Developing Autonomic and Secure Virtual
Organisations with Chemical Programming

Alvaro E. Arenas*, Jean-Pierre Banatre! and Thierry Priolf

*STFC Rutherford Appleton Laboratory, UK
'INRIA Rennes - Bretagne Atlantique, France
alvaro.arenas@stfc.ac.uk, Jean-Pierre.BanatreQinria.fr,
Thierry.Priol@inria.fr

Abstract. This paper studies the development of autonomic and secure
Virtual Organisations (VOs) when following the chemical-programming
paradigm. We have selected the Higher-Order Chemical Language (HOCL)
as the representative of the chemical paradigm, due mainly to its gen-
erality, its implicit autonomic property, and its potential application to
emerging computing paragidms such as Grid computing and service com-
puting. We have advocated the use of aspect-oriented techniques, where
autonomicity and security can be seen as cross-cutting concerns impact-
ing the whole system. We show how HOCL can be used to model VOs,
exemplified by a VO system for the generation of digital products. We
develop patterns for HOCL, including patterns for traditional security
properties such as authorisation and secure logs, as well as autonomic
properties such as self-protection and self-healing. The patterns are ap-
plied to HOCL programs following an aspect-oriented approach, where
aspects are modelled as transformation functions that add to a program
a cross-cutting concern.

1 Introduction

The concept of Virtual Organisation (VO) is given attention by researchers
within a wide range of fields, from social anthropology and organisational the-
ory to computer science. Its importance resides in providing an abstraction to
represent organisational collaborations, a topic of fresh interest given the cur-
rent exploitation of Internet to create virtual enterprises [5], or the sharing of
resources across different organisations as envisaged by Grid computing [7].

This paper studies the development of VOs when using a chemical program-
ming paradigm. Chemical programming is a computational paradigm inspired
by the chemical metaphor, where computation is seen as reactions between
molecules in a chemical solution. Examples of chemical-programming frame-
works include P-Systems [13], the Higher-Order Chemical Language (HOCL) [1]
and Fraglets [14], among others. Potentiality of the paradigm has been shown
by its application to solve problems as diverse as page ranking of biochemical
databases [12], coordination of services [3], or protocol resilience [15].

A VO can be seen as a temporary or permanent coalition of geographically
dispersed organisations that pool resources, capabilities and information in order

to achieve common goals. Autonomicity is an important property in VOs, since
coalition members should act autonomously in order to achieve the VO goals.
The chemical programming paradigm is very relevant to the programming of
autonomic systems as it captures the intuition of a collection of cooperative
components which evolve freely according to some predefined constraints (reac-
tion rules). Security is also an important concern in VOs, since such a coalition
may include unknown organisations that are untrusted by other VO partners.

We introduce here a method for modelling autonomic and secure VOs in
HOCL using aspect-oriented techniques. We have selected HOCL as the language
representative of the chemical paradigm, due mainly to its generality, its implicit
autonomic property — HOCL is based on the Gamma calculus [1], which is also
the foundation of other chemical frameworks such as Fraglets — and its potential
application to emerging computing paradigms such as service computing [3].
We define first a set of patterns for HOCL programs, representing security and
autonomic properties. Each property is modelled then as an aspect, defined using
the patterns, which is weaved following a code pre-processing technique.

The structure of the paper is the following. Section 2 introduces HOCL. Sec-
tion 3 discusses the autonomic properties of HOCL and describes its application
to VOs, exemplified by a system for the generation of digital products. Section
4 presents security patterns for chemical programs. Section 5 describes the use
of aspect-oriented techniques in HOCL. Next, section 6 shows how to apply the
security patterns by using aspect-oriented programming. Section 7 relates our
work with others. Finally, section 8 concludes the paper and highlights future
work.

2 The Higher-Order Chemical Language

In this section we introduce the main features of HOCL, referring the reader
to [2] for a more complete presentation. A chemical program can be seen as a
(symbolic) chemical solution where data is represented by floating molecules and
computation by chemical reactions between them. When some molecules match
and fulfill a reaction condition, they are replaced by the body of the reaction.
That process goes on until an inert solution is reached: the solution is said to be
inert when no reaction can occur anymore.

