
RAL-TR-2009-019

August 27, 2009

L.S. Chin, D.J. Worth, and C. Greenough

Code Coverage Analysis for Fortran

c© Science and Technology Facilities Council

Enquires about copyright, reproduction and requests for additional copies of this report should
be addressed to:

Library and Information Services
SFTC Rutherford Appleton Laboratory
Harwell Science and Innovation Campus
Didcot
OX11 0QX
UK
Tel: +44 (0)1235 445384
Fax: +44(0)1235 446403
Email: library@rl.ac.uk

The STFC ePublication archive (epubs), recording the scientific output of the Chilbolton,
Daresbury, and Rutherford Appleton Laboratories is available online at:
http://epubs.cclrc.ac.uk/

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their reports
or in any communication about their tests or investigation

RAL-TR-2009-019

Code Coverage Analysis for Fortran

L.S. Chin, D.J. Worth, and C. Greenough

August 27, 2009

Abstract

This report introduces the concept of coverage analysis and provides a list of coverage tools
available for Fortran. It also contains a step-by-step tutorial on using gcov and LCOV, and
presents a case study on performing coverage analysis on an existing Fortran library (The
Finite Element Library). The tools and steps laid out in this report focus on code written
in Fortran, however the concepts should apply equally to code written in other programming
languages.

Keywords: coverage analysis, software testing, software quality, QA tools, Fortran, SESP

Email: shawn.chin@stfc.ac.uk, david.worth@stfc.ac.uk, christopher.greenough@stfc.ac.uk

Reports can be obtained from www.softeng.cse.clrc.ac.uk

Software Engineering Group
Computational Science & Engineering Department
STFC Rutherford Appleton Laboratory
Harwell Science and Innovation Campus
Didcot
Oxfordshire OX11 0QX

Contents

1 Introduction 1

2 Coverage Analysis 2

2.1 Overview . 2

2.2 Coverage criteria and targets . 3

3 Coverage Tools Available for Fortran 5

3.1 gcov . 5

3.1.1 LCOV . 5

3.2 ggcov . 5

3.3 FCAT . 5

3.4 nag coverage95 . 6

3.5 CVRANAL . 6

4 Using gcov – A quick guide for those in a hurry 7

5 gcov in a Nutshell 8

5.1 Overview . 8

5.2 Compiling and linking . 8

5.3 Analysing coverage . 8

5.4 Obtaining coverage summaries for each subroutine . 9

5.5 Analysing branch coverage . 10

5.6 Caveats . 10

5.6.1 Compiler optimisation . 10

5.6.2 Version incompatibility . 11

5.6.3 Premature program termination . 12

5.6.4 Multi-statement lines . 12

6 Case Study: Coverage Analysis of the Finite Element Library (FELIB) Using gcov
and LCOV 13

6.1 About the FELIB source code . 13

6.2 The walkthrough . 13

6.2.1 Preparation . 13

6.2.2 Compiling the project and running the tests . 14

6.2.3 Generating a report using LCOV . 15

6.2.4 Managing multiple tests . 15

i

6.2.5 Integrating coverage analysis into FELIB’s Makefile 16

6.2.6 Sample coverage report generated using LCOV . 16

7 Conclusion 19

A Coverage script example 21

ii

1 Introduction

This report introduces the general concept of coverage testing and provides a step-by-step tutorial on
performing coverage analysis. The tools and steps laid out in this report focus on code written in Fortran,
however the concepts should apply equally to code written in other programming languages.

Section 2 provides a brief discussion on what is meant by coverage analysis and its purpose followed
by Section 3 which iterates through a non-exhaustive list of coverage tools available for Fortran.

In Sections 4 and 5, the report dives into the usage of one of the tools, namely gcov. A quick guide to
using gcov for coverage analysis is provided for those in a hurry and this is followed by a more involved
discussion on usage and the internals of gcov.

Finally, in Section 6 we present a walkthrough for the process of integrating a complete code coverage
solution into the build process of an existing Fortran project – the Finite Element Library [8]. This
section will cover the use of gcov and LCOV for generating a comprehensive coverage report that is
user-friendly and navigable, as well as providing examples on how the whole process can be scripted and
automated.

This report is one of the outputs of the Software Engineering Support Programme (SESP) [7].

1

2 Coverage Analysis

2.1 Overview

Code coverage is a quantitative measure of the degree to which the source code of a program has been
exercised. It is most often used during the software testing process to determine the coverage achieved by
the testing process and as such is often also referred to as test coverage. Code coverage and test coverage
are synonymous.

Code coverage analysis is performed using tools that instrument the source code or intermediate
binaries with instructions to output coverage information during its execution. The coverage tool would
then gather the generated data and reference the original source code to produce a coverage report.

Coverage reports contain two types of information:

1. An annotated version of the original source code indicating elements of the code that have not been
exercised and the frequency with which each element1 has been exercised.

2. A percentage or score indicating overall coverage level. The coverage levels could be for the whole
code project or broken down into that of individual directories, files, modules and/or functions.
Analysing coverage levels at a lower granularity is important as overall coverage levels can hide
large gaps in coverage.

The annotated source code can be used to identify cold and hot spots – portions of the code which
are never (cold) or frequently (hot) exercised. Cold spots are useful for identifying blind spots within
the code and providing hints on whether, and where, more tests are required; hot spots can be used to
identify issues like redundant test cases and potential performance optimisation opportunities.

The coverage score gives a more general view of how much ground is covered by the tests. A low
coverage score would indicate an inadequate level of testing which implies a lower probability of the test
suite exposing any bugs in the code. In addition, a low initial coverage level can often indicate a deficiency
in the test development process.

The inverse however is not true – while a good test suite is likely to achieve high coverage levels, even
tests with the highest possible level of coverage are not guaranteed to catch all errors [1].

