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Abstract

Making use of high performance computers in agent-based simulation is a complex
and difficult task. This paper looks at the approach being used within the EURACE
project to exploit parallel computing technology in large-scale agent-based simula-
tions involving millions of agents. The underlying software is the FLAME framework
and the paper will give an overview of features and use of FLAME and discuss the
implementation of techniques that attempt to exploit large parallel computing sys-
tems. Some early simulation results will be presented together with a discussion of
the requirements for efficient parallel simulations and the performance of the current
implementation
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1 Introduction

The agent-based approach to the economy can be viewed as a vast complex adaptive system,
i.e., as a system consisting of a very large number of independent agents, that interact in various
ways and that change their state or actions as a result of the events in the process of interaction.
The study of the economy by means of agent-based computational models is a relatively new
field and dates back to the 90s when the increasing availability of cheap computing power it made
possible to undertake the computationally expensive experiments modelling the interactions of
large numbers of heterogeneous agents. See Testatsion [1] for a recent survey on agent-based
computational economics (ACE).

Agent-based systems have also been a major interest to researchers in a number of application
fields both within Computer Science and in other subjects. For computer scientists the interests
are often in areas relating to intelligent agents and this is usually meant to mean agents that
exhibit some aspects of perception, learning and so-on. Often the systems built are highly
experimental and the focus is not so much on understanding the application domain, which
could be almost anything, but on understanding intelligence, behaviour and related issues.

Often the systems are built in an ad hoc manner and are very difficult to maintain and extend
by people who are not directly involved in their construction. Some general frameworks have
been proposed for agent systems, for example agent modelling languages such as KQML, Finin
et al. [2] have focused more on research into the nature of agents and agent-based systems
rather than being a practical vehicle for building industrial strength agent systems for a specific
application domain. A wide variety of frameworks and languages have been explored to provide
useful support for many different types of research using agent systems. All have their strengths
and weaknesses and much can be gained by exploring these. Many of these address the problems
encountered in complex biological systems. However, only a few approaches have generated
significant results that really deliver new insights in biology. For example, although there has
been much work in the field of swarm intelligence its primary benefit has been in the discovery
of new search algorithms for computer science. In bacterial biology the work of Gregory et al.
[3] and Noble [4] has led to some new biological understandings.

2 The FLAME X-machine framework

There are many agent frameworks proposed for various application domains, but few share
the flexibility or the power of the approach use within FLAME (FLexible Agent Modelling
Environment) developed by Coakley [5]. FLAME develops the ideas of Kefalas et al. [13] which
describes a formal basis for the development of an agent-based simulation framework using the
concept of a communicating X-machine.

The framework has been used, successfully, by biologists to uncover new aspects of biology
and a better understanding of the processes underlying some biological systems, Walker et al.
[6, 7], Pogson et al. [8], Qwarnstrom et al. [9], Jackson et al. [10] and is now being extend for
use in other application areas such economic modelling, EURACE [11]. The agent populations
in these simulations range from a few hundreds of agents to tens of thousands. The agents
themselves range in complexity from simple position detection and motion to the solution of
algebraic and differential equations to provide data for agent decisions.

In order to develop an extensible framework which allows for the construction of a simulation
environment that will enable the creation and operation of millions of autonomous agents it is
necessary to take a fundamental look at the design concepts that will allow for highly efficient
simulations and with the potential to exploit parallel computer systems.

The following set of desirable features reflect not only the practical issues facing agent-based
modelling but also the principal scientific needs of providing suitable information to enable other
researchers to investigate the mechanics of the model, to adapt and to extend it and to trust
that it is founded on a coherent, consistent and realistic set of principles.
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• Each agent needs to be defined in a way that is as general and flexible as possible. A
specification language is needed rather than using working source code or pseudo code or
outline algorithms.

• The environment of the model also needs to be defined precisely. In particular the nature
of the communication that exists between the agents and the external environmental that
will influence the model.

• A standard framework for compiling the agent specifications onto a suitable platform for
computation. This is likely to require mechanisms for utilising parallel and Grid computing
in order to deal with realistic numbers of agent - millions rather than thousands.

• The framework would lead to an exchange mechanism whereby researchers would make
their agent descriptions available to others to use within their simulations.