In HOCL, a chemical solution is represented by a multiset and reaction rules
specify multiset rewritings. Every entity is a molecule, including reaction rules.
A program is a molecule, that is to say, a multiset of atoms (41, ..., A,) which
can be constants (integers, booleans, etc.), sub-solutions ((A)) or reaction rules.
Compound molecules (M, Ms) are built using the associative and commutative
operator “,”, which formalises the Brownian motion and can always be used to
reorganise molecules. The execution of a chemical program consists in triggering
reactions until the solution becomes inert. A reaction involves a reaction rule
replace-one P by M if C' and a molecule NV that satisfies the pattern P and
the reaction condition C. The reaction consumes the rule and the molecule N,

and produces M. Formally:

(replace-one P by M if C), N — ¢M
if P match N = ¢ and ¢C

where ¢ is the substitution obtained by matching N with P. It maps every
variable defined in P to a sub-molecule from NN. For example, the rule in

(0, 10, 8, replace-one x by 9 if z > 9)

can react with 10. They are replaced by 9. The solution becomes the inert solu-
tion (0, 9, 8).

A molecule inside a solution cannot react with a molecule outside the solution
(i.e. the construct (.) can be seen as a membrane). A HOCL program is a solution
which can contain reaction rules that manipulate other molecules (reaction rules,
sub-solutions, etc.) of the solution.

In the remaining of the paper, we use some syntactic sugar such as decla-
rations let x = M, in M, which is equivalent to My where all the free occur-
rences of x are replaced by M;. The reaction rules replace-one P by M if C
are one-shot: they are consumed when they react. Their variant denoted by
replace P by M if C are n-shot, i.e. they do not disappear when they react.

There are usually many possible reactions making the execution of chemical
programs highly parallel and non-deterministic. Since reactions involve only a
few molecules and react independently of the context, many distinct reactions
can occur at the same time. For example, consider the program of Figure 1
that computes the prime numbers lower than 10 using a chemical version of the
Eratosthenes’ sieve.

let sieve = replace x,y by z if z div y in
(steve, 2,3,4,5,6,7,8,9,10)

Fig. 1. Chemical prime numbers program.

The rule sieve reacts with two integers « and y such that x divides y, and returns
x (i.e. removes y). Initially several reactions are possible, for example sieve, 2,8
(replaced by sieve, 2) or sieve, 3,9 (replaced by sieve, 3) or sieve, 2,10, etc. The
solution becomes inert when the rule sieve cannot react with any couple of
integers in the solution, that is to say, when the solution contains only prime
numbers. The result of the computation in our example is (sieve, 2,3,5,7).

An important feature of HOCL is the notion of multiplets. A multiplet is a
finite multiset of identical elements. In this paper, we limit ourselves to multiplets
of basic values (integers, booleans, strings). In HOCL multiplets are defined and
matched using an exponential notation: if v is a basic value then v* (k > 0)
denotes a multiplet of k elements v. Likewise, for variable x having a basic type,
notation z* denotes a multiplet of k elements. We could also have variables in the
exponentiation of constants or patterns, indicating that the size of a multiplet
becomes dynamic.

3 Virtual Organisations in HOCL

3.1 Autonomicity in HOCL

Autonomic computing provides a vision in which systems manage themselves
according to some predefined goals. The essence of autonomic computing is self-
organisation. Like biological systems, autonomic systems maintain and adjust
their operation in the face of changing components, workloads, demands and
external conditions, such as hardware or software failures, either innocent or
malicious. The autonomic system might continually monitor its own use and
check for component upgrades. HOCL is very appropriate as a programming
model to express programs with autonomic behaviours. The reason is twofold.
First, HOCL is intrinsically dynamic: rules are executed until an inert state
is reached. When the multiset is modified, then reactions rules are executed
to achieve again the inertness. Secondly, the high-order promoted by HOCL
allows some policies to be replaced at runtime by new ones. Policies can be
expressed by a set of rules that are stored in the multiset and thus can be
replaced thanks to the execution of some other rules (high-order). An autonomic
system is implemented using control loops that monitor the system and executes
a set of operations to keep its parameters within a desired scope. A control
loop has four basic steps: monitor, analyse, plan and execute. All these steps
can be mapped onto chemical objects. Monitor and execute can be represented
by external input/output operations into the multiset by generating molecules
whereas analyse and plan are a set of chemical rules that express the autonomic
behavior. A simple autonomic mail system [2] has been developed as an example
of programming self-organisation with HOCL.