Take for instance the following Fortran module (Listing 1):

module xyz
contains

function g e t h e i gh t (area , width)
real , intent (in) : : area , width
g e t h e i gh t = area / 5 . 0
end function g e t h e i gh t

end module xyz

Listing 1: Code snippet for module xyz

test suite xyz

test h e i g h t c a l c u l a t i o n
a s s e r t r e a l e q u a l (2 . 0 , g e t h e i gh t (1 0 . 0 , 5 . 0))
a s s e r t r e a l e q u a l (0 . 0 , g e t h e i gh t (0 . 0 , 5 . 0))

end test

end test suite

Listing 2: Test code for module xyz (written for FUnit [9])

1Depending on the granularity and level of coverage analysis performed, the term element is used loosely here to refer
to a function, statement, branch or even a logical condition within the code.

2

The example test code (Listing 2) would run without any failures and provide 100% coverage of the
code but it is by no means complete. It does not expose the bug where a constant divisor is used instead
of the width argument, or that the code author may have unintentionally omitted checks for ensuring
that the area and width are within acceptable values (area ≥ 0.0, width > 0.0).

Therefore, while it is natural to treat coverage levels as a direct measure of test completeness, it is
important to instead think of it as a tool to better understand the behaviour and shortcomings of the
testing process and the tests at hand.

Furthermore, by including coverage analysis as a process within the software development cycle (see
Figure 1), developers can avoid test rot – a situation where the code evolves well beyond what is being
interrogated by the tests, resulting in an increasingly obsolete set of tests that may instil a misplaced
sense of confidence in the code.

Figure 1: A software development iteration that incorporates a coverage analysis stage

2.2 Coverage criteria and targets

To measure coverage, one or more of the following criteria are commonly used. Each of these criteria
involves different levels or granularity and would therefore require varying levels of complexity and effort
to analyse and achieve.

Some of the basic coverage criteria are:

• Function coverage – full coverage involves having every function or procedure invoked at least
once.

• Statement coverage – full coverage involves having every executable statement run at least once.

• Branch coverage – full coverage involves having every control structure evaluated to both true
and false at least once.

• Condition coverage – full coverage involves having every logical condition within a control struc-
ture evaluated to both true and false at least once.

• Path coverage – full coverage involves having every possible route through the program taken
at least once. A path is defined as a unique sequence of logical conditions, which means that full
coverage requires attempting every combination of logical conditions within the program.

All the criteria listed above are related such that coverage of each criterion would imply coverage of
the ones before it. For example, full branch coverage would imply full statement and function coverage

3

(since all statements would be reached if every branch is taken at least once) while full path coverage is
the most comprehensive and would imply that all the above coverage criteria are also met.

All available coverage tools are capable of analysing statement coverage while some (such as gcov)
can perform branch coverage analysis. There is a small handful of commercial coverage tools for Fortran
that claims to provide anything beyond branch coverage2.

Writing test suites to achieve full function coverage is often trivial and as such yields minimal benefit
while achieving full path coverage, except for that of trivial programs, is usually impractical if not
impossible3 [1]. Therefore, the most common approach is to aim for target levels of statement and/or
branch coverage. While not the most comprehensive, they provide a good balance between achievability
and benefit.

The decision on a coverage level to target is a common subject of contention. Some practitioners ad-
vocate maintaining a 100% coverage target while others believe that to be an impractical target especially
for complex and mature code projects [2, 5, 13].

In general, the most common recommendation is that one should adopt a sensible coverage target
that is appropriate to the code in question and make it a point to peruse (and document!) sections which
are left ‘uncovered’ [2, 3, 4].

2LDRA Testbed claims to perform condition coverage analysis while TCAT/PATH from TestWorks claims to support
path coverage analysis

3A program with n branches can have up to 2n paths while loops can lead to an infinite number of paths

4

3 Coverage Tools Available for Fortran

The following is a non-exhaustive list of coverage analysis tools available for Fortran. Some of these tools
are freely available while others are commercial applications that can be accessed through the Software
Engineering Support Program (SESP).

3.1 gcov

gcov is an open source tool that is part of the GNU compiler suite. It is simple to use and supports
statement and branch coverage analysis.

Subsequent chapters of this report will focus on gcov as it is freely available and easily integrated
within the build process of most projects.

Performing coverage analysis on individual source files using the gcov command is straight forward.
However, the task of perusing the results can be quite daunting for large projects especially when code is
split across multiple files and directories. Therefore, to move beyond analysing individual source files, we
use tools like LCOV to simplify the process and present the coverage analysis results in a more digestible
format.

3.1.1 LCOV

LCOV was developed as part of the Linux Test Project (http://ltp.sourceforge.net) and can be
seen as an extension to gcov. This extension consists of a set of Perl scripts which collect gcov data
for multiple source files and create HTML pages containing summary information and the source code
annotated with coverage information.

The use of LCOV is extremely useful for coverage analysis of larger projects as it provides a birds-
eye view of the overall coverage at three different levels: project view, directory view, and file view.
Screenshots of the coverage report produced by LCOV are available in Section 6.2.6.

LCOV is available from its project page [10] or through the software package manager of many Linux
distributions.

This tool will be explored further in Section 6.

3.2 ggcov

ggcov is a prettier alternative to gcov. It consumes the same coverage data files as gcov but presents the
output in a graphical interface. It provides a coloured listing of annotated source code (including branch
coverage data) and summary information with addtional views such as call graphs and bar charts.

While not advertised as working for Fortran, a simple patch to the source code can allow it to be
used. More information on this can be found on the SEG Blog [11].

ggcov is available from the project page: http://ggcov.sourceforge.net/

3.3 FCAT

FCAT (Fortran Coverage Analysis tool) is a tool written by Dr. YiFan Hu while he was based at Daresbury
Laboratory back in 2001.

It is available as a Perl script or a pre-compiled binary (available for Linux and a few Unix vari-
ants). FCAT works by pre-processing source code and producing an instrumented version which is to be
compiled and run instead of the original. It supports only statement coverage.

