel (1984) have shown that, for general matrices,

one must either lose the cheap recurrences or lose the minimization property. Thus for

the solution of general unsymmetric systems, the balance between these, added to the

range of quantities that can be minimized and the differing norms that can be used, has

led to a veritable alphabet soup of methods (Saad 1996), for example GMRES(k), CGS,

Bi-CGSTAB(`), TFQMR, FGMRES, GMRESR, ....

5.1 Preconditioning

The key to developing iterative methods for the solution of realistic problems lies in

preconditioning, where by this we mean finding a matrix K such that

1. K is an approximation to A.

2. K is cheap to construct and store.

3. Kx = b is much easier to solve than the system (1.1).
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We then solve the preconditioned system

K−1Ax = K−1b, (5.4)

where we have chosen K so that our iterative method converges more quickly when solving

equation (5.4) than equation (1.1). Lest this seem too much of a black art (which to some

extent it is), if K were chosen as the product of the factors LU from an LU factorization

(admittedly violating point 2 above), then the preconditioned matrix B = K−1A would be

the identity matrix and any sensible iterative method would converge in a single iteration.

From our earlier discussion, we would like the preconditioned matrix B to have a better

distribution of eigenvalues than A.

The preconditioning can also be applied as a right-preconditioning AK−1 or as a

two-sided preconditioning K−1
1 AK−1

2 , when the matrix K can be expressed as a product

K1K2. Common preconditioners include using the diagonal of A or a partial or incomplete

factorization of A. A more recent class of preconditioners, particularly popular because

they are highly parallelizable, are the approximate inverse preconditioners. A recent simple

discussion of the merits of different forms of preconditioners and their implementation can

be found in the book by Dongarra, Duff, Sorensen and van der Vorst (1998).

However, although some of the techniques that we will now describe can be thought of

as preconditioning, we will not view them in this way.

6 The use of sparse direct codes with iterative

techniques

The essence of the approaches in this paper is that we will use a direct code with little or

no modification in combination with an iterative method to effect the solution. Effectively,

we will use our direct code either

1. on a subproblem

or

2. on a “nearby” problem.

A very simple example of this approach might be when we have a coefficient matrix that

is block diagonal except for very few outlying entries. If we then ran the direct method on

the block diagonal part, it would both be trivially parallel and very efficient if the blocks

on the diagonal were not too large. The iterative solution of the overall problem will thus

depend on the outliers and we might assume that the number of iterations would be closely

related to the number of outliers. This would correspond to nothing other than a block

Jacobi preconditioning of the original system.

In the remainder of this paper, we will consider the solution of large sparse equations

in four quite different application areas by four different approaches. The first can be

considered as solving a subproblem and the remaining three as solving a nearby system.

These are:
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1. Domain decomposition in semiconductor modelling,

2. Solution of augmented systems in constrained optimization,

3. Application in nonlinear water waves, and

4. Solution of boundary element problems in electromagnetics

and will be considered in the following four sections respectively.

7 Domain decomposition

My first example comes from the solution of highly nonlinear partial differential equations

in semiconductor device modelling. This was the subject of recent work between my

colleagues, Luc Giraud and Jean-Christophe Rioual, at CERFACS and Americo Marrocco

at INRIA on some large scale industrial problems. The partial differential equations are

discretized using mixed finite-element methods and the resulting nonlinear equations are

solved by Newton’s method. The earlier methods for solving the system that were used by

INRIA included a direct method based on a skyline solver that was very memory hungry

and required about 24 hours execution time on an large HP machine in serial mode on a

problem with 30 thousand elements. They also tried Krylov methods preconditioned by

ILU but found they were not robust enough for their application.

A A

A A

11 22

33 44

Figure 7.1: Illustration of domain decomposition

The approach used by Giraud, Marrocco and Rioual (2005) to solve this problem is

based on domain decomposition where the region over which the problem is solved is split

into subregions with artificial boundaries. For example, Figure 7.1 shows the subdivision of

a region into four subregions with the artificial boundaries Γ. In this domain decomposition

approach, the individual subproblems (four in the case of Figure 7.1) can be discretized

separately, leaving a remaining problem on the interface corresponding to the artificial

boundary Γ. If the linearization of each subproblem is defined by the matrices Aii, i = 1, 4,

then the matrix representation of the subdivided problem in Figure 7.1 is given by














A11 A1Γ

A22 A2Γ

A33 A3Γ

A44 A4Γ

AΓ1 AΓ2 AΓ3 AΓ4 AΓΓ















(7.1)
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The solution to the system partitioned as in (7.1) can be obtained by first solving for the

interface variables corresponding to the border blocks from the equations whose coefficient

matrix is the Schur complement matrix

AΓΓ −
4
∑

i=1,4

AΓiA
−1
ii AiΓ.

A solution for the remaining variables is then found by backsubstitution and the solution

of the decoupled systems with coefficient matrices Aii, i = 1, 4. One way of implementing

this domain decomposition approach is to use a direct method on the Aii subproblems,

which is one of the paradigms promoted in this paper, namely using a direct method on a

subproblem.

