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1 Introduction

Given a symmetric n by n matrix H and a full-rank m (≤ n) by n matrix A, we are

interested in solving structured linear systems of equations
(

H AT

A 0

)(

x

y

)

=

(

b

0

)

. (1.1)

Such “saddle-point” systems arise as stationarity (KKT) conditions for equality-constrained

optimization [37, §18.1], in mixed finite-element approximation of elliptic problems [5], in-

cluding in particular problems of elasticity [38] and incompressible flow [19], as well as

other areas.

In this paper, we are particularly interested in solving (1.1) by iterative methods, in

which so-called constraint preconditioners [33]

KG =

(

G AT

A 0

)

(1.2)

are used to accelerate the iteration for some suitable symmetric G. In Section 2, we

examine the spectral implications of such methods, and consider how to choose G to give

favourable eigenvalue distributions. In Section 3, we then extend ideas by Dollar, Schilders

and Wathen [14, 40] to construct “implicit” constraint preconditioners for which we can

apply the eigenvalue bounds from Section 2. We demonstrate the effectiveness of such an

approach in Section 4 and make broad conclusions in Section 5.

Notation

Let I by the (appropriately-dimensioned) identity matrix. Given a symmetric matrix M

with, respectively, m+, m− and m0 positive, negative and zero eigenvalues, we denote its

inertia by In(M) = (m+, m−, m0).

2 Constraint preconditioners

2.1 General considerations

For KG to be a meaningful preconditioner for certain Krylov-based methods [27], it is vital

that its inertia satisfies

In(KG) = (n, m, 0). (2.1)

A key result concerning the use of KG as a preconditioner is as follows.

Theorem 2.1. [33, Thm. 2.1] or, for diagonal G, [34, Thm. 3.3]. Suppose that KH is the

coefficient matrix of (1.1), and N is any (n by n − m) basis matrix for the null-space of

A. Then K−1
G KH has 2m unit eigenvalues, and the remaining n−m eigenvalues are those

of the generalized eigenproblem

NT HNv = λNT GNv. (2.2)
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The eigenvalues of (2.2) are real since (2.1) is equivalent to N T GN being positive definite

[7, 26].

Although we are not expecting or requiring that G (or H) be positive definite, it is

well-known that this is often not a significant handicap.

Theorem 2.2. [1, Cor. 12.9, or 12, for example]. The inertial requirement (2.1) holds for

a given G if and only if there exists a positive semi-definite matrix D̄ such that G+AT DA

is positive definite for all D for which D − D̄ is positive semi-definite.

Since any preconditioning system

(

G AT

A 0

)(

u

v

)

=

(

r

s

)

(2.3)

may equivalently be written as

(

G + AT DA AT

A 0

)(

u

w

)

=

(

r

s

)

(2.4)

where w = v − DAu, there is little to be lost (save sparsity in G) in using (2.4), with

its positive-definite leading block, rather than (2.3). This observation has allowed Golub,

Greif and Varah [25, 31] to suggest1 a variety of methods for solving (1.1) in the case

that H is positive semi-definite, although the scope of their suggestions does not appear

fundamentally to be limited to this case. Lukšan and Vlček [34] make related suggestions

for more general G.

Note, however, that although Theorem 2.2 implies the existence of a suitable D, it

alas does not provide a suitable value. In [31], the authors propose heuristics to use as few

nonzero components of D as possible (on sparsity grounds) when G is positive semi-definite,

but it is unclear how this extends for general G. Golub, Greif and Varah’s methods aim

particularly to produce well-conditioned G + AT DA. Notice, though, that perturbations

of this form do not change the eigenvalue distribution alluded to in Theorem 2.1, since if

H(DH) = H + AT DHA and G(DG) = G + AT DGA, for (possibly different) DH and DG,

NT H(DH)N = NT HNv = λNT GNv = λNT G(DG)Nv.

and thus the generalized eigen-problem (2.2), and hence eigenvalues of K−1
G(DG)KH(DH ), are

unaltered.

1They actually propose the alternative

(

G + AT DA AT

A 0

)(

u

v

)

=

(

r + AT Ds

s

)

although this is not significant.



On implicit-factorization constraint preconditioners 3

2.2 Improved eigenvalue bounds with the reduced-space basis

In this paper, we shall suppose that we may partition the columns of A so that

A = (A1 A2),

and so that its leading m by m sub-matrix

A1 A1 and its transpose are easily invertible.

Since there is considerable flexibility in choosing the “basis” A1 from the rectangular matrix

A by suitable column interchanges, assumption A1 is often easily, and sometimes trivially,

satisfied. Note that the problem of determining the “sparsest” A1 is NP hard, [8,9], while

numerical considerations must be given to ensure that A1 is not badly conditioned if at all

possible [23]. More generally, we do not necessarily assume that A1 is sparse or has a sparse

factorization, merely that there are effective ways to solve systems involving A1 and AT
1 . For

example, for many problems involving constraints arising from the discretization of partial

differential equations, there are highly effective iterative methods for such systems [4].

Given A1, we shall be particularly concerned with the reduced-space basis matrix

N =

(

R

I

)

, where R = −A−1
1 A2. (2.5)

Such basis matrices play vital roles in Simplex (pivoting)-type methods for linear program-

ming [2,20], and more generally in active-set methods for nonlinear optimization [23,35,36].

Suppose that we partition G and H so that

G =

(

G11 GT
21

G21 G22

)

and H =

(

H11 HT
21

H21 H22

)

, (2.6)

where G11 and H11 are (respectively) the leading m by m sub-matrices of G and H. Then

(2.5) and (2.6) give

NT GN = G22 + RT GT
21 + G21R + RT G11R

and NT HN = H22 + RT HT
21 + H21R + RT H11R

.

In order to improve the eigenvalue distribution resulting from our attempts to precondition

KH by KG, we consider the consequences of picking G to reproduce certain portions of H.

First, consider the case where

G22 = H22, but G11 = 0 and G21 = 0. (2.7)

Theorem 2.3. Suppose that G and H are as in (2.6) and that (2.7) holds. Suppose

furthermore that H22 is positive definite, and let

ρ = min
[

rank(A2), rank(H21)
]

+ min
[

rank(A2), rank(H21) + min[rank(A2), rank(H11)]
]

.
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Then K−1
G KH has at most

rank(RT HT
21 + H21R + RT H11R) + 1 ≤ min(ρ, n − m) + 1 ≤ min(2m, n − m) + 1

distinct eigenvalues.

Proof. Elementary bounds involving the products and sums of matrices show that

the difference

NT HN − NT GN = RT HT
21 + H21R + RT H11R

is a matrix of rank at most min(ρ, n − m). Since NT GN is, by assumption, positive

definite, we may write NT GN = W T W for some non-singular W . Thus

W−1NT HNW−T = I + W−1(RT HT
21 + H21R + RT H11R)W−T

differs from the identity matrix by a matrix of rank at most min(ρ, n − m), and hence

the generalized eigenproblem (2.2) has at most min(ρ, n−m) non-unit eigenvalues. 2

As we have seen from Theorem 2.2, the restriction that H22 be positive definite is not

as severe as it might first seem, particularly if we can entertain the possibility of using the

positive-definite H22 + AT
2 DA2 instead.

The eigenvalue situation may be improved if we consider the case where

G22 = H22 and G11 = H11 but G21 = 0. (2.8)

Theorem 2.4. Suppose that G and H are as in (2.6) and that (2.8) holds. Suppose

furthermore that H22 + RT HT
11R is positive definite, and that

ν = 2 min
[

rank(A2), rank(H21)
]

.