5

http://ltp.sourceforge.net
http://ggcov.sourceforge.net/

FCAT can be downloaded from:

• http://www.dl.ac.uk/TCSC/UKHEC/FCAT/

• http://research.att.com/~yifanhu/SOFTWARE/FCAT/

More usage and installation details can be found in the documentation file (http://www.dl.ac.uk/
TCSC/UKHEC/FCAT/README.html).

3.4 nag coverage95

nag coverage95 is the coverage tool for NAGWare F95 produced by the Numerical Algorithms Group
(NAG).

nag coverage95 provides statement coverage support and is very easy to use for code within a single
source file. The tool is used in place of a compiler and it will automatically output an instrumented
executable that produces coverage information at run-time.

For a more substantial project with multiple source files, users must compile all files using the NagWare
Fortran 95 compiler into modules files before linking the executable using nag coverage95.

More usage information can be found in the tools documentation (http://www.qaportal.cse.clrc.
ac.uk/html/NagWare/nag_coverage95.html).

3.5 CVRANAL

CVRANAL is part of the plusFort package produced by Polyhedron Software (http://www.polyhedron.
co.uk/pfqa0html#coverage).

It is meant to be used in conjunction with SPAG (also part of plusFort) which is a very powerful tool
but not the easiest to pick up for first-time users.

More usage information can be found in the tools documentation (http://www.qaportal.cse.clrc.
ac.uk/html/plusFORT/manual/spag.html#S2112).

6

http://www.dl.ac.uk/TCSC/UKHEC/FCAT/
http://research.att.com/~yifanhu/SOFTWARE/FCAT/
http://www.dl.ac.uk/TCSC/UKHEC/FCAT/README.html
http://www.dl.ac.uk/TCSC/UKHEC/FCAT/README.html
http://www.qaportal.cse.clrc.ac.uk/html/NagWare/nag_coverage95.html
http://www.qaportal.cse.clrc.ac.uk/html/NagWare/nag_coverage95.html
http://www.polyhedron.co.uk/pfqa0html#coverage
http://www.polyhedron.co.uk/pfqa0html#coverage
http://www.qaportal.cse.clrc.ac.uk/html/plusFORT/manual/spag.html#S2112
http://www.qaportal.cse.clrc.ac.uk/html/plusFORT/manual/spag.html#S2112

4 Using gcov – A quick guide for those in a hurry

The following steps illustrate the basic procedures involved in performing coverage analysis using gcov.
Subsequents chapters of this report will give a more involved discussion on gcov and will provide examples
of how coverage analysis can be made more manageable for larger code projects.

Step 0: Ensure you have a suitable version of gcov

Use a compiler from the GNU compiler suite (gcc, g77, gfortran, etc.) and a version of gcov that came
packaged with the suite. If you have multiple versions of the GNU compilers installed or wish to use
another GNU-compatible compiler such as g95, ensure that you use a gcov version which is equal to
or higher than your compiler version.

• Hint: Version 4 of gcov is sometimes distributed with the binary renamed as gcov4. Do also
look out for that command.

• Hint: Use the --version flag to check the versions of gcov and your compiler. For example:

[lsc@softeng]$ gcov --version
gcov (GCC) 4 . 1 . 2 2 0 0 8 0 7 0 4 (Red Hat 4 .1 .2 −44)
[lsc@softeng]$ gfortran --version
GNU Fortan 9 5 (GCC 4 . 1 . 0 2 0 0 5 0 3 1 1 (exper imenta l))

Step 1: Use the right compiler flags

Include the -fprofile-arcs -ftest-coverage flags when compiling and linking your code. Leave
out all optimisation flags. The additional flags will inform the compiler to generate the additional
information needed for performing coverage analysis.

• Hint: If you use a Makefile to compile your project, you can add the flags to the FFLAGS and
LDFLAGS parameters. Watch out for optimisation flags within FFLAGS.

• Hint: Starting from version 4 of the GNU compiler suite, you can use the --coverage flag
instead. This flag will automatically be expanded to the required flags for performing coverage
analysis.

Step 2: Run your program

Run your program as you would normally. You can repeat the run multiple times (ideally under
different test conditions); the gathering of coverge data is cumulative.

Step 3: Use gcov to view coverage

Run gcov on each of your source file to explore the coverage. For example:

[lsc@softeng]$ gcov matmul.f
F i l e ’ matmul . f ’
L ines executed : 100 .00% o f 20
matmul . f : c r e a t i n g ’ matmul . f . gcov ’
[lsc@softeng]$ gcov trim3.f
F i l e ‘ tr im3 . f ’
L ines executed :95 .83% of 24
trim3 . f : c r e a t i n g ‘ tr im3 . f . gcov ’

• Hint: To retrieve branch coverage information, include the -b option when calling gcov.

Step 4: View annotated source code generated by gcov

Peruse the *.gcov files generated in Step 3. These files contain annotated versions of your source code.
This will help you identify hot and cold spots in the code.

7

5 gcov in a Nutshell

5.1 Overview

gcov is a test coverage program that can be used in concert with the GNU Compilers (gcc, g++, gfortran,
etc.) and other compatible compilers such as g95.

To perform coverage analysis, the source code must be compiled with specific compiler flags which
instruct the compiler to:

• instrument the intermediate binaries such that the resulting executables produce data which tracks
the flow through the call graph during run time

• output the application call graph

All these data can be read by gcov to reconstruct the basic block call graph and tally the traversal
frequency of each basic block. By mapping each basic block to the corresponding source line number a
full coverage analysis can be obtained.

At present, gcov is capable of performing statement coverage as well as branch coverage analysis.

5.2 Compiling and linking

The target code must be compiled and linked using the -fprofile-arcs -ftest-coverage compiler
flags.