3.2 Programming Autonomic Virtual Organisations in HOCL

We model here a VO with the goal of generating products resulting from the
collaboration of several dispersed organisations, which possesses the following
characteristics:

1. The VO aims at producing some complex, sophisticated ’digital’ product
(e.g. a software system, or some multimedia product).

2. The VO consists of a defined number of members (organisations), each one
contributing to the generation of products.

3. The product generation is considered a knowledge-intensive and content-
intensive activity. VO members depend on and need access to several sources
of knowledge as well as digital content assets, which they assemble/use to
create the product.

4. The production process is structured along some workflow (e.g. a software
production process, or a Web/content publishing process), and foresees sev-
eral phases. Policies may be applied to control access to the assets, which
may vary according to the phase or state in the project workflow.

For our scenario, we are assuming a very simple workflow depicted in Figure
2. The workflow consists of four phases. In the Edit phase, work is distributed
among all VO members contributing to the generation of a product. In the Merge
phase, parts of the product created by each VO member are combined in order
to create a global product. Once the global product is created, it is passed to
the VO members in the Validate phase, so they can ”validate” the product.
Finally, the process finalises if the product is approved by a determined number
of members by sending the product to Publish.

- € O @ © -

Fig. 2. Workflow process for the VO supporting the generation of a product.

For the case of our VO for product generation, the whole VO is modelled
as a solution, which contains sub-solutions S;:(- - -) that represent the VO mem-
bers. The product under construction is modelled as a molecule that could be
tagged by another molecule representing the product status (EDITING, EDITED,
GENERATE, VALIDATING, VALIDATED, ACCEPTING and PUBLISHED). Workflow op-
erations (edit, merge, publish, etc.) are represented as reactions. Table 1 sum-
marises the chemical modelling of the main elements of our VO.

VO Concept Chemical Representation
VO Solution

VO Member Sub-solution

Workflow Operation|Reaction

Product Molecule

Product Status Molecule

Table 1. Chemical representation of the main elements of a virtual organisation for
the collaborative generation of products

Figure 3 shows the HOCL program for generating a product. It consists
of a solution containing all VO members —represented as subsolutions S; for
t=1,---,k, and molecule Global Product, the product to be published.

The reaction rule edit distributes the global product to all VO members.
Here we are assuming the existence of k& VO members, where k is a predefined
integer constant. Reaction merge generates a local product, and marks the con-
tribution of the corresponding member to the product generation by adding
constant GENERATE to the global solution. It also includes operation Merge,
which combines both the local and global products. The edition of a product
finalises when VO members have contributed, which is represented by having
NumMerges(k) copies of molecule GENERATE. Function NumMerges(k) is a
domain-specific function indicating the number of copies needed to generate a
product; if it is the identity function, i.e. equal to k, all participant solutions
must contribute to the product generation. Note that we are exploiting here
the existence of multiplets in HOCL: molecule GENERATENuwmMerges(k) aets as

let publish = replace Global Product, ACCEPTING”, GENERATEY
by PUBLISHED:Global Product
if x > MinApproval(k) A y= NumMerges(k)
in
let accept = replace S: (VALIDATING: Product)
by S: (VALIDATED) , ACCEPTING
if AgreeProduct(Product)
in
let valid = replace S: (EDITED) , Global Product, GENERATEY
by S: (VALIDATING:Global Product) , Global Product, GENERATEY
if y = NumMerges(k)
in
let merge = replace S: (EDITING: Product) , Global Product
by S: (EDITED) , Merge(Product, Global Product), GENERATE
if FinishProduct(Product)

in
let edit = replace S: (), Global Product
by S: (EDITING:Global Product) , Global Product
in
(S1:(), -+ ,5: (), GlobalProduct, edit, merge, valid, accept, publish)

Fig. 3. HOCL Program for collaborative generation of a digital product

a synchronisation barrier indicating when reaction wvalid can occur. Reaction
valid distributes the final Global Product among the members in order to get
their approval. Reaction accept allows a VO member to vote for the approval of
the product, which results in adding molecule ACCEPTING in the global solution.
The whole process finalises as soon as MinApproval(k) VO members approve
the final product by executing reaction publish, which sends the final product
to publishing. Function MinApproval(k) is an abstraction of the protocol used
to decide when to publish a product; for instance, if it is equal to ceil(k/2), we
would be using a majority vote protocol.