Then K−1
G KH has at most

rank(RT H11R) + 1 ≤ ν + 1 ≤ min(2m, n − m) + 1

distinct eigenvalues.

Proof. The result follows as before since now NT HN − NT GN = RT HT
21 + H21R is

of rank at most ν. 2

The same is true when

G22 = H22 and G21 = H21 but G11 = 0. (2.9)

Theorem 2.5. Suppose that G and H are as in (2.6) and that (2.9) holds. Suppose

furthermore that H22 + RT HT
21 + H21R is positive definite, and that

µ = min
[

rank(A2), rank(H11)
]

.
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Then K−1
G KH has at most

rank(RT H11R) + 1 ≤ µ + 1 ≤ min(m, n − m) + 1

distinct eigenvalues.

Proof. The result follows, once again, as before since now NT HN−NT GN = RT H11R

is of rank at most µ. 2

In Tables 2.1 and 2.2, we illustrate these results by considering the complete set of linear

and quadratic programming examples from the Netlib [21] and CUTEr [29] test sets. All

inequality constraints are converted to equations by adding slack variables, and a suitable

“barrier” penalty term (in this case, 1.0) is added to the diagonal of H for each bounded or

slack variable to simulate systems that might arise during an iteration of an interior-point

method for such problems.

Given A, a suitable basis matrix A1 is found by finding a sparse LU factorization of AT

using the HSL [32] packages MA48 and MA51 [17]. An attempt to correctly identify rank

is controlled by tight threshold column pivoting, in which any pivot may not be smaller

than a factor τ = 2 of the largest entry in its (uneliminated) column [23, 24]. The rank

is estimated as the number of pivots, ρ(A), completed before the remaining uneliminated

sub-matrix is judged to be numerically zero, and the indices of the ρ(A) pivotal rows and

columns of A define A1—if ρ(A) < m, the remaining rows of A are judged to be dependent,

and are discarded.2 Although such a strategy may not be as robust as, say, a singular-value

decomposition or a QR factorization with pivoting, both our and others’ experience [23]

indicate it to be remarkably reliable and successful in practice.

Having found A1, the factors are discarded, and a fresh LU decomposition of A1, with a

looser threshold column pivoting factor τ = 100, is computed in order to try to encourage

sparse factors. All other estimates of rank in Tables 2.1 and 2.2 are obtained in the

same way. The columns headed “iteration bounds” illustrate Theorems 2.1 (“any G”), 2.3

(“exact H22”) and 2.5 (“exact H22 & H21”). Note that in the linear programming case,

H21 ≡ 0, so that we have omitted the “exact H22” statistics from Tables 2.1, since these

would be identical to those reported as “exact H22 & H21”.

Table 2.1: NETLIB LP problems

iteration bound

rank any G exact H22 & H21

name n m A A2 H11 H12 µ + 1 upper

25FV47 1876 821 820 725 820 0 1057 726 822

80BAU3B 12061 2262 2262 2231 2262 0 9800 2232 2263

ADLITTLE 138 56 56 53 56 0 83 54 57

AFIRO 51 27 27 21 27 0 25 22 25

AGG2 758 516 516 195 516 0 243 196 243

AGG3 758 516 516 195 516 0 243 196 243

AGG 615 488 488 123 488 0 128 124 128

2Note that if this happens, the right-hand inequalities in Theorems 2.3–2.5 will depend on n− rank(A)

not n − m.
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Table 2.1: NETLIB LP problems (continued)

iteration bound

rank any G exact H22 & H21

name n m A A2 H11 H12 µ + 1 upper

BANDM 472 305 305 161 305 0 168 162 168

BCDOUT 7078 5414 5412 1102 2227 0 1667 1103 1667

BEACONFD 295 173 173 116 173 0 123 117 123

BLEND 114 74 74 37 74 0 41 38 41

BNL1 1586 643 642 458 642 0 945 459 644

BNL2 4486 2324 2324 1207 2324 0 2163 1208 2163

BOEING1 726 351 351 314 351 0 376 315 352

BOEING2 305 166 166 109 166 0 140 110 140

BORE3D 334 233 231 73 231 0 104 74 104

BRANDY 303 220 193 98 193 0 111 99 111

CAPRI 482 271 271 144 261 0 212 145 212

CYCLE 3371 1903 1875 1272 1868 0 1497 1273 1497

CZPROB 3562 929 929 732 929 0 2634 733 930

D2Q06C 5831 2171 2171 2059 2171 0 3661 2060 2172

D6CUBE 6184 415 404 403 404 0 5781 404 416

DEGEN2 757 444 442 295 442 0 316 296 316

DEGEN3 2604 1503 1501 1052 1501 0 1104 1053 1104

DFL001 12230 6071 6058 5313 6058 0 6173 5314 6072

E226 472 223 223 186 223 0 250 187 224

ETAMACRO 816 400 400 341 400 0 417 342 401

FFFFF800 1028 524 524 290 524 0 505 291 505

FINNIS 1064 497 497 456 497 0 568 457 498

FIT1D 1049 24 24 24 24 0 1026 25 25

FIT1P 1677 627 627 627 627 0 1051 628 628

FIT2D 10524 25 25 25 25 0 10500 26 26

FIT2P 13525 3000 3000 3000 3000 0 10526 3001 3001

FORPLAN 492 161 161 100 161 0 332 101 162

GANGES 1706 1309 1309 397 1309 0 398 398 398

GFRD-PNC 1160 616 616 423 616 0 545 424 545

GOFFIN 101 50 50 50 0 0 52 1 51

GREENBEA 5598 2392 2389 2171 2389 0 3210 2172 2393

GREENBEB 5598 2392 2389 2171 2386 0 3210 2172 2393

GROW15 645 300 300 300 300 0 346 301 301

GROW22 946 440 440 440 440 0 507 441 441

GROW7 301 140 140 140 140 0 162 141 141

SIERRA 2735 1227 1217 768 1217 0 1519 769 1228

ISRAEL 316 174 174 142 174 0 143 143 143

KB2 68 43 43 25 43 0 26 26 26

LINSPANH 97 33 32 32 32 0 66 33 34

LOTFI 366 153 153 110 153 0 214 111 154

MAKELA4 61 40 40 21 40 0 22 22 22

MAROS-R7 9408 3136 3136 3136 3136 0 6273 3137 3137

MAROS 1966 846 846 723 846 0 1121 724 847

MODEL 1557 38 38 11 38 0 1520 12 39

MODSZK1 1620 687 686 667 684 0 935 668 688

BCDOUT 7078 5414 5412 1107 5028 0 1667 1108 1667

NESM 3105 662 662 568 662 0 2444 569 663

OET1 1005 1002 1002 3 1000 0 4 4 4

OET3 1006 1002 1002 4 1000 0 5 5 5

PEROLD 1506 625 625 532 562 0 882 533 626

PILOT4 1123 410 410 367 333 0 714 334 411

PILOT87 6680 2030 2030 1914 2030 0 4651 1915 2031

PILOT-JA 2267 940 940 783 903 0 1328 784 941

PILOTNOV 2446 975 975 823 975 0 1472 824 976

PILOT 4860 1441 1441 1354 1441 0 3420 1355 1442

PILOT-WE 2928 722 722 645 662 0 2207 646 723

PT 503 501 501 2 499 0 3 3 3

QAP8 1632 912 853 697 853 0 780 698 780



On implicit-factorization constraint preconditioners 7

Table 2.1: NETLIB LP problems (continued)