If we expand the local problem and its interface, we obtain the matrix

(

Aii AiΓ

AΓi A
(i)
ΓΓ

)

(7.2)

where

• Aii : is the local subproblem,

• AiΓ : is the boundary of the local problem, and

• A
(i)
ΓΓ : is the contribution to the stiffness matrix entries from variables on the artificial

interface (Γi) around the ith subregion.

resulting in a contribution to the Schur complement of

S(i) = A
(i)
ΓΓ − AΓiA

−1
ii AiΓ,

called a local Schur (complement).

There are two quite distinct ways of tackling these subproblems that are termed

“implicit” and “explicit”. In the implicit method, only Aii is factorized (yielding factors

Li and Ui). In this case only the Aii are passed to the direct solver and the local Schur

complement S(i) is not computed but can be used to multiply a vector by multiplying the

vector by AiΓ and then solving for Aii before multiplying the resulting vector by AΓi. In

the explicit method, the whole of the matrix (7.2) is passed to the direct solver although

pivots are only chosen from the Aii block and the S(i) matrix is generated explicitly as a

Schur complement of the factorization.

We would thus expect the factorizations for the implicit method to be cheaper but with

more work required when using the Schur complements. Giraud et al. (2005) performed

some experiments on a regular grid of 400 × 400 elements divided into 16 subdomains and

obtained the results shown in Table 7.1. This means that, for the full solution of the linear

system, the explicit method will be faster if more than 5 iterations are required. Since

this number of iterations is likely to be exceeded and since preconditioning and scaling for

10



Factorization Matrix-vector

Implicit 10.2 1.60

Explicit 18.4 0.07

Table 7.1: Times in seconds on Origin 2000. Matrix-vector is the cost of computing the

product of a vector with the Schur complement.

the interface problem is much simpler if the Schur complement is assembled, Giraud et al.

(2005) propose using an explicit method and future results assume this.

For their further experiments, Giraud et al. (2005) use the code MUMPS (Amestoy,

Duff, Koster and L’Excellent 2001) as the sparse direct solver. They try several approaches

to solve the overall system. These include: running MUMPS on the whole system, using an

explicit factorization on the local problems and MUMPS on the interface problem (Schur

complement), and using an explicit factorization on the local problems and GMRES, with

an additive Schwarz preconditioner (Carvalho, Giraud and Meurant 2001), on the interface

problem. On a realistic problem of order 1,214,758 partitioned into 32 subdomains, they

obtain the results shown in Table 7.2. We can see that the partitioning induced by

Newton steps Simulation time

(seconds)

MUMPS on whole system, using AMD 166 3995

MUMPS on whole system, using ND 166 3250

MUMPS on local and on interface 166 2527

MUMPS on local, GMRES on interface 175 1654

Table 7.2: Runs on industrial problem on Origin 2000.

the domain decomposition technique has a benefit even if the whole system is solved

by a direct method. Indeed looking at the first three lines of the table we see that the

“ordering” induced by the domain decomposition is not only better than an approximate

minimum degree ordering but is also better than the nested dissection ordering from MeTiS

(METIS NODEND) that is used by MUMPS. More significantly we see that using a hybrid

technique only marginally increases the number of nonlinear iterations but significantly

reduces the overall time for the simulation.

The end result, reported by Giraud et al. (2005), is that the the code is far more robust

and that the time for the main INRIA production runs was reduced from about 24 hours

to 2 minutes, a very substantial reduction by anyone’s reckoning.

11



8 Constrained optimization

The second application that we shall study is the solution of linear systems arising in

constrained optimization. Specifically we will look at augmented matrices of the form

(

H + D AT

A 0

)

(8.1)

where H is an approximation of the Hessian, D comes from penalty terms on inequality

constraints (note that dii = 0 for unconstrained variables), and A is a matrix of constraints.

Here we will use a direct method on the nearby matrix

(

B AT

A 0

)

(8.2)

and use the factorization of this to precondition the original system.

Duff and Orban have been experimenting with this approach and have used the MA57

package (Duff 2004) as the direct solver and a conjugate gradient method as the iterative

method. Even though the matrix (8.1) is indefinite, the conjugate gradient method is

appropriate since the iterations can be constrained to lie in the subspace corresponding to

the null space of A (Polyak 1969, Coleman 1994, Gould, Hribar and Nocedal 2001).

They have experimented with a range of values for B and we show some of these in

Table 8.1. The problem is CVXQP3 L from CUTEr (Gould, Orban and Toint 2003a) and

the dimensions of the constraint matrix are 7500× 10000, with 39984 entries in the (1,1)

block and 22497 in the matrix A. We see that the direct method can be used to produce

B Matrix factorization Iterations

Storage Time # its Time

H + D 1,092,370 146.72 1 7.64

I 262,051 0.35 109 25.86

diag(H + D) 262,051 0.35 75 18.81

Table 8.1: Runs for problem CVXQP3 L on DEC Alpha workstation.

a very effective preconditioner and that, by adjusting the (1,1) block, the performance of

the preconditioner can be improved. The overall time and storage for the solution are

significantly less than for a direct method on the original problem. The options for the

preconditioner discussed in Table 8.1 are included in the GALAHAD optimization library

(Gould, Orban and Toint 2003b).