4 Patterns for Chemical Programming

A composition pattern is a design model that specifies the design of a cross-
cutting requirement independently of any design it may potentially cross-cut,
and how that design may be re-used wherever it may be required [6]. In this sec-
tion we define composition patterns for HOCL programs. These patterns serve
as templates that guide the definition of aspects by instantiating them with
domain-specific information. We define patterns for important security proper-
ties, namely Authorisation and Security Logs; as well as patterns for autonomic
properties such as Self-Protection and Self-Healing.

Authorisation Pattern. Authorisation is concerned with the verification that
an entity can perform a particular action. In the context of chemical programs,
authorisation refers to the verification that a reaction could occur in a solution.

The authorisation pattern, described in Figure 4, indicates that whenever a
solution S reacts using reaction R, the authorisation condition Authorised(S, R)
holds.

authoZ (S, R) = let R = replace P by M
if C A Authorised(S, R)
in S:(w, R)

Fig. 4. HOCL Pattern for Authorisation

The authorisation condition is considered as a generic condition that should
be instantiated with domain-specific information. In this paper, we are inter-
ested in defining authorisation for three particular cases of attributed-based au-
thorisation: role-based access control, authorisation based on trust values, and
authorisation based on environmental conditions such as date, time, etc.

In the case of role-based access control, we associate solutions to roles and
indicate which reactions can be executed by roles. Let SolutionRole be a predi-
cate associating a solution with a role, and RoleReaction a predicate associating
a role with a reaction. In this case the Authorisation condition takes the form
SolutionRole(S, Rol) A RoleReaction(Rol, R).

In the case of authorisation based on trust values, we assume there is a
function TrustValue(S) returning the trust value associated to a solution S. The
Authorisation condition is simply a predicate comparing the trust value of a
solution with a particular value.

In the case of authorisation based on environmental conditions, we assume
there are predicates such as Date and Time which could restrict when a reaction
occurs.

Security Log Pattern. In the case of security-critical operations, it might be
required to maintain a security log of such operations. In chemical programming,
this corresponds to storing in a log a reaction as well as the changes it has
produced. Let R = replace P by M if C be a reaction. The security log
pattern, described in Figure 5, indicates that whenever reaction R happens, it
is stored in solution Log a molecule with information about the solutions and
molecules participating in R. The Log solution can be seen as a trusted third
party in charge of storing and maintaining the security log.

logging(R) = let R = replace P, Log:(w) by M, Log:(w, R:P:M) if C
in S:{w,R)

Fig. 5. HOCL Pattern for Security Logging

Self-Protection Pattern. Self-protection refers to the ability of anticipating
problems, and taking steps to avoid or mitigate them. It can be decomposed
in two phases: a detection phase and a reaction phase [9]. The detection phase
consists mainly in filtering data (pattern matching). The reaction phase con-
sists in preventing offensive data from spreading and sometimes also in counter-
attacking. This mechanism can easily be expressed with the condition-reaction

scheme of the chemical programming. Figure 6 shows the self-protection pattern.
Function Filter rule out undesirable data; on the other hand, function Protect
represents the application of a protection mechanism to the rest of the data.

selfprot(S, R) = let R = replace P,Q by Protect(Q) if Filter(P)
in S:(w, R)

Fig. 6. HOCL Pattern for Self-Protection

Self-Healing Pattern. Another important autonomic property is self-healing,
which refers to the automatic discovery and correction of faults in a system.
We define a pattern for the case in which a partner in a VO — represented
as a solution— fails by replacing it by a back-up partner. The back-up partner
offers his own resources while the original partner cannot contribute to the VO
objective. Functions Failure(S) and Recover(S) are associated to the system
functionality capable of detecting whether a system has failed or recovered from
a previous problem.

fail(S) = replace S:{(w) by Stackup: (w) if Failure(S)
repair(S) = replace Spockup: (W) by S: (w) if Recover(S)

Fig. 7. HOCL Pattern for Self-Healing

5 Aspects for Chemical Programming

Aspect-oriented programming (AOP) is a paradigm that explicitly promotes
separation of concerns. In the context of security, aspects mean that the main
program should not need to encode security information; instead, it should be
moved into a separate, independent piece of code [16].