iteration bound

rank any G exact H22 & H21

name n m A A2 H11 H12 µ + 1 upper

QAP12 8856 3192 3089 2783 3089 0 5768 2784 3193

QAP15 22275 6330 6285 5632 6285 0 15991 5633 6331

QPBD OUT 442 211 211 176 211 0 232 177 212

READING2 6003 4000 4000 2001 2001 0 2004 2002 2004

RECIPELP 204 91 91 78 91 0 114 79 92

SC105 163 105 105 58 105 0 59 59 59

SC205 317 205 205 112 205 0 113 113 113

SC50A 78 50 50 28 50 0 29 29 29

SC50B 78 50 50 28 50 0 29 29 29

SCAGR25 671 471 471 199 471 0 201 200 201

SCAGR7 185 129 129 56 129 0 57 57 57

SCFXM1 600 330 330 217 330 0 271 218 271

SCFXM2 1200 660 660 440 660 0 541 441 541

SCFXM3 1800 990 990 660 990 0 811 661 811

SCORPION 466 388 388 77 388 0 79 78 79

SCRS8 1275 490 490 341 490 0 786 342 491

SCSD1 760 77 77 77 77 0 684 78 78

SCSD6 1350 147 147 147 147 0 1204 148 148

SCSD8 2750 397 397 397 397 0 2354 398 398

SCTAP1 660 300 300 246 300 0 361 247 301

SCTAP2 2500 1090 1090 955 1090 0 1411 956 1091

SCTAP3 3340 1480 1480 1264 1480 0 1861 1265 1481

SEBA 1036 515 515 479 515 0 522 480 516

SHARE1B 253 117 117 72 117 0 137 73 118

SHARE2B 162 96 96 65 96 0 67 66 67

SHELL 1777 536 535 489 535 0 1243 490 537

SHIP04L 2166 402 360 343 360 0 1807 344 403

SHIP04S 1506 402 360 256 360 0 1147 257 403

SHIP08L 4363 778 712 679 712 0 3652 680 779

SHIP08S 2467 778 712 406 712 0 1756 407 779

SHIP12L 5533 1151 1042 828 1042 0 4492 829 1152

SHIP12S 2869 1151 1042 451 1042 0 1828 452 1152

SIERRA 2735 1227 1217 768 1217 0 1519 769 1228

SIPOW1M 2002 2000 2000 2 2000 0 3 3 3

SIPOW1 2002 2000 2000 2 1999 0 3 3 3

SIPOW2M 2002 2000 2000 2 2000 0 3 3 3

SIPOW2 2002 2000 2000 2 1999 0 3 3 3

SIPOW3 2004 2000 2000 4 1999 0 5 5 5

SIPOW4 2004 2000 2000 4 1999 0 5 5 5

SSEBLIN 218 72 72 72 72 0 147 73 73

STAIR 614 356 356 249 356 0 259 250 259

STANDATA 1274 359 359 283 359 0 916 284 360

STANDGUB 1383 361 360 281 360 0 1024 282 362

STANDMPS 1274 467 467 372 467 0 808 373 468

STOCFOR1 165 117 117 48 117 0 49 49 49

STOCFOR2 3045 2157 2157 888 2157 0 889 889 889

STOCFOR3 23541 16675 16675 6866 16675 0 6867 6867 6867

TFI2 104 101 101 3 100 0 4 4 4

TRUSS 8806 1000 1000 1000 1000 0 7807 1001 1001

TUFF 628 333 302 207 301 0 327 208 327

VTP-BASE 346 198 198 86 198 0 149 87 149

WOOD1P 2595 244 244 244 244 0 2352 245 245

WOODW 8418 1098 1098 1098 1098 0 7321 1099 1099
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Table 2.2: CUTEr QP problems