[lsc@softeng]$ ls
go l . f 90 g o l i o . f90 g o l u t i l . f 90
[lsc@softeng]$ gfortran -fprofile-arcs -ftest-coverage -c gol_util.f90
[lsc@softeng]$ gfortran -fprofile-arcs -ftest-coverage -c gol_io.f90
[lsc@softeng]$ gfortran -fprofile-arcs -ftest-coverage -c gol.f90
[lsc@softeng]$ gfortran -fprofile-arcs -ftest-coverage -o run_gol *.o
[lsc@softeng]$ ls gol_util*
g o l u t i l . f 90 g o l u t i l . gcno g o l u t i l .mod g o l u t i l . o

The -fprofile-arcs flag instructs the compiler to instrument the compiled code and generate a call
graph, while the -test-coverage flag instructs the compiler to identify and track each basic block within
the source file [6].

Notice that apart from the standard *.o and *.mod files, the compiler has also created *.gcno files.
These files are where the compiler stores data on the generated call graphs and basic blocks; they are
required by gcov to reconstruct the program flow and map coverage data to specific lines in the source
code.

Older versions of the GNU compilers may generate *.bb and *.bbg files instead, a combination of which
serves the same purpose as the current *.gcno format

5.3 Analysing coverage

Running the executable compiled with the -fprofile-arcs flag will create a *.gcda file (or *.da for
older versions of GCC) in the directory where the original source file was located. This file is used to
record profiling information generate at run-time. The recorded information is cumulative so running the
executable multiple times will accumulate all coverage data into the same *.gcda file.

[lsc@softeng]$./gol input/glider.dat 3
Running step 1
Running step 2

8

Running step 3
[lsc@rsofteng]$ ls gol_util*
g o l u t i l . f 90 g o l u t i l . gcda g o l u t i l . gcno g o l u t i l .mod g o l u t i l . o

Once coverage data is accumulated, gcov can use the information in the *.gcda and *.gcno files to
calculate code coverage and produce an annotated version of the source files. By passing any source
filename to gcov, the coverage score will be printed out and an annotated version of the source will be
created with the *.gcov file extension.

[lsc@softeng]$ gcov gcov_util.f90
F i l e g o l u t i l . f 90
Lines executed : 94 . 29% of 35
g o l u t i l . f 90 : c r e a t i n g g o l u t i l . f 90 . gcov

The *.gcov files are written with the following format:

<execut ion count > : < l i n e number > : <source l i n e text>

Example snippet from gol util.f90.gcov :

−: 4 0 : ! A l l o ca t e new memory
3 : 4 1 : allocate (data1 (w, h) , data2 (w, h) , stat=a l l o c s t a t)

−: 42 :
−: 4 3 : ! i f a l l o c a t i o n f a i l e d , re turned ’ s t a t ’ would be > 0
3 : 4 4 : i f (a l l o c s t a t . ne . 0) then

#####: 4 5 : ca l l go l c l e anup
#####: 4 6 : stop ” g o l i n i t : Memory A l l o ca t i on Fa i l ed . Quit t ing ! ”

3 : 4 7 : end i f

A hyphen (-) is used to represent source lines that contain no executable code, while a row of hashes
(#####) indicate lines that were never executed.

5.4 Obtaining coverage summaries for each subroutine

The --function-summaries option can be used to output coverage levels per subroutine in addition to
the file level summaries.

[lsc@softeng]$ gcov --function-summaries gol_util.f90
Function ’ g o l u t i l c a l c u l a t e s t a t ’
L ines executed :100 .00% of 12

Function ’ g o l u t i l u p d a t e g r i d ’
L ines executed :100 .00% of 5

Function ’ g o l u t i l c o un t n e i g hb ou r s ’
L ines executed :100 .00% of 2

Function ’ g o l u t i l g o l s t e p ’
L ines executed :100 .00% of 2

Function ’ g o l u t i l g o l c l e a n u p ’
Lines executed :100 .00% of 3

Function ’ g o l u t i l g o l i n i t ’
L ines executed :81 .82% of 11

F i l e ’ g o l u t i l . f90 ’
L ines executed :94 .29% of 35
g o l u t i l . f 90 : c r e a t i n g ’ g o l u t i l . f 90 . gcov ’

9

5.5 Analysing branch coverage

The --branch-probabilities option can be used to output branch coverage summaries. This will also
annotate the *.gcov entries with information on branch frequencies. Unconditional branches will not be
included unless the --unconditional-branches option is also used.

[lsc@softeng]$ gcov --branch-probabilities gcov_util.f90
F i l e g o l u t i l . f 90
Lines executed : 94 . 29% of 35
Branches executed : 100 .00% of 84
Taken at l e a s t once : 85 . 71% of 84
Ca l l s executed : 86 . 67% of 30
g o l u t i l . f 90 : c r e a t i n g g o l u t i l . f 90 . gcov

The ‘Branches executed ’ field refers to the number of branches encountered, while the ‘Taken at least
once’ field refers to the number of branches that were taken at least once. In the above example, all 84
branches were encountered and evaluated but only 85.71% (72) of them were taken at least once. The
remaining 12 branches have conditions that always evaluated to False and the statements within them
never executed, hence never tested.

5.6 Caveats

5.6.1 Compiler optimisation

When performing coverage analysis, compiler optimisation should always be disabled as some optimisation
may eliminate, reorder or combine statements and influence the coverage results. Take for example the
following C code example adapted from the GCC documentation [12]:

int main (int argc , char ∗∗ argv) {

int i , i n t a , int b , r e su l t , sum ;

sum = 0;
i n t a = 10 ;
i n t b = 20 ;

for (i = 0 ; i < 10 ; i++)
{

i f (i n t a == in t b)
r e s u l t = 42 ;

else
r e s u l t = 24 ;

sum += r e s u l t ;
}

p r i n t f (”%d” , sum) ;
}

Listing 3: Sample C code adapted from the GCC documentation

Different coverage results will be obtained when the code above is compiled with and without optimi-
sation.