AOP is based on the idea that computer systems are better programmed
by separately specifying the various concerns of a system and some description
of their relationships, and then relying on mechanisms in the underlying AOP
environment to weave or compose them together into a coherent program. The
goal of AOP is to make designs and code more modular, meaning the concerns
are localised rather than scattered and have well-defined interfaces with the rest
of the system. This provides the usual benefits of modularity, including making
it possible to reason about different concerns in relative isolation, making them
(un)pluggable, amenable to separate development, and so forth.

This section introduces the main concepts of aspects and relates them with
chemical programming.

5.1 Basic Concepts on AOP

Cross-cutting concerns are concerns whose implementation cuts across a number
of program components. This results in problems when changes to the concern

have to be made —the code to be changed is not localised but is in different places
across the system. Cross-cutting concerns can range from high level notions like
security and quality of service to low-level notions such as caching and buffering.
They can be functional, like features or business rules, or nonfunctional, such
as synchronization and transaction management. The following are the main
terminology used in AOP:

— Join point: Point of execution in the application at which cross-cutting con-

cern needs to be applied. In the case of chemical programming, join points

could be associated with reactions where the concerns need to be applied.

Advice: This is the additional code that one wants to apply to an existing

model. In the case of chemical programming, advice are applied to joint

points (reactions) by adding/replacing some of the components of the reac-

tion.

— Aspect: An aspect is an abstraction which implements a concern; it is the
combination of a join point and an advice.

— Weawving: The incorporation of advice code at the specific joint points. There
are three approaches to aspect weaving: source code pre-processing, link-time
weaving, and execution-time weaving.

There is an additional concept called the Kind of an Aspect indicating if an
advice is applied before, after, or around a join point. Since there is not a notion
of sequentiality (execution order) in a chemical program, we do not exploit this
feature. All aspects for chemical programming can be seen as around aspects.

5.2 Defining Aspects for Chemical Programming

In this work we have followed a code pre-processing technique to weave aspects
in a chemical program. To do so, we represent aspects as a collection of transfor-
mation functions WYg,, each one modelling a different cross-cutting concern C;.
Each function ¥, is applied to a reaction and returns a modified version of the
reaction that has been transformed according to the aspect.

Let Reaction denote the set of reaction rules and X' denote the state of a
chemical program. State here refers to the solution and molecules participating
in a program. The signature of a transformation function ¥¢ is defined as follows:
Yo Reaction x X — Reaction

As a way of illustration, let us define transformation Yrp ¢ that applies the
role-based authorisation concern to a reaction, indicating that a solution could
react using a particular reaction if it is playing a role in the system. Function
Urpac takes as input a reaction, a solution name, and a role name, producing
a new version of the reaction where the condition has been strengthened with
the predicates SolutionRole and RoleReaction, as presented in the authorisation
pattern defined in sub-section 4. Upper part of Figure 8 shows the definition of
the transformation function ¥rpac. Let us assume that the merge reaction in
the VO system presented in Figure 3 can react when the solution containing it
is playing the Editor role. Lower part of Figure 8 shows the result of applying
the transformation function Yrpac to merge.

Yrpac: Reaction x SolutionName x RoleName — Reaction

VR: Reaction, S: Solution N ame, Rol: RolName
R = replace Pby M if C —
Yrpac(R, S, Rol) = R = replace P by M
if C A SolutionRole(S, Rol) A RoleReaction(Rol, R)

Urpac(merge, S, Editor) =
merge = replace S: (EDITING: Product) , GlobalProduct
by S: (EDITED), Merge(Product,Global Product), GENERATE
if FinishProduct(Product) A
SolutionRole(S, Editor) A RoleReaction(Editor, merge)

Fig. 8. Weaving an aspect: applying the RBAC aspect to reaction merge.

6 Applying Patterns and AOP to ‘Chemical’ VOs

In general, our approach for applying AOP techniques to chemical programs com-
prises the following steps. First, requirements for the system under construction
are defined. Second, the requirements are modelled as aspect functions, follow-
ing the patterns introduced in section 4. Third, we define the join points where
the aspects functions should be applied. Finally, aspects are weaved producing a
new chemical program. The rest of this section describes the application of such
approach to the VO for product generation introduced in section 3.2.