iteration bound

rank any G exact H22 exact H22 & H21

name n m A A2 H11 H12 ρ + 1 upper µ + 1 upper

AUG2DCQP 20200 10000 10000 10000 10000 0 10201 10001 10201 10001 10001

AUG2DQP 20200 10000 10000 10000 10000 0 10201 10001 10201 10001 10001

AUG3DCQP 27543 8000 8000 7998 8000 0 19544 7999 16001 7999 8001

AUG3DQP 27543 8000 8000 7998 8000 0 19544 7999 16001 7999 8001

BLOCKQP1 10011 5001 5001 5001 5001 5000 5011 5011 5011 5002 5002

BLOCKQP2 10011 5001 5001 5001 5001 5000 5011 5011 5011 5002 5002

BLOCKQP3 10011 5001 5001 5001 5001 5000 5011 5011 5011 5002 5002

BLOWEYA 4002 2002 2002 2000 2002 2000 2001 2001 2001 2001 2001

BLOWEYB 4002 2002 2002 2000 2002 2000 2001 2001 2001 2001 2001

BLOWEYC 4002 2002 2002 2000 2002 2000 2001 2001 2001 2001 2001

CONT-050 2597 2401 2401 192 2401 0 197 193 197 193 197

CONT-101 10197 10098 10098 99 10098 0 100 100 100 100 100

CONT-201 40397 40198 40198 199 40198 0 200 200 200 200 200

CONT5-QP 40601 40200 40200 401 40200 0 402 402 402 402 402

CONT1-10 10197 9801 9801 392 9801 0 397 393 397 393 397

CONT1-20 40397 39601 39601 792 39601 0 797 793 797 793 797

CONT-300 90597 90298 90298 299 90298 0 300 300 300 300 300

CVXQP1 10000 5000 5000 2000 5000 2000 5001 4001 5001 2001 5001

CVXQP2 10000 2500 2500 2175 2500 1194 7501 3370 5001 2176 2501

CVXQP3 10000 7500 7500 1000 7500 2354 2501 2001 2501 1001 2501

DEGENQP 125050 125025 125024 26 125024 0 27 27 27 27 27

DUALC1 223 215 215 8 215 0 9 9 9 9 9

DUALC2 235 229 229 6 229 0 7 7 7 7 7

DUALC5 285 278 278 7 278 0 8 8 8 8 8

DUALC8 510 503 503 7 503 0 8 8 8 8 8

GOULDQP2 19999 9999 9999 9999 9999 0 10001 10000 10001 10000 10000

GOULDQP3 19999 9999 9999 9999 9999 9999 10001 10001 10001 10000 10000

KSIP 1021 1001 1001 20 1001 0 21 21 21 21 21

MOSARQP1 3200 700 700 700 700 3 2501 704 1401 701 701

NCVXQP1 10000 5000 5000 2000 5000 2000 5001 4001 5001 2001 5001

NCVXQP2 10000 5000 5000 2000 5000 2000 5001 4001 5001 2001 5001

NCVXQP3 10000 5000 5000 2000 5000 2000 5001 4001 5001 2001 5001

NCVXQP4 10000 2500 2500 2175 2500 1194 7501 3370 5001 2176 2501

NCVXQP5 10000 2500 2500 2175 2500 1194 7501 3370 5001 2176 2501

NCVXQP6 10000 2500 2500 2175 2500 1194 7501 3370 5001 2176 2501

NCVXQP7 10000 7500 7500 1000 7500 2354 2501 2001 2501 1001 2501

NCVXQP8 10000 7500 7500 1000 7500 2354 2501 2001 2501 1001 2501

NCVXQP9 10000 7500 7500 1000 7500 2354 2501 2001 2501 1001 2501

POWELL20 10000 5000 5000 4999 5000 0 5001 5000 5001 5000 5001

PRIMALC1 239 9 9 9 9 0 231 10 19 10 10

PRIMALC2 238 7 7 7 7 0 232 8 15 8 8

PRIMALC5 295 8 8 8 8 0 288 9 17 9 9

PRIMALC8 528 8 8 8 8 0 521 9 17 9 9

PRIMAL1 410 85 85 85 85 0 326 86 171 86 86

PRIMAL2 745 96 96 96 96 0 650 97 193 97 97

PRIMAL3 856 111 111 111 111 0 746 112 223 112 112

PRIMAL4 1564 75 75 75 75 0 1490 76 151 76 76

QPBAND 75000 25000 25000 25000 25000 0 50001 25001 50001 25001 25001

QPNBAND 75000 25000 25000 25000 25000 0 50001 25001 50001 25001 25001

QPCBOEI1 726 351 351 314 351 0 376 315 376 315 352

QPCBOEI2 305 166 166 109 166 0 140 110 140 110 140

QPCSTAIR 614 356 356 249 356 0 259 250 259 250 259

QPNBOEI1 726 351 351 314 351 0 376 315 376 315 352

QPNBOEI2 305 166 166 109 166 0 140 110 140 110 140

QPNSTAIR 614 356 356 249 356 0 259 250 259 250 259

SOSQP1 5000 2501 2501 2499 2501 2499 2500 2500 2500 2500 2500

STCQP1 8193 4095 1771 0 1771 317 6423 1 6423 1 4096

STCQP2 8193 4095 4095 0 4095 1191 4099 1 4099 1 4096
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Table 2.2: CUTEr QP problems (continued)

iteration bound

rank any G exact H22 exact H22 & H21

name n m A A2 H11 H12 ρ + 1 upper µ + 1 upper

STNQP1 8193 4095 1771 0 1771 317 6423 1 6423 1 4096

STNQP2 8193 4095 4095 0 4095 1191 4099 1 4099 1 4096

UBH1 9009 6000 6000 3003 6 0 3010 7 3010 7 3010

YAO 4002 2000 2000 2000 2000 0 2003 2001 2003 2001 2001

We observe that in some cases there are useful gains to be made from trying to reproduce

H22 and, less often, H21. Moreover, the upper bounds on rank obtained in Theorems 2.3

and 2.5 can be significantly larger than even the estimates ρ + 1 and µ + 1 of the number

of distinct eigenvalues. However the trend is far from uniform, and in some cases there is

little or no apparent advantage to be gained from reproducing portions of H. Nonetheless,

since significant improvements are possible, we now investigate efficient ways of computing

decompositions which are capable of reproducing sub-blocks of H.

3 Implicit-factorization constraint preconditioners

It has long been common practice (at least in optimization circles) [3,6,10,18,22,34,39,42]

to use preconditioners of the form (1.2) by specifying G and factorizing KG using a suitable

symmetric, indefinite package such as MA27 [16] or MA57 [15]. While such techniques have

often been successful, they have usually been rather ad hoc, with little attempt to improve

upon the eigenvalue distributions beyond those suggested by the Theorem 2.1.

Recently, Dollar and Wathen [14] have suggested using a preconditioner of the form

KG = PBP T , (3.1)

where solutions with each of the matrices P , B and P T are easily obtained. In particular,

rather than obtaining P and B from a given KG, KG is derived implicitly from specially

chosen P and B. In this section, we examine a broad class of methods of this form.

3.1 Structural considerations

In general, we may write

P =

(

P1 AT

P2 0

)

and B =

(

B1 BT
2

B2 B33

)

(3.2)

where B1 and B33 are symmetric and P2 is of full rank; the zero block in P is selected so

as to mimic that in KG. Given this form, we have

KG =

(

P1B1P
T
1 + AT B2P

T
1 + P1B

T
2 A + AT B33A P1B1P

T
2 + AT B2P

T
2

P2B1P
T
1 + P2B

T
2 A P2B1P

T
2

)
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and since we wish (1.2) to hold, we require that

P2B1P
T
1 + P2B

T
2 A = A and P2B1P

T
2 = 0. (3.3)

As A and P2 are of full rank, we write

A = (A1 A2) and P2 = (P31 P32)

for nonsingular m by m matrices A1 and P31, and shall likewise write

P1 =

(

P11 P12

P21 P22

)

, B1 =

(

B11 BT
21

B21 B22

)

and B2 = (B31 B32).

The second requirement in (3.3) is then that

P31B11P
T
31 + P32B21P

T
31 + P31B

T
21P

T
32 + P32B22P

T
32 = 0.

Although there are a number of ways of guaranteeing this,3 the simplest is to insist that

P32 = 0 and B11 = 0.

The first requirement in (3.3) may be satisfied if

P2B
T
2 = I and P2B1P

T
1 = 0, (3.4)

although again there are other (more complicated) possibilities. It then follows that

B31 = P−T
31 and P31B

T
21(P

T
12 P T

22) = 0

and the second of these implies that

B21 = 0

since P31 is non singular and (P T
12 P T

22) must be of full rank.4 Thus

P =









P11 P12 AT
1

P21 P22 AT
2

B−T
31 0 0









and B =









0 0 BT
31

0 B22 BT
32

B31 B32 B33









, (3.5)

where B31 and B22 are non-singular. Furthermore, it follows trivially from Sylvester’s law

of inertia (see, for example, [11]) that

B22 must be positive definite (3.6)

if (2.1) is to hold.

3In general B11 = −P
−1

31

(

P32B21P
T

31 + P31B
T

21P
T

32 + P32B22P
T

32

)

P
−T

31
for any P32.

4The latter follows since P32 = 0 and P is required to be non-singular.
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3.2 Solution considerations

3.2.1 Solves involving P and its transpose

Suppose that B31 is chosen to be easily invertible—Dollar and Wathen [14] suggest picking

B31 = I, but other simple choices are possible. Then, in order to solve systems involving

the block (reverse) triangular matrix P and its transpose, it suffices to be able to do so for

systems involving the sub-matrix
(

P12 AT
1

P22 AT
2

)

.

Although A1 allows a general (Schur-complement) pivot, in which such systems may be

solved knowing factors of A1 and P22 − RT P12, perhaps the easiest possibility is, again, to

follow [14] and pick

P12 = 0. (3.7)

This then presupposes that P22 is non-singular.

One further saving here in the solution of (2.3) via forward and backward substitut-

ing from (3.1) in the usual (preconditioning) case for which s = 0 is that the the block

zero component of the right-hand-side may trivially be exploited in the initial forward

substitution








P11 0 AT
1

P21 P22 AT
2

B−T
31 0 0

















p1

p2

q









=









r1

r2

0









for which p1 = 0.

3.2.2 Solves involving B

It follows from (3.5) that solving systems of equations whose coefficient matrix is B relies

on being able to solve systems with coefficient matrices B31, B22 and BT
31. The choice

B31 = I made by Dollar and Wathen [14] is again ideal from this perspective.