[lsc@aphek]$ # Without optimisation, we get 90% coverage
[lsc@aphek]$ gcc -fprofile-arcs -ftest-coverage -o test test.c
[lsc@aphek]$./test
240

10

[lsc@aphek]$ gcov test.c
F i l e ‘ t e s t . c ’
L ines executed :90 .00% of 10
t e s t . c : c r e a t i n g ‘ t e s t . c . gcov ’

[lsc@aphek]$ # Now with optimisation, coverage will go up to 100% !!
[lsc@aphek]$ gcc -fprofile-arcs -ftest-coverage -O3 -o test test.c
[lsc@aphek]$./test
240
[lsc@aphek]$ gcov test.c
F i l e ‘ t e s t . c ’
L ines executed :100 .00% of 10
t e s t . c : c r e a t i n g ‘ t e s t . c . gcov ’

[lsc@aphek]$ # reproducibility of this example may depend on compiler version used
[lsc@aphek]$ gcc --version | head -n1
gcc (GCC) 3 . 4 . 6 2 0 0 6 0 4 0 4 (Red Hat 3 .4 .6 −11)

Looking at the annotated source code for both cases, note that the compiler has combined the if/else
block into a single basic block during the optimisation phase.

1 0 : 1 0 : i f (a == b)
1 0 : 1 1 : c = 0 ;
−: 1 2 : else

1 0 : 1 3 : c = 42 ;

Listing 4: test.c.gcov of Optimised Code

1 0 : 1 0 : i f (a == b)
#####: 1 1 : c = 0 ;

−: 1 2 : else
1 0 : 1 3 : c = 42 ;

Listing 5: test.c.gcov of Unoptimised Code

5.6.2 Version incompatibility

The version of gcov must be compatible with the compiler used to compile the source code as it needs to
understand the output produced by the compiler.

This requirement may be an issue for users who maintain several GNU-based compilers (gfortran, g77,
g95) on their system. If these compilers are installed and updated separately, the compiler versions may
go out of sync. It will then be up to the users to choose a suitable version of gcov based on the compiler
used.

Using a version of gcov that is older than the compiler will lead to errors as such:

[lsc@softeng]$ gcov -v | head -n1
gcov (GCC) 3 . 4 . 6 2 0 0 6 0 4 0 4 (Red Hat 3 .4 .6 −8)
[lsc@softeng]$ g95 --version | head -n1
G95 (GCC 4 . 0 . 3 (g95 0 . 9 0 !) Aug 9 2006)
[lsc@softeng]$ g95 -fprofile-arcs -ftest-coverage -o test test.f90 && ./test
[lsc@softeng]$ gcov test.f90
t e s t . gcno : v e r s i on ‘ 4 0 0∗ ’ , p r e f e r ‘ 304R’
t e s t . gcda : v e r s i on ‘ 4 0 0∗ ’ , p r e f e r v e r s i on ‘304R’
t e s t . gcda : corrupted

As gcov is designed to be backward compatible, a possible solution to this issue is to always maintain
a gcov version that is higher than or equal to all installed compilers. A mismatching (but higher) gcov
version would result in a warning message, but the analysis will still be successful.

11

[lsc softeng]$ gcov4 -v | head -n1
gcov (GCC) 4 . 1 . 1 2 0 0 7 0 1 0 5 (Red Hat 4 .1 .1 −53)
[lsc@softeng]$ g95 --version | head -n1
G95 (GCC 4 . 0 . 3 (g95 0 . 9 0 !) Aug 9 2006)
[lsc@softeng]$ g95 -fprofile-arcs -ftest-coverage -o test test.f90 && ./test
[lsc@softeng]$ gcov4 test.f90
t e s t . gcno : v e r s i on ’ 4 0 0∗ ’ , p r e f e r ’ 401p ’
t e s t . gcda : v e r s i on ’ 4 0 0∗ ’ , p r e f e r v e r s i on ’401p ’
F i l e ’ t e s t . f90 ’
L ines executed :100 .00% of 3
t e s t . f 90 : c r e a t i n g ’ t e s t . f 90 . gcov ’

5.6.3 Premature program termination

Coverage data files (*.gcda, or *.da for older compilers) are written out only at the end of a program
execution. Therefore, if a program terminates prematurely due to conditions such as a segmentation fault
or a termination signal, the data files will not be output and coverage analysis cannot be performed.

5.6.4 Multi-statement lines

The lowest resolution that gcov can accumulate coverage statistics is on a per-line basis. Therefore, when
more than one executable statement is on a single line (e.g. when using elaborate macro expansions)
the statistics will be less helpful as gcov will attribute all activity to that one line. For example, it will
not be obvious if any of the statements defined on that line is not executed if some other statement was
executed.

12

6 Case Study: Coverage Analysis of the Finite Element Library
(FELIB) Using gcov and LCOV

In this section, we will go through the motions of setting up a comprehensive test coverage analysis
workflow for an existing software library which contains multiple source directories and several test
programs.

We will look at how the use of gcov and LCOV can be seamlessly integrated into the existing build
process. We will then take a step further by exploring how LCOV can be used to gather the coverage
analysis results and present them in a more user-friendly and navigable format

6.1 About the FELIB source code

For the purpose of this walkthrough, we have chosen the Finite Element Library (FELIB) – a program
subroutine library for the solution of partial differential equations using the finite element method. We
will be using version 4.0 of FELIB which is written in Fortran77.

The source code of FELIB is freely available from the project page on CCPForge [8] and it includes
a set of example programs and input data. The provided source is organised in the following directory
structure:

Figure 2: The FELIB4.0 source layout

⇒ library/ – basic library routines

⇒ machine/ – machine dependent routines

⇒ program/ – example programs

⇒ data/ – example data

⇒ Makefile – make configuration file used to build the library and example programs

For more information, refer to the install.txt file also included with the source.

6.2 The walkthrough

6.2.1 Preparation

To begin, we first ensure that we have gcov and LCOV installed. We should also check that our version
of gcov is equal to or higher than that of the compiler we intend to use.