Requirements for Product Generation. The system for product generation
has the following security requirements:

1. Organisations participating in the VO could play the roles Editor or Validator.

2. VO members playing the role Editor can execute only operations related to
the edit and merge phases of the workflow.

3. VO members playing the role Validator can execute only operations related
to the validate phases of the workflow.

4. Acceptance of a product is considered a security-critical operation requiring
to be registered in a security log.

5. Acceptance is allowed only for those VO members with a trust value higher
than 0.5.

6. The system must check automatically that any product to be merged is free
of virus.

7. The VO member assigned to location 1, i.e. the member identified as Sy, is
considered critical one and must be replaced by a back up member in case
of failure.

Requirements 1 to 5 are classical security requirements; requirement 6 is a self-
protection one; and requirement 7 is a self-healing requirement.

Aspect Transformation Functions. Figure 9 shows the aspect functions
defined for our VO to deal with the security requirements presented above, and
Figure 10 illustrates the aspect functions defined for self-protection and self-
healing requirements.

YUrpac: Reaction x SolutionName x RoleName — Reaction

VR: Reaction, S: SolutionName, Rol: RolName
R = replace Pby M if C —
Yrpac(R, S, Rol) = R = replace P by M
if C A SolutionRole(S, Rol) A RoleReaction(Rol, R)

YUrrust: Reaction X SolutionName x * — Reaction

VR: Reaction, S: SolutionName, t: R
R = replace Pby M if C —
Urrust(R,S,t) = R = replace P by M
if C' A TrustValue(S) >t

Yroa: Reaction — Reaction

VR: Reaction
R = replace S:Pby M if C —
Yroc(R) = R =replace S:P, Log:{w)
by M, Log:{w, S:R)
if C

Fig. 9. Aspect functions for securing the VO for product generation.

In Figure 9, function ¥rpac models role-based authorisation, following the
authorisation pattern introduced in sub-section 4. We are assuming the under-
lying execution system includes functions SolutionRole, associating a solution
with a role, and RoleReaction, associating a role with the reaction that can per-
form. Likewise, function Y rysr models authorisation based on trust values,
following also the pattern from sub-section 4. Here, it is assumed the existence
of function TrustValue, returning the trust value of a solution. Finally, function
¥10¢ models the secure log concern.

In Figure 10, function ¥xovrus models self-protection according to the pat-
tern presented in subsection 4. Here, we are assuming there is a system function
called NoVirus in charge of checking there is not virus in a digital product. On
the other hand, functions ¥par;, and Ygrpcover model self-healing according
to the pattern presented previously.

Defining Join Points. Table 2 illustrates the joint points for our VO according
to the requirements defined previously.

At this stage, we can see the modularity obtained by applying AOP tech-
niques. Any change in the security requirements implies only changes in the
definition of aspect functions and join points, without altering the business logic

Ynovirus: Reaction — Reaction

VR: Reaction
R = replace S: (EDITING:P) ,w by S: (EDITED) , M if C —
Unovirus(R) = R = replace S: (EDITING:P) ,w
by S: (EDITED) , M
if C A NoVirus(P)

Urarr: SolutionName x SolutionName — Reaction
YrecovER: SolutionName x SolutionName — Reaction

VS, Svackup: SolutionName
Urarr (S, Svackup) = fail = replace S: (w) by Spackup: (w) if Failure(S)
UreEcovER(S, Sbackup) = recover = replace Spackup: (w) by S:{(w) if Recover(S)

Fig. 10. Aspect functions for self-protection and self-healing in the VO for product
generation.

Requirement Aspect Requirement Aspect
1, 2 &DRBAc(edit, S, EditO’r‘) 5 WTRUST(U,CCEPt, S, 05)
1,2 Urpac(merge, S, Editor) 6 Unovirus(merge)
1,3 Urpac(valid, S, Validator) 7 Vrparn (51, 91, 00kup)
1,3 Yrpac(accept, S, Validator) 7 YrECOVER(S1, Styponup)
4 Yroc (accept)

Table 2. Join points to apply aspect functions to the product generation VO

of the program. For instance, if the requirement that the accept reaction should
be performed only by solutions with their trust above a particular value is re-
moved, then the only changes required are to remove Yrrysr function and to
eliminate the corresponding rule in Table 2.