• The mathematical analysis of complex systems is extremely difficult and the use of formally
defined agents could be a basis for the validation and verification of models in the longer
term.

FLAME addresses many of these issues. It has an agent specification language, XMML
(based on the XML standard), a set of tools to compile the specified agent-based systems
into code using a set of standard templates and the potential to produce optimised code for
efficient parallel processing. FLAME allows modellers to define their agent based systems and
automatically generate efficient C code which can be compiled and executed on both serial
and parallel systems. So the main elements of FLAME are: the XMML model definition, the
functions files (contain C code) and the FLAME Xparser with its associated templates. Through

Figure 1: FLAME Components

an analysis of the XMML FLAME constructs an application specific code using the functions
provided in the functions file. The ordering of agent state execution is determined through the
generation of a function dependency graph. This graph drives the generation of the application’s
code.

At the software implementation level the essential architecture of FLAME is based on the
premise that, during the simulation, agents pass through a number of defined state changes
and communicate with other agents through a collection of message boards. Thus the Xparser
generates a multiplicity of message boards to manage the community. This gives FLAME its
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unique flexibility in the management of agents and their associated message boards. This also
allows FLAME to exploit the potential benefits of utilising parallel computation.

The design and implementation of FLAME allow for detailed validation, systematic and
formalised simulation and testing based on previous work by Holcombe [12], Kefalas et al.
[13, 14], Eleftherakis et al. [15].

3 X-Machine Agent Representation

The language of X-agents, XMML, provides a precise definition of the individual behaviour of
agents by specifying their state transitions, internal memory and communication protocols. It
also defines implicitly all the interactions between agents. There are many issues that need
addressing in the definition of agent populations and their interactions. Clearly in multi agent
systems agents have different characteristics and have varied life styles. For example, in biological
systems cells divide, new agents appear and disappear and in economic systems Firms are formed
and may subsequently be disolved. This is something that XMML attempts to deal with by
defining a rich and flexible set of agent-based attributes.

The Extensible Mark-up Language (XML) is capable of describing many different types of
data. It provides a standard way to share structured text. By having a defined way to structure
an agent, agent-based models can be created, edited, shared, and merged between modellers.
The current design is very straight forward and uses simple nested XML tags to describe the
structure of an X-machine. Below we describe some of the basic elements of FLAMEs XMML
based on Version 0.14.0 of the FLAME Xparser.

We use a very simple test model to illustrate the use of the XMML language. The Circles
model is a collection of point agents, in two-dimensional space, that interact with neighbouring
agents, within their radius of influence, by repulsion.

Before the X-machine is defined environment variables and functions can be defined. These
are values and functions that can be used by transition functions of the X-machine. They
typically include static values and functions that are called more then once by the X-machine.
Environment functions can also be used to make the code of the transition functions more read-
able. The constituent parts of the XMML definition of a X-machine model are: its environment,
the xmachine definitions and their associated messages.

<xmachine_agent_model>
<name>Circles Test 1</name>
<author>Chris Greenough</author>
<date>15 May 2008</date>
<environment>.....</environment>
<xmachine>

<memory>....</memory>
<functions>....</functions>

</xmachine>
<messages>....</messages>

</xmachine_agent_model>

These statements define the basic XMML structure for the Circles Test 1 model. We will outline
to four main elements of the model starting with environment. The environment block specifies
essential global data for the model such as the names of function files and in future releases the
definition of time in the model. In this example we only specify the file name which contains
the C code functions associated with the model - functions.c.

<environment>
<functions>
<file>functions.c</file>
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</functions>
</environment>

The next step is to define the agents within the model: in this case one very simple agent called
Circle. The agent has two main elements: its memory and its functions. The memory section
defines all the elements of information to be carried by the agent. The functions section defines
the states the agent can enter and how they are related. The ordering of the functions determines
the execution sequence and the depends tags specifies any dependency on information from other
agents provided through the message boards. In this case the inputdata function is dependent
on location messages from other agents (this is defined later).