13

[lsc@aphek]$ which lcov && lcov --version
/ usr /bin / l cov
l cov : LCOV ve r s i on 1 . 8
[lsc@aphek]$ which gcov && gcov --version | head -n1
/ usr /bin /gcov
gcov (GCC) 3 . 4 . 6 2 0 0 6 0 4 0 4 (Red Hat 3 .4 .6 −10)
[lsc@aphek]$ which g77 && g77 --version | head -n1
/ usr /bin /g77
GNU Fortran (GCC) 3 . 4 . 6 2 0 0 6 0 4 0 4 (Red Hat 3 .4 .6 −10)

Next, we extract the source code for FELIB.

[lsc@aphek]$ tar zxf felib4.0.tar.gz
[lsc@aphek]$ cd felib4.0
[lsc@aphek]$ ls
data i n s t a l l . txt l i b r a r y machine Make f i l e programs r e s u l t s

We are now ready to build FELIB and analyse the coverage of its test programs.

6.2.2 Compiling the project and running the tests

To perform coverage analysis on a project, we need to include the -fprofile-arcs -ftest-coverage
flags to the compilation and linking steps. We can do so for FELIB by running “make all” with the
necessary flags specified in the arguments. This will compile the library and example programs with
coverage support built-in.

[lsc@aphek]$ COVFLAGS="-fprofile-arcs -ftest-coverage"
[lsc@aphek]$ make all FFLAGS="${COVFLAGS}" LFLAGS="${COVFLAGS}"
cd machine ; make FC=g77 FFLAGS=”− f p r o f i l e −a rc s − f t e s t−coverage ” LFLAGS=”− f p r o f i l e −a rc s − f t e s t−coverage ”
make [1] : Enter ing d i r e c t o r y ‘ / misc/ l s c /work/ coverage / f e l i b 4 .0/ machine ’
g77 − f p r o f i l e −a rc s − f t e s t−coverage −c −o adunit . o adunit . f
g77 − f p r o f i l e −a rc s − f t e s t−coverage −c −o maxint . o maxint . f
. . . . (remaining output omitted f o r b r ev i ty sake)

[lsc@aphek]$ ls machine/adunit*
machine/ adunit . f machine/ adunit . gcno machine/ adunit . o

Now that the library and example programs are built, we can use the provided test script to execute
all the example programs.

[lsc@aphek]$ cd programs/
[lsc@aphek]$./test-run.sh
∗∗∗
Running seg1p1
Data=dat1p1 Resu l t s=#res1p1
D i f f e r e n c i n g r e s u l t s (o ld /new)
∗∗∗ Di f f e r e n c e s found : s ee f i l e #d i f f 1 p 1
∗∗∗
Running seg1p2
Data=dat1p2 Resu l t s=#res1p2
D i f f e r e n c i n g r e s u l t s (o ld /new)
∗∗∗ Di f f e r e n c e s found : s ee f i l e #d i f f 1 p 2

. . . . (remaining output omitted f o r brev i ty ’ s sake)

[lsc@aphek]$ ls ../machines/adunit*
machine/ adunit . f machine/ adunit . gcda machine/ adunit . gcno machine/ adunit . o

14

After the execution of each test program a *.gcda file is generated for each source file. This file
contains the analysis data that will be used by gcov to analyse code coverage.

6.2.3 Generating a report using LCOV

Now that the analysis data is available we can proceed with compiling the results using LCOV.

LCOV will recursively search a given directory for relevant files and invoke gcov to generate an ‘info’
file. The ‘info’ file can then be passed on to genhtml – a command that comes packaged with LCOV –
to produce a web-based report

[lsc@aphek]$ pwd
/home/ l s c / f e l i b 4 . 0
[lsc@aphek]$ ls
data i n s t a l l . txt l i b r a r y machine Make f i l e programs r e s u l t s

[lsc@aphek]$ lcov --capture --directory . --output-file felib.info
Capturing coverage data from .
Found gcov ve r s i on : 3 . 4 . 6
Scanning . f o r . gcda f i l e s . . .
Found 26 data f i l e s in .
Proce s s ing . / machine/maxint . gcda
Proce s s ing . / machine/ adunit . gcda
. . . . (some output omitted f o r brev i ty ’ s sake)
Proces s ing . / l i b r a r y / choso l . gcda
Proce s s ing . / l i b r a r y / prtvec . gcda
Fin i shed . in fo− f i l e c r e a t i on

[lsc@aphek]$ genhtml --output-directory lcov_html felib.info
Reading data f i l e f e l i b . i n f o
Found 26 e n t r i e s .
Found common f i l ename p r e f i x ”/home/ l s c / f e l i b 4 .0”
Writing . c s s and . png f i l e s .
Generating output .
Proce s s ing f i l e l i b r a r y /matnul . f
Proce s s ing f i l e l i b r a r y /matmul . f
. . . . (some output omitted f o r brev i ty ’ s sake)
Proces s ing f i l e machine/maxint . f
Proce s s ing f i l e programs/ seg5p2 . f
Writing d i r e c t o r y view page .
Overa l l coverage ra t e : 6 3 1 o f 731 l i n e s (86 .3%)

The resulting report will be in the form of HTML files and will be written in the directory specified
by the --output-directory option. It can be viewed by loading the index.html file within the output
directory using a web-browser.

LCOV invokes gcov behind the scenes to parse coverage results generated by the runs. Should there
be a problem with version incompatibility (see Section 5.6.2), the --gcov-tool can be used to select a
newer version of gcov. For example:

[lsc@aphek]$ which gcov4
/ usr /bin /gcov4
[lsc@aphek]$ lcov --capture --gcov-tool /usr/bin/gcov4 --directory . -o felib.info

6.2.4 Managing multiple tests

In the previous example, the test-run.sh script was used to run every test program. This resulted in our
coverage results being cumulative and representative of an overall coverage achieved by all tests.