Aspect Weaving. Finally, the aspects are weaved producing a new program.
The chemical program resulting after weaving the aspects defined in Table 2 is
presented in Figure 11. For instance, comparing reaction merge with the original
version presented in Figure 3, we can notice that the condition of the rule has
been strengthened restricting the execution only to solutions playing the role
Editor and when the product to be generated is free of any virus.

7 Related Work

The work presented here has been inspired by Viega, Bloch and Chandra’s work
on applying aspect-oriented programming to security [16]. They have developed
an aspect-oriented extension to the C programming language following also a
transformational approach, where aspects are defined independently of the main
application, and are then weaved into a single program at compilation time. Their
emphasis is on security, developing aspects to replace insecure function calls by
secure ones. Our approach follows a transformational approach as proposed by
Viega, with the difference that the aspect definition is guided by the existence of

let publish = replace Global Product, ACCEPTING” GENERATEY
by PUBLISHED:Global Product
if x > MinApproval(k) AN y = NumMerges(k)
in
let accept = replace S: (VALIDATING: Product), Log: (w)
by S: (VALIDATED) , ACCEPTING, Log: (w, S:accept)
if AgreeProduct(Product) A
SolutionRole(S, Validator) A RoleReaction(Editor,accept) A
TrustValue(S) > 0.5
in
let valid = replace S: (EDITED), Global Product, GENERATEY
by S: (VALIDATING:Global Product) , Global Product, GENERATEY
if y = NumMerges(k) A
SolutionRole(S, Validator) A RoleReaction(Validator, valid)
in
let merge = replace S: (EDITING: Product) , Global Product
by S: (EDITED) , Merge(Product, Global Product), GENERATE
if FinishProduct(Product) A
NoVirus(Product) A
SolutionRole(S, Editor) A RoleReaction(Editor, merge)

in
let edit = replace S: (), Global Product
by S: (EDITING:Global Product) , Global Product
if SolutionRole(S, Editor) A RoleReaction(Editor, edit)
in
let fail = replace Si: (w)
by Slbackup: (w)
if Failure(S1)
in
let recover = replace Si,,.,.,.,* (W)
by Si: (w)
if Recover(St)
in
(S1: (), -+, S: (), GlobalProduct, fail, recover, edit, merge, valid, accept, publish)

Fig. 11. HOCL program for the VO system for product generation after weaving as-
pects

security patterns. Previous work on the application of aspect-oriented techniques
to chemical programming include [10, 11]. In [10], Mentré et al present the design
of shared-virtual-memory protocols using the Gamma formalism; then, aspect-
oriented techniques are used to translate this design into a concrete implementa-
tion, modelling cross-cutting concerns such as control and data representation.
Comparing with our work, they also used a transformational approach, weav-
ing at compilation time a Gamma program to produce an automaton; however,
they do not represent cross-cutting concerns as patterns. The work by Mousavi
et al [11] centred on extending Gamma with aspect-oriented concepts, including
aspects for timing and distribution. For each aspect, they present new syntac-
tic constructors and give them a structured operational semantics. The weaving
process map the different aspects into a common formal semantics domain based
on timed process algebra with relative intervals and delayable actions. Our work
has the advantage that there is not need of changing the underlying semantic
model (all our aspects are in HOCL) and exploiting the existence of composition
patterns.

8 Conclusion and Future Work

This paper has described an approach to program autonomic and secure Virtual
Organisations (VOs) when using the Higher-Order Chemical Language (HOCL).
Our approach is based on composition patterns and aspect-oriented techniques.
We represent aspects as a collection of transformation functions, each one mod-
elling a different cross-cutting concern. The functions are applied (weaved) to a
HOCL program in order to generate a new program that include the concerns.

Our working example has been a VO for the production of digital product,
and the cross-cutting concerns have been security properties such as attribute-
based authorisation and security logs, as well as autonomic properties such as
self-protection and self-healing. The approach comprises the following steps.
First, security requirements for the system under construction are defined. Sec-
ond, the requirements are modelled as transformational aspect functions follow-
ing a library of compositional patterns. Third, it is defined the join points where
the aspects functions should be applied. Finally, aspects are weaved producing
a new chemical program.