3.3 Considerations relating to preconditioning

So far, we simply require that P and B satisfy (3.5) in order to ensure KG is of the form

(1.2), but additionally that (3.6) holds for KG to be a useful preconditioner. Note that

without (3.6) we could choose the components of P and B to factorize KG in the case

where H = G, but if

In

(

H AT

A 0

)

6= (n, m, 0)

it will not be possible to find B22 satisfying (3.6) in this case.
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3.3.1 Recovering G

The leading diagonal block G of KG is

G = P1B1P
T
1 + AT B2P

T
1 + P1B

T
2 A + AT B33A. (3.8)

In what remains, we shall thus assume that P and B2 are given by (3.5), and that (3.7)

holds, that is that

P =









P11 0 AT
1

P21 P22 AT
2

B−T
31 0 0









and B =









0 0 BT
31

0 B22 BT
32

B31 B32 B33









. (3.9)

It follows immediately from (2.6), (3.8) and (3.9) that

G11 = P11B
T
31A1 + AT

1 B31P
T
11 + AT

1 B33A1

G21 = AT
2 B31P

T
11 + P21B

T
31A1 + P22B

T
32A1 + AT

1 B33A2 and

G22 = P22B22P
T
22 + P21B

T
31A2 + P22B

T
32A2 + AT

2 B31P
T
21 + AT

2 B32P
T
22 + AT

2 B33A2

.

Notice that we have not as yet determined P11, P21, P22, B22, B31, B32 and B33, but

that G involves significantly less information, and thus there is likely to be considerable

freedom in our remaining choices even if we wish to recover a particular G.

It follows from (3.8) that

NT GN = NT P1B1P
T
1 N

for any null-space basis matrix N , since AN = 0 It also follows from the required form

(3.9) of P and B that

P1B1P
T
1 =

(

0 0

0 P22B22P
T
22

)

and in the case of the reduced-space basis matrix (2.5) we have that

NT GN = P22B22P
T
22.

3.4 Particular choices of P and B

3.4.1 Existing proposals

Schilders [40] sets B31 = I and B32 = 0, and uses P11 and P22 as free parameters to

determine P21, B22 and B33 from G. Dollar and Wathen [14] consider the same choices for

B31 and B32, and use P11 and P22 and B33 as free parameters to determine P21, B22 and

G22 from G11 and G21. So for example, if

P11 = 0, P21 = 0, P22 = I, B31 = I, B22 = I, B32 = 0 and B33 = 0

then

G11 = 0, G21 = 0 and G22 = I.



On implicit-factorization constraint preconditioners 13

3.4.2 Reproducing H22

The simplest option is to set as many of free components of P and B as possible to zero;

this corresponds to setting

P11 = 0, P21 = 0, B32 = 0 and B33 = 0, (3.10)

and results in

G11 = 0, G21 = 0 and G22 = P22B22P
T
22.

Thus the requirement (3.6) forces G22 to be positive definite, and any positive-definite

G22 may be accommodated by the choice (3.10). In particular, if H22 is positive-definite,

Theorem 2.3 shows that picking G22 = H22 leads to an improved eigenvalue bound over

that for generic G. In this case P22 and B22 could accommodate (sparse) Cholesky or

LDLT factors of H22.

3.4.3 Reproducing H21 and H22

The choice

P11 = 0 and B33 = 0 (3.11)

gives

G11 = 0, G21 = P21B
T
31A1 + P22B

T
32A1 and

G22 = P22B22P
T
22 + P21B

T
31A2 + P22B

T
32A2 + AT

2 B31P
T
21 + AT

2 B32P
T
22.

while choosing

P11 = 0, B32 = 0 and B33 = 0 (3.12)

gives

G11 = 0, G21 = P21B
T
31A1 and G22 = P22B22P

T
22 + P21B

T
31A2 + AT

2 B31P
T
21.

Both of these possibilities allow us to choose G22 = H22 and G21 = H21, and Theorem 2.5

indicates that such choices lead to further improved eigenvalue bounds. Moreover, in both

cases,

P22B22P
T
22 = G22 + RT GT

21 + G21R

regardless of how we choose P21, B31 and B32.

3.4.4 Ensuring that G is positive definite

The role of the matrix B33 is interesting. For Theorem 2.2 and (3.8) suggest that by picking

B33 sufficiently negative definite, the remaining terms

P1B1P
T
1 + AT B2P

T
1 + P1B

T
2 A

will be positive definite. However, since any significantly dense rows of A will result in

dense blocks in AT B33A, it may well be wise to keep B33 = 0.
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3.5 Factors in other orders

We have seen that specifying decompositions of the form (3.1) in which P and B have

the block form (3.2) is an extremely flexible approach. A natural question is: are there

other block forms which are equally useful? The most obvious alternative is to seek a

decomposition

KG = QEQT , (3.13)

where

Q =

(

Q1 Q2

A 0

)

and E =

(

E1 ET
2

E2 E33

)

(3.14)

where E1 and E33 are symmetric and Q2 is of full rank; here again the zero block in Q is

selected so as to mimic that in KG. In this case

KG =

(

Q1E1Q
T
1 + Q2E2Q

T
1 + Q1E

T
2 QT

2 + Q2E33Q
T
2 Q1E1A

T + Q2E2A
T

AE1Q
T
1 + AET

2 QT
2 AE1A

T

)

. (3.15)

But now we see a strong disadvantage of (3.13) compared with (3.1), namely that requiring

that the 2,1 and 2,2 blocks of (3.15) reproduce A and 0 respectively place strong restrictions

on E1, E2, Q1 and Q2. In particular, E1A
T must lie in the null-space of A. Since this

seems to limit the scope of (3.13)–(3.14) we do not pursue this further.

4 Numerical experiments

In this section we indicate that, in some cases, the implicit-factorization preconditioners

proposed in Section 3 are very effective in practice.

We consider the set of quadratic programming examples from the CUTEr test set ex-

amined in Section 2. For each, we use the projected preconditioned conjugate-gradient

method [27] to solve the resulting quadratic programming problem

EQP: minimize
x∈IRn

q(x) = 1

2
xT Hx + cT x subject to Ax = b.

Firstly a feasible point x = x0 is determined. Thereafter, iterates x0 + s generated by the

conjugate-gradient method are constrained to satisfy As = 0 by means of the precondi-

tioning system (2.3). Since, as frequently happens in practice, q(x0 +s) may be unbounded

from below, a trust-region constraint ‖s‖ ≤ ∆ is also imposed, and the Generalized Lanc-

zos Trust-Region (GLTR) method [28], as implemented in the GALAHAD library [30], is

used to solve the resulting problem

minimize
x∈IRn

q(x0 + s) subject to As = 0 and ‖s‖ ≤ ∆; (4.1)

a large value of ∆ = 1010 is used so as not to cut off the unconstrained solution for convex

problems.
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In Tables 4.1 and 4.2, we compare four preconditioning strategies for (approximately)

solving the problem (4.1). We consider both low and high(er) accuracy solutions. For the

former, we terminate as soon as the norm of the (preconditioned) gradient of q(x0 + s)

has been reduced more than 10−2 from that of q(x0), while the latter requires a 10−8

reduction; these are intended to simulate the levels of accuracy required within a nonlinear

programming solver in early (global) and later (asymptotic) phases of the solution process.