15

In order to obtain per-test statistics, coverage data has to be captured after each test and reset before
the next test is executed. This can be achieved using a script such as the one included in Appendix A.
This script does the following:

FOR EACH t e s t
CALL l c ov −−z e rocounte r s −−d i r e c t o r y <dir>
RUN <testname>
CALL l c ov −−capture −−d i r e c t o r y <dir >−−output− f i l e <testname >. i n f o

END FOR EACH

CALL genhtml −−output−d i r e c t o r y <outdir > ∗ . i n f o

Listing 6: Pseudocode for gathering coverage statistics of separate tests

6.2.5 Integrating coverage analysis into FELIB’s Makefile

To simplify coverage analysis for FELIB, we can automate the process by including another target in
its Makefile. This target will append the necessary flags to FFLAGS and LFLAGS before performing the
standard build, followed by a call to the coverage script. For example:

New make t a r g e t f o r performing coverage ana l y s i s
COVFLAGS= − f p r o f i l e −a rc s − f t e s t−coverage
coverage :

clean up so e v e r y t h in g i s r e b u i l t us ing coverage f l a g s
make c l ean
Add coverave f l a g s to FFLAGS and COVFLAGS
Also d sa b l e op t im i sa t i on by removing a l l occurences o f −O∗ in FFLAGS
FFLAGS= ‘ ‘$ (FFLAGS:−O%=) $ (COVFLAGS) ” # Set s h e l l vars us ing Make f i l e vars
LFLAGS= ‘ ‘$ (LFLAGS) $ (COVFLAGS) ” # Set s h e l l vars us ing Make f i l e vars
make a l l FFLAGS= ‘ ‘${FFLAGS}” LFLAGS= ‘ ‘${LFLAGS}”
. / compi l e coverage . sh # s c r i p t to run t e s t and compi le coverage as html

Listing 7: Entries added to FELIB’s Makefile

With that target in place, developers (and users) can generate the coverage report by simply calling
“make coverage”.

6.2.6 Sample coverage report generated using LCOV

The following screenshots illustrate the different granularity of information provided by LCOV. An online
version is also available on: http://www.sesp.cse.clrc.ac.uk/Analysis/felib4.0/coverage

Index page (Figure 3): the index page provides a summary of overall code coverage achieved as well as
code coverage per source directory. Clicking on the directory name will lead us to the file listing page.

File listing page (Figure 4): this page provides the coverage achieved by the selected directory as well
as coverage achieved for each source file. Clicking on the source file name will lead us to the source code
listing page. Additionally, if the --show-details option was used with genhtml, we will have the option
to view coverage by tests for each source file (see Figure 5).

Source code listing page (Figure 6): The source listing page provides a marked up view of the source
code, with unexecuted lines highlighted in red and executed ones in blue. Optionally, if the --frames
option was used with genhtml4 a side navigation bar with a birds-eye view of the source code will be
available. Clicking on the different sections of the image will bring us to the specific sections of the code.

4The --frames option requires the Perl GD module to be installed

16

http://www.sesp.cse.clrc.ac.uk/Analysis/felib4.0/coverage

Figure 3: LCOV report – Index page

Figure 4: LCOV report – File listing page

17

Figure 5: LCOV report – File listing showing details of individual tests

Figure 6: LCOV report – Source code listing page

18

7 Conclusion

Code coverage analysis is a vital component in any software testing process. It provides developers with
a measure of how well their source code is being exercised by the tests which can in turn be used to
estimate how effective the tests would be in detecting errors in the code.

A 100% pass rate for a test procedure with low coverage would be meaningless since most of the errors
may lay dormant in sections of the code that were not exercised by the tests. In fact, not only would
such tests be useless, they are also dangerous as they lull developers into a false sense of confidence in
their code.

While full coverage is a desirable target it is not always viable. We believe that developers should
decide on a high but practical target that is suitable for their project, and most importantly, ensure that
any sections of the code that are not exercised by the tests be manually inspected by the developer.

Furthermore, merely looking at overall coverage targets can sometimes be insufficient as it can mask
huge uncovered blocks in a large project. Therefore, it is often useful to occasionally inspect the coverage
levels at a lower granularity, i.e. per-source-file coverage levels. The inspection process can be made
easier using post-processing tools such as LCOV which can present the detailed coverage report in a
user-friendly and easily navigable format.

As presented in Section 6, coverage analysis using tools such as gcov and LCOV can be integrated
into the build process and potentially automated. It may involve a small investment in effort to have
such a system in place, but it would certainly be worth while.

19

References

[1] G.J. Myers, The Art of Software Testing, 2nd Edition, John Wiley & Sons inc., (2004).

[2] E. Dustin, Effective Software Testing: 50 Specific Ways to Improve Your Testing, Addison-Wesley,
(2003)

[3] R.V. Binder, Testing Object Oriented Systems: Models, Patterns and Tools, Addison-Wesley, (2000)

[4] R.D. Craig, S.P. Jaskiel, Systematic software testing, Artech House, (2002)

[5] B. Marick, How to Misuse Code Coverage, Reliable Software Technologies, (1999)

[6] W.V. Hagen, The Definitive Guide to GCC, Second Edition, Apress, (2006)

[7] Software Engineering Support Programme, http://www.sesp.cse.clrc.ac.uk

[8] C. Greenough, The Finite Element Library, http://ccpforge.cse.rl.ac.uk/projects/felib

[9] FUnit Documentation, http://nasarb.rubyforge.org/funit

[10] LCOV - the LTP GCOV extension, http://ltp.sourceforge.net/coverage/lcov.php, Linux
Test Project

[11] Using ggcov with Fortran, http://www.softeng.cse.clrc.ac.uk/blog/2009/07/using-ggcov-with-fortran/,
SEG Blog

[12] Using the GNU Compiler Collection (GCC), http://gcc.gnu.org/onlinedocs/gcc, Free Software
Foundation, Inc., (2008)