9 Nonlinear water waves

Our next example is taken from a model that is used for the study of the propagation

of nonlinear wind-generated waves in harbours and coastlines conducted by Fuhrman and
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Bingham (2004). The equations governing this application form a highly coupled set of

three 5th-order partial differential equations of the form





A11 − ηxB11 A2 − ηxB12 B11 + ηxA1

A2 − ηyB11 A22 − ηyB12 B12 + ηyA1

A01 + hxC11 + hyC21 A02 + hxC12 + hyC22 B0 − hxC13 − hyC23









u

v

w



 =





U

V

0





(9.1)

that are discretized in time using a 4-th order, 4-stage Runge-Kutta method and in space

using finite differences.

Although the discretized equations can be solved by a direct method (the matrix order

can be up to say 100,000 with about 100 entries in each row), it is very expensive since

the matrix changes at each time step. However, if we drop the time dependent terms in

the local wave elevation η, the matrix of the discretized system is of the form





A11 A2 B11

A2 A22 B12

A01 + hxC21 A02 + hxC12 + hyC22 B0 − hxC13 − hyC23



 (9.2)

and Fuhrman and Bingham (2004) factorize the matrix (9.2) using the HSL routine MA41

and use this “linearized” matrix as a preconditioner for GMRES.

For the solution of the Boussinesq-type equations in shallow water on a 33 × 33 grid

(with 3 variables per grid point), they get the results shown in Table 9.1. From this it

Preconditioning # its per time step Time

MA41 3-12 80.5

ILUT 3-14 61.2

NONE 12-23 78.5

Table 9.1: Shallow water runs. Times in seconds on a Dell P4.

would appear that the preconditioner using MA41 is not very successful but, if we look at the

performance for deep(er) water and more nonlinearity, we see from the results in Table 9.2

that convergence even with an ILUT preconditioner is very slow. Their experiments for

even deeper water show that only the MA41 preconditioning is effective. The times for

solving the full problem (7.1) using MA41 are also shown in this table. From this we see

that, although faster than using an ILUT preconditioning, the hybrid approach that we

are championing in this paper is very much the best. Such differences become even more

pronounced when the depth is increased further or the grid is refined.

10 Electromagnetics

This application differs significantly from the previous ones inasmuch as the coefficient

matrices are dense since they are obtained from the boundary element discretization

13



Preconditioning # its per time step Time

MA41 2-9 64.9

ILUT 14-40 309

Direct 269

Table 9.2: Deeper water runs. Times in seconds on a Dell P4.

of problems in electromagnetic scattering. We will solve the resulting set of linear

equations using GMRES where we use the fast multipole method to effect the matrix-vector

multiplication and obtain a preconditioning matrix through a sparsification of the dense

coefficient matrix. There are a wide range of preconditioners described by Carpentieri, Duff

and Giraud (2000), one of which (termed SLU) is obtained by factorizing the sparsified

matrix using a direct code, thereby following the paradigm of using the direct method on

a nearby problem. The direct code used by Carpentieri et al. (2000) is MUMPS (Amestoy

et al. 2001).

If we compare the number of iterations required by GMRES(80) on a model problem

of a satellite of order 1701, then we have the results shown in Table 10.1 where different

sparsifications of the matrix are used so that the resulting preconditioners have the same

work to apply per iteration. Most of the names for the preconditioners are self-explanatory;

the SPAI code uses a modification of the algorithm of Grote and Huckle (1997) to compute

the sparse approximate inverse whereas FROB just computes a sparse approximate inverse

of prefixed sparsity.

Preconditioning # iterations

JACOBI 491

SSOR 301

ILU(0) 474

SPAI 157

FROB 59

SLU 25

Table 10.1: Performance of different preconditioners for the satellite problem.

Alléon, Carpentieri, Duff, Giraud, Martin and Sylvand (2003) have tried to use this

approach on more realistic industrial problems and have met with limited success, largely

because the number of entries in the factors becomes prohibitive if the SLU preconditioner

is good enough to be effective. That is, the nearby problem is too nearby for a sparse

factorization to be sensible. However, we show some results on larger problems in Table 10.2

where we see that the SLU approach requires less iterations than FROB, although the fact

that FROB is implemented out-of-core means that it is currently our preferred approach

for very large problems.
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Test case Order Entries in millions GMRES its

FROB SLU sp(A) SLU FROB

AIRCRAFT 94,704 25 49 12.5 366 745

ALMOND 104,793 21 87 10.6 201 233

CETAF 134,775 20 79 9.9 516 617

Table 10.2: Performance of SLU and FROB preconditioners on large test cases.

11 Conclusions

We have shown several examples in very different application areas where we can use a

combination of direct and iterative methods to solve really large problems. In all cases

an off-the-shelf sparse direct solver has been used enabling it to solve problems of greater

complexity than it could have done if run on the original problem.
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