We consider two explicit factorizations, one using exact factors (G = H), and the other

using a simple projection (G = I). The HSL package MA57 [15] (version 2.2.1) is used to

factorize KG and subsequently solve (2.3); by way of comparison, we also include times for

exact factorization with the earlier MA27 [16], since this is still widely used. Two implicit

factorizations of the form (3.1) with factors (3.9) are also considered. In the first, we use

the method in Section 3.4.1 to get G22 = I. The second follows Section 3.4.2 and aims to

reproduce G22 = H22, and uses MA57 to compute its factors. In particular, we exploit one

of MA57’s options to make modest modifications [41] of the diagonals of H22 to ensure that

G22 is positive definite if H22 fails to be—this proved only to be necessary for the BLOWEY*

problems.

All of our experiments were performed using a single processor of a 3.05Mhz Dell

Precision 650 Workstation with 4 Gbytes of RAM. Our codes were written in double

precision fortran 90, compiled using the Intel ifort 8.1 compiler, and wherever possible

made use of tuned ATLAS BLAS [43] for core computations. A single iteration of iterative

refinement is applied, as necessary, when applying the preconditioner (2.3) to try to ensure

small relative residuals.

For each option tested, we record the time taken to compute the (explicit or implicit)

factors, the number of GLTR iterations performed (equivalently, the number of precon-

ditioned systems solved), and the total time taken to solve the quadratic programming

problem EQP (including the factorization). The initial feasible point x0 is found by solv-

ing
(

G AT

A 0

)(

x0

y0

)

=

(

0

b

)

using the factors of KG. Occasionally—in particular when c = 0 and G = H—such a point

solves EQP, and the resulting iteration count is zero. In a few cases, the problems are

so ill-conditioned that the trust-region constraint is activated, and more than one GLTR

iteration is required to solve EQP even when G = H. Furthermore, rank deficiency of

A occasionally resulted in unacceptably large residuals in (2.3) and subsequent failure of

GLTR when G = H, even after iterative refinement.

In many cases, the use of an “exact” preconditioner G = H is cost effective, particularly

when the newer factorization package MA57 is used to compute the factors. For those

problems for which the exact preconditioner is expensive—for example, the CVXQP* and

NCVXQP* problems—the “inexact” preconditioners are often more effective, particularly

when low accuracy solutions are required. The explicit preconditioner with G = I is often

a good compromise, although this may reflect the fact that H is often (almost) diagonal.
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Table 4.1: CUTEr QP problems—residual decrease of at least 10−2

Explicit factors Implicit factors

G = H G = I G22 = I G22 = H22

MA27 MA57 MA57 MA57 MA57

name fact. iter. total fact. iter. total fact. iter. total fact. iter. total fact. iter. total