[13] S. Cornett, Code Coverage Analysis, http://www.bullseye.com/coverage.html#release

20

http://www.sesp.cse.clrc.ac.uk
http://ccpforge.cse.rl.ac.uk/projects/felib
http://nasarb.rubyforge.org/funit
http://ltp.sourceforge.net/coverage/lcov.php
http://www.softeng.cse.clrc.ac.uk/blog/2009/07/using-ggcov-with-fortran/
http://gcc.gnu.org/onlinedocs/gcc
http://www.bullseye.com/coverage.html#release

A Coverage script example

1 #!/ bin /bash
2 #==
3 # Sample Coverage Test ing s c r i p t f o r f e l i b 4 . 0
4 #==
5

6 #−−−−−−−−−−−−−−−−CONFIG VARS−−−−−−−−−−−−−−−−
7

8 # Pro j ec t t i t l e
9 TITLE=”FELIB4 .0 ”

10

11 # Direc tory to begin s ea r ch ing f o r p r o j e c t f i l e s
12 SOURCE_DIR=” . ” # use cur rent working d i r e c t o r y
13

14 # Tests to run
15 TESTS=”1p1 1 p2 2 p1 2 p2 3 p1 3 p2 4 p1 4 p2 5 p1 5 p2”
16

17 # Output d i r e c t o r y f o r r e s u l t s
18 OUTDIR=” l c o v h tm l ”
19

20 # Path to execu tab l e s
21 GCOV=”/usr / b in / gcov”
22 LCOV=”/usr / b in / l c o v ”
23 GENHTML=”/usr / b in / genhtml ”
24

25 # Log f i l e s
26 LOG_FILE=” coverage . l o g ”
27 ERR_FILE=” cove rage e r r . l o g ”
28

29 # Do we have the Per l GD module i n s t a l l e d ?
30 HAVE_PERL_GD=1
31

32 #−−−−−−−−−−FUNCTIONS−−−−−−−−−−−−−−−−−−−−−−
33

34 # Error handl ing func t i on
35 function quitOnError {
36

37 RC=$1 ; MSG=$2

38

39 i f [$RC −ne 0] ; then
40 echo ”ERROR: $MSG” >&2
41 exit 1
42 f i
43 }
44

45 #−−−
46

47 # Empty log f i l e s (c r e a t e i f does not e x i s t)
48 > $LOG_FILE

49 > $ERR_FILE

50

51 # For each t e s t
52 for T in $TESTS

53 do
54 # Set r equ i r ed v a r i a b l e s
55 PROG_EXE=”programs/ seg$ {T}” # Test Executable
56 DATA_FILE=”data / dat$ {T}” # Test Input Data
57 RES_FILE=”programs/#res$ {T}” # Result f i l e
58

59 echo ”Running t e s t (${T}) ”
60 echo ”−−−−−−−−−−−−−−−−−−−−−−−−”
61

62 # Zero gcov counter s

21

63 echo −n ” ∗ Rese t t i ng execu t i on counters . . . ”
64 $LCOV −−zerocounters −d $SOURCE_DIR >> $LOG_FILE 2>> $ERR_FILE

65 quitOnError $? ”See $ERR FILE fo r d e t a i l s ”
66 echo ”DONE”
67

68 # Run t e s t
69 echo −n ” ∗ Running program ($PROG EXE) on data ($DATA FILE) . . . ”
70 $PROG_EXE < $DATA_FILE > $RES_FILE 2>> $ERR_FILE

71 quitOnError $? ”See $ERR FILE fo r d e t a i l s ”
72 echo ”DONE”
73

74 # Capture coverage data
75 echo −n ” ∗ Capturing coverage data . . . ”
76 OUTFILE=” gcov $ {T} . i n f o ”
77 OUTFILELIST=”$OUTFILE $OUTFILELIST” # Append f i l ename to l i s t
78 $LCOV −−capture −d $SOURCE_DIR −−gcov−tool $GCOV −t seg$T \
79 −o $OUTFILE >> $LOG_FILE 2>> $ERR_FILE

80 quitOnError $? ”See $ERR FILE fo r d e t a i l s ”
81 echo −e ”DONE\n”
82 done

83

84

85 # i f Per l : :GD i n s t a l l e d , i n c lude the −−frames opt ion f o r genhtml
86 EXTRA_OPT=””
87 i f [$HAVE_PERL_GD −ne 1] ; then EXTRA_OPT=”−−frames” ; f i
88

89 # Generate HTML from l i s t o f output f i l e s
90 echo −n ” ∗ Generating HTML . . . ”
91 $GENHTML $EXTRA_OPT −−title ”${TITLE}” −−show−details \
92 −o $OUTDIR $OUTFILELIST >> $LOG_FILE 2>> $ERR_FILE

93 quitOnError $? ”See $ERR FILE fo r d e t a i l s ”
94 echo ”DONE”
95

96 # Clean up
97 rm $OUTFILELIST

98

99 echo −e ”\nAnalys is output a v a i l a b l e in $OUTDIR”
100

101 # // SCRIPT END

22

	Introduction
	Coverage Analysis
	Overview
	Coverage criteria and targets

	Coverage Tools Available for Fortran
	gcov
	LCOV

	ggcov
	FCAT
	nag_coverage95
	CVRANAL

	Using gcov -- A quick guide for those in a hurry
	gcov in a Nutshell
	Overview
	Compiling and linking
	Analysing coverage
	Obtaining coverage summaries for each subroutine
	Analysing branch coverage
	Caveats
	Compiler optimisation
	Version incompatibility
	Premature program termination
	Multi-statement lines

	Case Study: Coverage Analysis of the Finite Element Library (FELIB) Using gcov and LCOV
	About the FELIB source code
	The walkthrough
	Preparation
	Compiling the project and running the tests
	Generating a report using LCOV
	Managing multiple tests
	Integrating coverage analysis into FELIB's Makefile
	Sample coverage report generated using LCOV

	Conclusion
	 Coverage script example