There are several avenues to follow as future work. Firstly, we are currently
studying the weaving of several aspects on the same reaction, analysing condi-
tions that guarantee properties such as commutativity and associativity of as-
pects. Secondly, we plan to investigate patterns for weaving aspects at run-time,
exploiting the high-order potentiality of HOCL. Thirdly, we are interested in
evaluating the effectiveness of our approach to improve modularisation of cross-
cutting concerns in HOCL; an initial step is to adapt quantitative methods to
evaluate AOP [8]. Finally, there are several similarities between chemical pro-
gramming and other evolutionary approaches such as genetic programming [4];
we plan to investigate how our approach to secure and autonomic cooperations
can be applied when using genetic programming.

Acknowledgments

This work has been partially funded by the EU CoreGRID (IST FP6 No 004265)
and GridTrust (IST FP6 No 033817) projects. We would like to thank Yann
Radenac and Benjamin Aziz for comments to early drafts of this paper.

References

1.

10.

11.

12.

13.

14.

15.

16.

J-P. Banétre, P. Fradet, and D. Le Métayer. Gamma and the Chemical Reaction
Model: Fifteen Years After. In Multiset Processing, volume 2235 of Lecture Notes
in Computer Science, pages 17—44. Springer-Verlag, 2001.

. J-P. Banatre, P. Fradet, and Y. Radenac. Chemical Specification of Autonomic

Systems. In Proceedings of the 13th International Conference on Intelligent and
Adaptive Systems and Software Engineering (IASSE’04), July 2004.

. J-P. Banatre, T. Priol, and Y. Radenac. Service Orchestration Using the Chemical

Metaphor. In Springer, editor, Software Technologies for Embedded and Ubiquitous
Systems, volume 5287 of Lecture Notes in Computer Science, pages 79-89, 2008.
W. Banzhaf, J.R. Koza, C. Ryan, L. Spector, and C. Jacob. Genetic Programming.
Intelligent Systems and their Applications, IEEE, 15(3):74-84, May/Jun 2000.

L. M. Camarihna-Matos and H. Afsarmanesh, editors. Collaborative Networked
Organisations — A Research Agenda for Emerging Business Models. Kluwer, 2004.
S. Clarke and R. J. Walker. Composition Patterns: An Approach to Designing
Reusable Aspects. International Conference on Software Engineering, 2001.

I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. Int. Journal of Supercomputer Applications, 15(3),
2001.

A. Garcia, C. Sant Anna, E. Figueiredo, U. Kulesza, C. Lucena, and A. von Staa.
Modularizing Design Patterns with Aspects: A Quantitative Study. In Transac-
tions on Aspect-Oriented Software Development I, volume 3880 of Lecture Notes
in Computer Science, pages 36-74. Springer, 2006.

J. O. Kephart and D. M. Chess. The Vision of Autonomic Computing. Computer,
36(1):41-50, 2003.

D. Mentré, D. Le Métayer, and T. Priol. Formalization and Verification of Coher-
ence Protocols with the Gamma Framework. In Symposium on Software Engineer-
ing for Parallel and Distributed Systems (PDSE 2000), pages 105-113, 2000.

M. R. Mousavi, M. A. Reniers, T. Basten, and M. R. V. Chaudron. Separation
of Concerns in the Formal Design of Real-Time Shared Data-Space Systems. In
ACSD, pages 71-81. IEEE Computer Society, 2003.

M. Muskulus. Application of Page Ranking in P Systems. In 9th Workshop on
Membrane Computing. IEEE Computer Society, 2008.

Gheorghe Paun. Membrane Computing. An Introduction. Springer-Verlag, Berlin,
2002.

C. Tschudin. Fraglets - a Metabolistic Execution Model for Communication Proto-
cols. In 2nd Annual Symposium on Autonomous Intelligent Networks and Systems
(AINS). IEEE Computer Society, 2003.

C. Tschudin and L. Yamamoto. A Metabolic Approach to Protocol Resilience. In
WAC 2004, 1st Workshop on Autonomic Communication, volume 3457 of Lecture
Notes in Computer Science, pages 191-206. Springer, 2004.

J. Viega, J. T. Bloch, and P. Chandra. Applying Aspect-Oriented Programming
to Security. Cutter IT Journal, 14(2):31-39, 2001.