<xmachine>
<name>Circle</name>
<memory>
<var><type>int</type><name>id</name></var>
<var><type>double</type><name>x</name></var>
<var><type>double</type><name>y</name></var>
<var><type>double</type><name>fx</name></var>
<var><type>double</type><name>fy</name></var>
<var><type>double</type><name>radius</name></var>
</memory>
<functions>
<function>
<name>outputdata</name>
</function>
<function>
<name>inputdata</name>

<depends><name>outputdata</name>
<type>location</type></depends>

</function>
<function>
<name>move</name>

<depends><name>inputdata</name>
<type>internal</type></depends>

</function>
</functions>

</xmachine>

This example shows variables in the X-machine’s memory that are of type integer or double and
can be referenced by their name, for example id. Other variables can be added in the same way.
We only show basic data types but there is scope to add other data-types such as arrays and
structured data types. X-machine states are defined by the transition functions to other states.
In this example there are three state transition functions: outputdata, inputdata and move. The
actual operations performed in these will be defined in the C code associated with the function
in functions.c. Within these functions FLAME provides methods to access the agent memory
and to access the messages boards.

Lastly the messages that can be sent and received need to be well defined also. Each message
is defined inside a message tag, is given a name, and any variables it needs to hold. The message
defined below refers to the message used in the above X-machine function.

<messages>
<message>
<name>location</name>
<var><type>int</type><name>id</name></var>
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<var><type>double</type><name>range</name></var>
<var><type>double</type><name>x</name></var>
<var><type>double</type><name>y</name></var>
<var><type>double</type><name>z</name></var>
</message>

</messages>

The format for the message variables is the same format as the variables defined in the X-
machine’s internal memory. Many types of messages can be defined with variables for different
purposes.

The FLAME Xparser processes the XMML definition and using its templates converts the
model description to C source code and an appropriate make file. The make file will compile
and build the executable program. The parser can produce two versions: a serial version for
running on standard workstations and a parallel version, that uses the message passing interface
(MPI), for execution on parallel computing systems.

4 Parallelisation of the FLAME framework

Many agent simulation packages use the concept of a communications array which in the most
general case will be an nxnxm data space, where n is the number of agents in the simulation pop-
ulation and m the maximum number of messages. This is most often held as a single data space
and addressed as required to store communication information. This, albeit a very large array, is
an adequate implementation in a serial environment. However the single communications array
is not a good structure when considering a parallel implementation of the simulator.

To introduce a mechanism by which the inherent parallelism in a simulation might be ex-
ploited FLAME abandons the communications array in favour of a collection of message boards.
There is one message board for each message type in the system. Agents write and read infor-
mation to these boards. By doing this the granularity of the information transfer mechanism is
greatly increased: from one monolithic repository to a number of simpler and smaller reposito-
ries.

This break down of the single communications array allows the program to group agents and
message boards which will have great benefits in parallel or distributed implementation of an
agent framework. It can also have significant benefits in the serial implementation as well.

Before considering the current parallelisation of FLAME it is worth considering the charac-
teristics of a software system than make it worth taking the time and effort to parallelise. Some
characteristics of when to parallelise:

• Code is practically incapable of running on one computer, memory requirements too great,
run time too long

• Code will be reused frequently - parallelisation is a large investment

• Data structures are simple, calculations are local, easy to communicate and synchronize
between processors

The converse should also be considered. When not to parallelise a code:

• Code will only be used once (or infrequently) - An efficient parallel code takes time to
develop!

• Current performance is acceptable and execution time is short

• There will be frequent and significant code changes
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It should also be remembered that some algorithms simply do not parallelise.
Because of its architecture FLAME does have some of the good characteristics but unfortu-

nately it has a number of the bad. In the context of the EURACE project we believe that the
good out-weigh the bad with the size and time to solution dominating the good. However in a
fully connected and communicating agent population the communications may not be local but
long range. However in many applications of FLAME, EURACE included, we have seen that
there is sufficient locality to consider parallelisation given the general population sizes.

The use of simple read/write, single-type message boards allows the framework implementer
to divide the agent population and their associated communications areas. This division could
be based on any number of parameters or separators but the simplest to appreciate is position or
locality. If, as in EURACE, agents are people or companies for example, they will have locality
defined either as location or by some group topology. It is also reasonable to assume that the
dominant communications in both scenarios will be with neighbouring agents.