AUG2DCQP 0.08 1 0.13 0.47 1 0.54 0.46 1 0.53 0.04 125 1.54 0.25 125 2.01

AUG2DQP 0.08 1 0.13 0.47 1 0.54 0.46 2 0.53 0.04 120 1.49 0.25 125 2.03

AUG3DCQP 1.56 1 1.66 1.54 1 1.67 1.45 1 1.57 0.05 41 0.71 0.79 41 1.59

AUG3DQP 1.59 1 1.69 1.29 1 1.42 1.46 2 1.59 0.05 43 0.71 0.78 40 1.56

BLOCKQP1 0.06 0 0.08 0.21 0 0.23 0.23 1 0.26 0.33 2 0.35 0.39 2 0.41

BLOCKQP2 0.06 0 0.08 0.21 0 0.23 0.23 2 0.26 0.33 2 0.36 0.39 2 0.41

BLOCKQP3 0.06 0 0.08 0.21 0 0.23 0.23 1 0.25 0.33 2 0.35 0.38 2 0.41

BLOWEYA 26.50 1 26.60 0.04 1 0.05 0.05 35 0.21 0.03 50 0.13 0.04 50 0.15

BLOWEYB 26.29 1 26.39 0.04 1 0.05 0.05 13 0.11 0.03 32 0.09 0.04 32 0.11

BLOWEYC 26.27 1 26.36 0.04 1 0.05 0.05 36 0.21 0.03 50 0.12 0.04 50 0.15

CONT-050 0.17 1 0.19 0.12 1 0.14 0.12 1 0.14 0.09 3 0.10 0.09 3 0.11

CONT-101 3.03 1 3.18 0.73 2 0.85 0.70 2 0.82 0.86 2 0.91 0.86 2 0.91

CONT-201 35.96 4 38.38 5.78 5 6.99 5.63 6 7.04 10.14 2 10.41 10.10 2 10.37

CONT5-QP 33.89 1 34.59 3.37 1 3.83 3.35 2 3.80 20.01 39 22.36 19.94 37 22.20

CONT1-10 2.81 1 2.95 0.68 1 0.80 0.66 1 0.77 0.90 3 0.97 0.91 3 0.99

CONT1-20 30.94 1 31.65 6.85 1 7.46 6.67 2 7.28 10.83 3 11.22 10.86 3 11.26

CONT-300 140.10 9 146.23 19.33 5 22.26 18.33 5 21.25 40.82 2 41.46 41.00 2 41.64

CVXQP1 579.20 0 580.15 3.99 0 4.11 0.20 3 0.24 0.21 57 0.56 0.24 55 0.69

CVXQP2 139.11 0 139.48 1.70 0 1.78 0.10 3 0.12 0.01 14 0.07 0.10 14 0.23

CVXQP3 1353.52 0 1355.13 9.93 0 10.13 0.32 3 0.38 0.33 44 0.64 0.34 43 0.68

DEGENQP 3.85 1 4.14 14.36 1 14.72 0.01 2 0.01 2.43 3 2.87 2.45 3 2.89

DUALC1 0.01 5 0.01 0.00 2 0.01 0.00 1 0.00 0.00 8 0.00 0.00 8 0.00

DUALC2 0.01 9 0.01 0.00 1 0.01 0.01 2 0.01 0.00 6 0.00 0.00 6 0.01

DUALC5 0.01 8 0.02 0.01 1 0.01 0.01 2 0.01 0.00 6 0.01 0.00 6 0.01

DUALC8 0.11 5 0.13 0.01 2 0.01 0.20 0 0.23 0.01 7 0.01 0.01 7 0.01

GOULDQP2 0.05 0 0.07 0.23 0 0.27 0.20 2 0.25 0.03 0 0.05 0.08 0 0.10

GOULDQP3 0.07 1 0.11 0.32 1 0.40 0.05 5 0.06 0.03 6 0.11 0.08 6 0.17

KSIP 0.01 1 0.02 0.05 1 0.06 0.04 3 0.05 0.02 3 0.03 0.02 3 0.03

MOSARQP1 0.02 1 0.03 0.04 1 0.04 0.20 3 0.24 0.06 6 0.07 0.07 6 0.08

NCVXQP1 573.69 0 574.65 4.10 0 4.22 0.20 3 0.24 0.21 55 0.54 0.24 55 0.68

NCVXQP2 584.17 0 585.14 4.02 0 4.14 0.20 3 0.24 0.20 55 0.54 0.24 56 0.70

NCVXQP3 573.04 0 573.98 4.15 0 4.28 0.11 3 0.13 0.20 54 0.53 0.23 55 0.69

NCVXQP4 138.52 0 138.90 1.71 0 1.79 0.10 3 0.12 0.01 14 0.07 0.10 13 0.22

NCVXQP5 130.26 0 130.64 1.69 0 1.76 0.10 3 0.13 0.01 14 0.06 0.10 14 0.24

NCVXQP6 139.37 0 139.75 1.70 0 1.79 0.32 3 0.38 0.01 14 0.06 0.10 14 0.24

NCVXQP7 1363.85 0 1365.49 10.03 0 10.23 0.33 3 0.39 0.33 43 0.64 0.34 43 0.67

NCVXQP8 1386.80 0 1388.45 10.07 0 10.26 0.33 3 0.38 0.33 43 0.63 0.34 43 0.67

NCVXQP9 1357.68 0 1359.31 10.12 0 10.32 0.09 2 0.11 0.33 44 0.64 0.34 43 0.67

POWELL20 0.03 0 0.05 0.09 0 0.11 0.00 5 0.01 0.01 2 0.03 0.07 2 0.08

PRIMALC1 0.00 1 0.00 0.00 1 0.01 0.00 3 0.00 0.00 11 0.00 0.00 6 0.00

PRIMALC2 0.00 1 0.00 0.00 1 0.01 0.00 6 0.01 0.00 5 0.00 0.00 5 0.00

PRIMALC5 0.00 1 0.00 0.00 1 0.01 0.01 4 0.01 0.00 6 0.00 0.00 5 0.00

PRIMALC8 0.01 1 0.01 0.01 1 0.01 0.01 8 0.02 0.00 11 0.01 0.00 7 0.01

PRIMAL1 0.01 1 0.01 0.01 1 0.02 0.03 5 0.03 0.00 15 0.01 0.00 27 0.02

PRIMAL2 0.01 1 0.01 0.03 1 0.03 0.06 4 0.07 0.00 13 0.01 0.01 21 0.02

PRIMAL3 0.03 1 0.03 0.06 1 0.06 0.03 3 0.04 0.01 18 0.04 0.01 26 0.06

PRIMAL4 0.04 1 0.04 0.03 1 0.03 14.34 2 14.69 0.01 12 0.03 0.02 15 0.04

QPBAND 0.16 1 0.30 1.08 1 1.28 1.84 2 1.99 0.09 2 0.19 0.40 2 0.54

QPNBAND 0.17 1 0.30 1.07 1 1.27 1.83 3 2.03 0.09 3 0.24 0.41 2 0.55

QPCBOEI1 0.01 1 0.01 0.02 2 0.02 0.01 3 0.01 0.00 12 0.01 0.00 12 0.01

QPCBOEI2 0.00 1 0.01 0.00 1 0.01 0.00 3 0.01 0.00 12 0.00 0.00 12 0.00

QPCSTAIR 0.01 1 0.01 0.02 1 0.02 0.01 3 0.02 0.00 12 0.01 0.00 14 0.01

QPNBOEI1 0.01 1 0.01 0.02 2 0.02 0.01 3 0.01 0.01 12 0.01 0.00 12 0.01

QPNBOEI2 0.00 1 0.00 0.00 1 0.01 0.00 3 0.01 0.00 12 0.00 0.00 12 0.00

QPNSTAIR 0.01 1 0.01 0.02 1 0.02 0.01 3 0.02 0.00 12 0.01 0.00 12 0.01

SOSQP1 0.01 0 0.01 0.04 0 0.04 0.04 0 0.05 0.03 1 0.04 0.05 1 0.05

STCQP1 rank deficient A rank deficient A 20.67 3 21.01 0.02 3 0.04 0.09 1 0.10

STCQP2 9.76 0 9.84 0.87 0 0.92 0.14 3 0.17 0.03 3 0.05 0.11 1 0.13

STNQP1 113.27 0 113.59 rank deficient A 20.75 3 21.09 0.02 3 0.04 0.09 1 0.11

STNQP2 9.64 0 9.72 0.87 0 0.92 0.14 3 0.17 0.03 3 0.05 0.11 1 0.13

UBH1 0.02 0 0.03 0.12 0 0.14 0.11 0 0.13 0.02 0 0.03 0.04 0 0.05

YAO 0.01 1 0.01 0.03 1 0.04 0.03 6 0.05 0.01 21 0.04 0.02 21 0.06
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Table 4.2: CUTEr QP problems—residual decrease of at least 10−8

Explicit factors Implicit factors

G = H G = I G22 = I G22 = H22

MA27 MA57 MA57 MA57 MA57

name fact. iter. total fact. iter. total fact. iter. total fact. iter. total fact. iter. total

AUG2DCQP 0.08 1 0.13 0.47 1 0.54 0.46 1 0.53 0.04 866 10.35 0.25 872 12.50

AUG2DQP 0.08 1 0.13 0.47 1 0.54 0.46 4 0.60 0.04 882 10.67 0.25 855 12.33

AUG3DCQP 1.56 1 1.66 1.54 1 1.67 1.45 1 1.57 0.05 378 6.04 0.79 377 8.18

AUG3DQP 1.59 1 1.69 1.29 1 1.42 1.46 5 1.75 0.05 381 5.90 0.78 380 8.27

BLOCKQP1 0.06 0 0.08 0.21 0 0.23 0.23 1 0.26 0.33 3 0.37 0.39 3 0.43

BLOCKQP2 0.06 0 0.08 0.21 0 0.23 0.23 2 0.26 0.33 3 0.37 0.39 3 0.43

BLOCKQP3 0.06 0 0.08 0.21 0 0.23 0.23 1 0.25 0.33 5 0.39 0.38 4 0.44

BLOWEYA 26.50 1 26.60 0.04 1 0.05 > 10000 iterations > 10000 iterations > 10000 iterations

BLOWEYB 26.29 1 26.39 0.04 1 0.05 0.05 216 0.99 0.03 668 1.23 > 10000 iterations

BLOWEYC 26.27 1 26.36 0.04 1 0.05 > 10000 iterations > 10000 iterations > 10000 iterations

CONT-050 0.17 1 0.19 0.12 1 0.14 0.12 1 0.14 0.09 7 0.12 0.09 7 0.13

CONT-101 3.03 1 3.18 0.73 4 1.11 0.70 5 1.15 0.86 10 1.09 0.86 10 1.10

CONT-201 35.96 4 38.38 5.78 8 9.39 5.63 13 11.26 10.14 11 11.48 10.10 11 11.43

CONT5-QP 33.89 1 34.59 3.37 1 3.83 3.35 2 3.95 20.01 113 26.81 19.94 98 25.89

CONT1-10 2.81 1 2.95 0.68 1 0.80 0.66 1 0.77 0.90 10 1.13 0.91 10 1.16

CONT1-20 30.94 1 31.65 6.85 1 7.46 6.67 5 9.08 10.83 12 12.29 10.86 12 12.34

CONT-300 140.10 27 174.66 19.33 26 45.80 18.33 40 58.01 40.82 15 44.98 41.00 15 45.16

CVXQP1 579.20 0 580.15 3.99 0 4.11 0.20 5 0.27 0.21 211 1.49 0.24 207 1.94

CVXQP2 139.11 0 139.48 1.70 0 1.78 0.10 5 0.14 0.01 51 0.21 0.10 51 0.59

CVXQP3 1353.52 0 1355.13 9.93 0 10.13 0.32 5 0.42 0.33 183 1.62 0.34 178 1.71

DEGENQP 3.85 1 4.14 14.36 1 14.72 0.01 11 0.01 2.43 3 3.00 2.45 7 3.52

DUALC1 0.01 5 0.01 0.00 11 0.01 0.00 1 0.00 0.00 8 0.01 0.00 8 0.00

DUALC2 0.01 9 0.01 0.00 1 0.01 0.01 4 0.01 0.00 6 0.00 0.00 6 0.01

DUALC5 0.01 145 0.20 0.01 1 0.01 0.01 5 0.01 0.00 7 0.01 0.00 7 0.01

DUALC8 0.11 5 0.13 0.01 7 0.02 0.20 0 0.23 0.01 7 0.01 0.01 7 0.01

GOULDQP2 0.05 0 0.07 0.23 0 0.27 0.20 5 0.31 0.03 0 0.05 0.08 0 0.10

GOULDQP3 0.07 1 0.11 0.32 1 0.40 0.05 21 0.08 0.03 1614 18.95 0.08 1579 23.38

KSIP 0.01 1 0.02 0.05 1 0.06 0.04 5 0.05 0.02 18 0.05 0.02 10 0.04

MOSARQP1 0.02 1 0.03 0.04 1 0.04 0.20 5 0.27 0.06 36 0.10 0.07 35 0.13

NCVXQP1 573.69 0 574.65 4.10 0 4.22 0.20 5 0.27 0.21 215 1.51 0.24 204 1.89

NCVXQP2 584.17 0 585.14 4.02 0 4.14 0.20 6 0.28 0.20 212 1.50 0.24 212 2.00

NCVXQP3 573.04 0 573.98 4.15 0 4.28 0.11 5 0.14 0.20 210 1.46 0.23 204 1.92

NCVXQP4 138.52 0 138.90 1.71 0 1.79 0.10 5 0.14 0.01 51 0.20 0.10 51 0.60

NCVXQP5 130.26 0 130.64 1.69 0 1.76 0.10 6 0.15 0.01 51 0.20 0.10 50 0.59

NCVXQP6 139.37 0 139.75 1.70 0 1.79 0.32 5 0.42 0.01 51 0.21 0.10 51 0.61

NCVXQP7 1363.85 0 1365.49 10.03 0 10.23 0.33 5 0.43 0.33 189 1.69 0.34 176 1.67

NCVXQP8 1386.80 0 1388.45 10.07 0 10.26 0.33 5 0.42 0.33 191 1.69 0.34 176 1.70

NCVXQP9 1357.68 0 1359.31 10.12 0 10.32 0.09 20 0.23 0.33 193 1.69 0.34 179 1.71

POWELL20 0.03 0 0.05 0.09 0 0.11 0.00 11 0.01 0.01 40 0.21 0.07 40 0.31

PRIMALC1 0.00 1 0.00 0.00 1 0.01 0.00 4 0.00 0.00 25 0.01 0.00 12 0.01

PRIMALC2 0.00 1 0.00 0.00 1 0.01 0.00 10 0.01 0.00 9 0.00 0.00 9 0.00

PRIMALC5 0.00 1 0.00 0.00 1 0.01 0.01 7 0.01 0.00 15 0.01 0.00 10 0.01

PRIMALC8 0.01 1 0.01 0.01 1 0.01 0.01 14 0.02 0.00 20 0.01 0.00 10 0.01

PRIMAL1 0.01 1 0.01 0.01 1 0.02 0.03 8 0.03 0.00 153 0.08 0.00 158 0.09

PRIMAL2 0.01 1 0.01 0.03 1 0.03 0.06 6 0.07 0.00 86 0.06 0.01 92 0.08

PRIMAL3 0.03 1 0.03 0.06 1 0.06 0.03 5 0.04 0.01 74 0.14 0.01 80 0.15

PRIMAL4 0.04 1 0.04 0.03 1 0.03 14.34 2 14.80 0.01 41 0.07 0.02 44 0.09

QPBAND 0.16 1 0.30 1.08 1 1.28 1.84 5 2.19 0.09 7 0.46 0.40 5 0.78

QPNBAND 0.17 1 0.30 1.07 1 1.27 1.83 6 2.24 0.09 8 0.51 0.41 6 0.84

QPCBOEI1 0.01 1 0.01 0.02 5 0.02 0.01 5 0.02 0.00 47 0.03 0.00 47 0.03

QPCBOEI2 0.00 1 0.01 0.00 1 0.01 0.00 5 0.01 0.00 38 0.01 0.00 37 0.01

QPCSTAIR 0.01 1 0.01 0.02 1 0.02 0.01 8 0.02 0.00 40 0.02 0.00 52 0.03

QPNBOEI1 0.01 1 0.01 0.02 5 0.03 0.01 5 0.01 0.01 48 0.03 0.00 47 0.03

QPNBOEI2 0.00 1 0.00 0.00 1 0.01 0.00 5 0.01 0.00 37 0.01 0.00 37 0.01

QPNSTAIR 0.01 1 0.01 0.02 1 0.02 0.01 8 0.02 0.00 40 0.02 0.00 56 0.03

SOSQP1 0.01 0 0.01 0.04 0 0.04 0.04 0 0.05 0.03 1 0.04 0.05 1 0.05

STCQP1 rank deficient A rank deficient A 20.67 6 21.35 0.02 6 0.05 0.09 1 0.10

STCQP2 9.76 0 9.84 0.87 0 0.92 0.14 7 0.20 0.03 7 0.07 0.11 1 0.13

STNQP1 113.27 0 113.59 rank deficient A 20.75 6 21.43 0.02 6 0.05 0.09 1 0.11

STNQP2 9.64 0 9.72 0.87 0 0.92 0.14 8 0.22 0.03 8 0.08 0.11 1 0.13

UBH1 0.02 0 0.03 0.12 0 0.14 0.11 0 0.13 0.02 0 0.03 0.04 0 0.05

YAO 0.01 1 0.01 0.03 1 0.04 0.03 26 0.11 0.01 107 0.18 0.02 106 0.23
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The implicit factors are sometimes but not always cheaper to compute than the explicit

ones. The cost of finding a good basis A1 using MA48 is higher than we would have liked,

and is usually the dominant cost of the overall implicit factorization. Nonetheless, for

problems like the DUAL*, PRIMAL* and ST* examples, the implicit factors seem to offer a

good alternative to the explicit ones. We must admit to being slightly disappointed that

the more sophisticated implicit factors using G22 = H22 seemed to show few advantages

over the cheaper G22 = I, but again this might reflect the nature of H in our test set.

5 Comments and conclusions

We have developed a class of implicit-factorization constraint preconditioners for the it-

erative solution of symmetric linear systems arising from saddle-point problems. These

preconditioners are flexible, and allow for improved eigenvalue distributions over tradi-

tional approaches. Numerical experiments indicate that these methods hold promise for

solving large-scale problems, and suggest that such methods should be added to the arsenal

of available preconditioners for saddle-point and related problems. A fortran 90 package

which implements methods from our class of preconditioners will shortly be available as

part of the GALAHAD library [30]. We are currently generalizing implicit-factorization pre-

conditioners to cope with problems for which the 2,2 block in (1.1) may be nonzero [13].

One issue we have not really touched on—aside from the need for stable factors—is

the effect of partitioning of the columns of A to produce a non-singular sub-matrix A1.

Consider the simple example

A =

(

× 0 × 0

0 × × ×

)

,

where each × is non-zero. If we chose A1 as the sub-matrix corresponding to the first two

columns of A, A2 has rank two, while if A1 were made up of columns one and three, A2

then has rank one. This simple example indicates how the choice of A1 may effect the

iteration bounds obtained in Theorems 2.3–2.5, and significantly, leads us to ask just how

much we can reduce the bounds indicated in these theorems by judicious choice of A1. We

plan to investigate this issue in future.
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