As explained above FLAME uses a collection of message boards to facilitate inter-agent
communication. As the majority of large high performance computing systems currently use a
distributed memory model a Single Program Multiple Data (SPMD) paradigm is considered most
appropriate for the FLAME architecture. The parallelisation of FLAME utilises partitioned
agent populations and distributed message boards linked through MPI communication. Figure 2
shows the difference between the serial and parallel implementation.

The most significant operation in the parallel implementation is providing the message infor-
mation required by agents on one node of the processor array but stored on a remote node of
the processor. The FLAME Message Board Library manages these data requests by using a set
of predefined message filters to limit the message movement. This process could be considered
a syncronisation of the local message boards within an iteration of the simulation. This syn-
cronisation essentially ensures that local agents have the message information they need as the
simulation progresses. The two main areas of algorithmic and technical development needed to

Figure 2: Serial and Parallel Message Boards

achieve an effective parallel implementation are: load balancing and communications strategy.
Initial load balancing to not too difficult: we have a population of agents - of various com-

plexities to which we can assign relative weights - in the most general case the agents can be
distributed over the available processors using the weights. This may well give an initial load
balance but make no reference to the possible communications patterns of the agent population.
As the simulation develops the numbers of agents in the population may change and adversely
affect the load balance of the processors. It is a very interesting and difficult problem to gauge
whether the additional work (computation and communication) involved in remedying a load
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imbalance is worth the gain. Given that the goal of any dynamic re-organising of the agents is to
reduce the elapsed time of the overall simulation, determining whether a process of dynamically
re-balancing the population will contribute to this is very problematic. It may well be that a
slight load in-balance will have no significant effect of the wall clock time of the simulation.
These problems are under investigation.

The communications patterns and volumes of the population will have a considerable impact
of the performance and parallel efficiency of the simulation. In general agents are rather light-
weight in the computational load. Where all agents can and do communicate with all others
the communications load within and across processors will be great. Fortunately communica-
tions within a processor are generally efficient. However across processors this communication
can dominate the application. Within FLAME communications between agents is managed by
the Message Board Library, which uses MPI to communicate between processors. The Message
Board Library implementation attempts to minimise this communication overhead by overlap-
ping the computational load of the agents with the communication.

Where the agents have some form of locality the initial distribution of agents makes use of
this information in placing agents on processing nodes. During the simulation agents can be
dynamically re-distributed to maintain computational load balance. However given the light-
weight computational nature of many agent types the effect of dynamically re-distributing agents
on the grounds of their communications load may well turn out to be more important than
computational load.

Within the EURACE Project a parallel version of FLAME has been developed using these
ideas and below are discussed some of the initial results in performing parallel simulations.

5 Some initial performance and efficiency results

Testing a parallel implementation of an agent-based simulation is quite difficult in general.
However we have been able to test FLAME initially with small problems with known solutions:
the Circles Agent is one of these test problems. The second phase of testing used more complex
problems with multiple agent type: the C@S and the Labour Market models are these.

In the section below we present the initial results of running the FLAME generated applica-
tions on a variety of parallel systems. We will not dwell on the details of these system suffice to
say they vary in processor and communications hardware and range from 128 to 2,500 processors
in size.

5.1 The Circles Agent Test

The Circles agent is very simple. It has a position in two-dimensional space and a radius of
influence. Each agent will react to its neighbours within its interaction radius repulsively. So
given a sufficient simulation time the initial distribution of agents will tend to a field of uniformly
spaced agents.

The description of the agent is given as a example of XMML in the sections above. Each
agent has x, y, fx, fy and radius in its memory and has three states: outputdata, inputdata
and move. The agents communicate via a single message board, location, which holds the agent
id and position.

The Circles problem is very simple but allows us an initial assessment of the performance of
the parallelisation within FLAME. The simulation was started with a populations of 106 agents
and experiments performed using from 4 to 100 processors. The averaged results are shown in
Table 1 and Figure 3.

The results indicate that this simulation benefits from using 30 to 50 processors after which
the performance benefits flatten. It is interesting to note that this is essentially similar across the
range of systems used. The variations between systems being attributed to memory, architecture
and communications hardware differences.
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Processors SCARF HAPU NW-GRID HPCx

4 2510.723 1710.531 2791.994 -

9 1021.234 277.672 890.378 -

16 321.057 106.169 388.098 403.122

25 189.211 67.646 196.751 161.757

36 67.413 52.912 121.571 78.468

49 37.080 19.682 58.068 42.503

64 23.199 16.482 42.881 25.122

81 14.826 12.971 38.033 15.849

100 6.653 6.641 27.603 10.322

Table 1: Execution Times for 106 Circles

Figure 3: Graph of iteration times

5.2 The C@S Model

The C@S model was the first economic model to be implemented in FLAME by the EURACE
Project. It is based on work detailed in Delli Gatti et al. [16] where an economy is populated by
a finite number of firms, workers/consumers and banks. The acronym C@S stands for Complex
Adaptive Trivial System.

This provides an initial economic model for testing FLAME. The EURACE version of C@S
contains models for consumption goods, labour services and credit services. The population is
a mix of agents: Malls, Firms and People. Each of these has different states and communicates
with other agents in the population through 9 message types.

As the agents in the C@S Model have some positional/location data and the communication
is localised, the initial distribution of agents to processors, as in the Circles Model, can be based
on location. This helps reduce cross-processor communication.

The initial population contained: 20000 firms, 100000 people and 4000 malls (124000 agents
in total).

The results show a potential reduction of the elapsed time of the simulation when using up
to 30 processors.
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Processors HAPU NW-GRID HPCx MANO

4 378.34 572.23 276.81 918.20

9 169.54 295.81 214.61 664.81

16 105.90 147.67 91.12 307.92

25 68.64 89.97 54.89 210.33

36 46.53 60.06 36.11 142.35

49 33.81 45.39 25.54 107.70

64 25.77 - 19.48 86.74

81 23.50 30.95 15.65 78.51

100 17.51 - 12.52 67.28

Table 2: Execution Times for C@S Model

Figure 4: Graph of C@S Model execution times

5.3 The Labour Market Model

The Labour Market Model was the first attempt to develop a more realistic model within
EURACE. The basic ideas were proposed by the University of Bielefeld and implemented jointly
between Bielefeld and Sheffield. The model represents the matching of job seekers with the
vacancies available in a selection of Firms.

The model population has four agent types: households, firms, markets and Eurostat. The
market and Eurostat are agents that manage global data such as market data and wage costs.
The Households and Firms make use of this data to inform their decisions.

So in this model there are a mix of agents communicating through 10 message types. An
important point to note is that unlike the Circles and C@S agents there is no positional data in
the model so there is a many-to-many communication.

The initial population contained: 10000 firms, 100000 households, 1000 markets and 1 Euro-
stat (110101 agents in total).

The results for this model show similar performance and the main performance gains are
limited to around 20 to 30 processors despite the many-to-many communications. It the current
implementation is results in large amounts of data replication. Although the trends are similar
to the Circles and C@S models some curves show some erratic behaviour. These increases in
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elapsed time may well be a result of the increased communications load.

Processors HAPU NW-GRID HPCx MANO

4 280.49 358.80 - 2420.93

9 134.32 203.71 - 360.86

16 67.23 107.75 - 251.16

25 59.28 119.75 104.70 192.34

36 46.92 107.97 86.411 53.77

49 40.19 - 85.10 124.04

64 38.17 - 83.81 96.48

81 36.56 - 91.30 85.02

100 36.21 - 83.97 116.90

Table 3: Execution Times for Labour Market Model

Figure 5: Graph of Labour Market Model iteraction times

6 Conclusions

The parallelisation of the underlying algorithms used in agent technologies is very difficult. The
many-to-many communications network of the most general agent population is the primary
bottleneck particularly if it is represented as an n-by-n communications array. In the most
general case all agents need to access this shared repository of information and mapping this
requirement onto the architecture of most high performance computing systems is a challenge.

The FLAME framework uses the concept of message boards to replace the communications
matrix and utilises the partitioning and distribution of these message boards to aid parallel
implementation. This approach has been demonstrated to provide a sufficiently efficient parallel
implementation in applications where the agent population has short range communication
behaviour thus enabling agent neighbourhoods to be defined.

In applications where the communications network is less confined the message boards are
treated as a shared resource and the shared data concepts in MPI are used to access the data.
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Although this is not as efficient as having local populations with local communication networks
the technique does allow the development of complex simulations of many tens of thousands of
communicating agents.
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